

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(4-Nitrophenyl)morpholine

Li-Jiao Wang,^a Wei-Wei Li,^b* Sheng-Yong Yang^a and Li Yang^a

^aState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China, and ^bDepartment of Applied Chemistry, College of Chemical Engineering, Sichuan University, Chengdu 610041, People's Republic of China Correspondence e-mail: yangli@scu.edu.cn

Received 2 December 2011; accepted 21 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.121; data-to-parameter ratio = 11.0.

Aromatic π - π stacking interactions stabilize the crystal structure of the title compound, $C_{10}H_{12}N_2O_3$, the perpendicular distance between parallel planes being 3.7721 (8) Å. The morpholine ring adopts a chair comformation.

Related literature

For the biological activity and synthesis of 4-(4-nitrophenyl)morpholine derivatives, see: Wang *et al.* (2010). For a related structure, see: Yang *et al.* (2011).

V = 1979.42 (13) Å³

 $0.35 \times 0.33 \times 0.30$ mm

Mo $K\alpha$ radiation

 $\mu = 0.11 \text{ mm}^-$

T = 293 K

Z = 8

Experimental

Crystal data

 $\begin{array}{l} C_{10}H_{12}N_2O_3 \\ M_r = 208.22 \\ Orthorhombic, Pbca \\ a = 14.5445 \ (6) \ \text{\AA} \\ b = 8.3832 \ (3) \ \text{\AA} \\ c = 16.2341 \ (6) \ \text{\AA} \end{array}$

Data collection

Oxford Diffraction Xcalibur Eos	4949 measured reflections
diffractometer	2023 independent reflections
Absorption correction: multi-scan	1377 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Oxford	$R_{\rm int} = 0.018$
Diffraction, 2006)	
$T_{\min} = 0.992, \ T_{\max} = 1.000$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.121$ S = 1.032023 reflections 184 parameters All H-atom parameters refined

 $\Delta \rho_{\rm max} = 0.12 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2006); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2195).

References

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, S. D., Midgley, C. A., Scaerou, F., Grabarek, J. B., Griffiths, G., Jackson, W., Kontopidis, G., McClue, S. J., McInnes, C., Meades, C., Mezna, M., Plater, A., Stuart, I., Thomas, M. P., Wood, G., Clarke, R. G., Blake, D. G., Zheleva, D. I., Lane, D. P., Jackson, R. C., Glover, D. M. & Fischer, P. M. (2010). J. Med. Chem. 53, 4367–4378.
- Yang, L.-L., Zheng, R.-L., Li, G.-B., Sun, Q.-Z. & Xie, Y.-M. (2011). Acta Cryst. E67, 0754.

supporting information

Acta Cryst. (2012). E68, o1235 [https://doi.org/10.1107/S1600536812012172]

4-(4-Nitrophenyl)morpholine

Li-Jiao Wang, Wei-Wei Li, Sheng-Yong Yang and Li Yang

S1. Comment

4-(4-nitrophenyl)morpholine derivatives are of great importance due to their anticancer activity (Wang *et al.*, 2010;). The title compound is one of the key intermediates in our synthetic investigations of antitumor drugs. We synthesized the title compound and report its crystal structure in this paper.

In the title compound, $C_{10}H_{12}N_2O_3$, (Fig. 1) the bond lengths and angles are within normal ranges (Yang *et al.*, 2011). Aromatic π - π stacking interactions help to stabilize the crystal structure (Fig. 2). The perpendicular distance between the parallel ring planes is 3.7721 (8) Å, the distance between the centres of gravity Cg—Cg(-x,-y,1-z) is 3.8499 (11) Å.

S2. Experimental

The title compound was prepared by a method similar to that of Shudong Wang *et al.* (2010), which Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of dichloromethane.

S3. Refinement

All H atoms were positioned in the difference map and refined freely.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

A packing diagram of the title compound. The dotted line indicates the Cg—Cg(-x,-y,1-z) distance.

4-(4-Nitrophenyl)morpholine

Crystal data

$C_{10}H_{12}N_{2}O_{3}$ $M_{r} = 208.22$ Orthorhombic, <i>Pbca</i> $a = 14.5445 (6) \text{ Å}$ $b = 8.3832 (3) \text{ Å}$ $c = 16.2341 (6) \text{ Å}$ $V = 1979.42 (13) \text{ Å}^{3}$ $Z = 8$ $F(000) = 880$	$D_x = 1.397 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1704 reflections $\theta = 2.9-29.2^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 293 K Block, yellow $0.35 \times 0.33 \times 0.30 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.0874 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2006) $T_{min} = 0.992, T_{max} = 1.000$	4949 measured reflections 2023 independent reflections 1377 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 26.4^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -9 \rightarrow 18$ $k = -6 \rightarrow 10$ $l = -20 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.121$	All H-atom parameters refined
S = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.050P)^2 + 0.3012P]$
2023 reflections	where $P = (F_o^2 + 2F_c^2)/3$
184 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta ho_{ m max} = 0.12 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.11977 (11)	0.40333 (15)	0.24876 (9)	0.0774 (5)
O2	0.15361 (12)	-0.3154 (2)	0.66760 (10)	0.0931 (6)
O3	0.09389 (13)	-0.47156 (17)	0.57725 (10)	0.0907 (6)
N1	0.12607 (10)	0.15429 (16)	0.36653 (8)	0.0488 (4)
N2	0.12312 (11)	-0.3406 (2)	0.59853 (11)	0.0642 (5)
C1	0.17590 (18)	0.4172 (3)	0.31932 (13)	0.0674 (6)
H1A	0.2408 (16)	0.378 (2)	0.3051 (12)	0.083 (7)*
H1B	0.1775 (14)	0.531 (2)	0.3339 (12)	0.072 (6)*
C2	0.14099 (17)	0.3205 (2)	0.39042 (13)	0.0587 (5)
H2A	0.1869 (14)	0.327 (2)	0.4354 (12)	0.067 (6)*
H2B	0.0823 (14)	0.367 (2)	0.4102 (12)	0.068 (6)*
C3	0.07821 (15)	0.1361 (3)	0.28780 (11)	0.0567 (5)
H3A	0.0113 (15)	0.159 (2)	0.2958 (12)	0.081 (7)*
H3B	0.0813 (13)	0.028 (2)	0.2697 (11)	0.064 (6)*
C4	0.11879 (17)	0.2413 (2)	0.22354 (13)	0.0647 (5)
H4A	0.0814 (13)	0.237 (2)	0.1743 (13)	0.072 (6)*
H4B	0.1848 (14)	0.205 (2)	0.2122 (12)	0.077 (6)*
C5	0.12154 (11)	0.03660 (19)	0.42504 (10)	0.0440 (4)
C6	0.08684 (14)	-0.1153 (2)	0.40613 (12)	0.0589 (5)
H6	0.0618 (13)	-0.137 (2)	0.3546 (12)	0.069 (6)*
C7	0.08671 (14)	-0.2364 (2)	0.46268 (12)	0.0598 (5)
H7	0.0634 (14)	-0.340 (2)	0.4490 (12)	0.078 (6)*
C8	0.12173 (12)	-0.2108 (2)	0.54007 (11)	0.0501 (4)
C9	0.15440 (14)	-0.0625 (2)	0.56225 (12)	0.0563 (5)
Н9	0.1773 (13)	-0.045 (2)	0.6160 (13)	0.065 (6)*

supporting information

G1 0	0.1.50.55 (1.0)	0.0500 (0)	0.50505 (11)	
C10	0.15375 (13)	0.0592 (2)	0.50585 (11)	0.0536 (5)
H10	0.1772 (13)	0.161 (2)	0.5228 (11)	0.064 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1061 (12)	0.0596 (8)	0.0664 (9)	0.0081 (8)	-0.0178 (9)	0.0111 (7)
O2	0.1083 (13)	0.0960 (12)	0.0748 (11)	-0.0164 (10)	-0.0257 (10)	0.0297 (9)
O3	0.1163 (13)	0.0583 (9)	0.0974 (12)	-0.0137 (9)	-0.0058 (10)	0.0163 (8)
N1	0.0586 (9)	0.0459 (7)	0.0418 (8)	-0.0054 (7)	-0.0048 (7)	-0.0049 (6)
N2	0.0576 (10)	0.0686 (11)	0.0665 (11)	0.0035 (9)	0.0008 (9)	0.0131 (9)
C1	0.0868 (16)	0.0538 (12)	0.0615 (13)	-0.0091 (12)	-0.0020 (12)	0.0044 (10)
C2	0.0720 (13)	0.0498 (10)	0.0544 (11)	-0.0060 (10)	0.0003 (11)	-0.0067 (9)
C3	0.0624 (13)	0.0599 (12)	0.0477 (11)	-0.0024 (10)	-0.0086 (9)	-0.0048 (9)
C4	0.0829 (15)	0.0636 (12)	0.0478 (11)	0.0061 (12)	-0.0116 (11)	0.0029 (9)
C5	0.0428 (9)	0.0475 (8)	0.0418 (9)	-0.0013 (8)	0.0019 (7)	-0.0054 (7)
C6	0.0722 (13)	0.0569 (11)	0.0476 (11)	-0.0143 (10)	-0.0093 (10)	-0.0055 (9)
C7	0.0682 (12)	0.0497 (10)	0.0617 (12)	-0.0106 (10)	-0.0015 (10)	-0.0030 (9)
C8	0.0467 (9)	0.0521 (9)	0.0514 (10)	0.0024 (8)	0.0028 (8)	0.0037 (8)
C9	0.0626 (12)	0.0622 (11)	0.0443 (10)	-0.0015 (9)	-0.0044 (9)	-0.0042 (8)
C10	0.0656 (11)	0.0495 (9)	0.0458 (10)	-0.0081 (9)	-0.0035 (9)	-0.0069 (8)

Geometric parameters (Å, °)

01—C1	1.411 (2)	С3—Н3В	0.958 (19)
O1—C4	1.418 (2)	C3—C4	1.488 (3)
O2—N2	1.224 (2)	C4—H4A	0.97 (2)
O3—N2	1.227 (2)	C4—H4B	1.02 (2)
N1-C2	1.463 (2)	C5—C6	1.404 (2)
N1—C3	1.463 (2)	C5—C10	1.406 (2)
N1—C5	1.371 (2)	С6—Н6	0.93 (2)
N2—C8	1.444 (2)	C6—C7	1.369 (3)
C1—H1A	1.03 (2)	С7—Н7	0.96 (2)
C1—H1B	0.98 (2)	С7—С8	1.373 (3)
C1—C2	1.499 (3)	C8—C9	1.378 (2)
C2—H2A	0.99 (2)	С9—Н9	0.95 (2)
C2—H2B	0.99 (2)	C9—C10	1.371 (3)
С3—НЗА	1.00 (2)	C10—H10	0.957 (18)
C1—O1—C4	108.61 (15)	O1—C4—C3	111.68 (18)
C2—N1—C3	113.67 (15)	O1—C4—H4A	106.5 (11)
C5—N1—C2	120.60 (14)	O1—C4—H4B	109.0 (11)
C5—N1—C3	120.47 (14)	C3—C4—H4A	109.4 (11)
O2—N2—O3	122.50 (17)	C3—C4—H4B	108.9 (11)
O2—N2—C8	118.51 (17)	H4A—C4—H4B	111.5 (16)
O3—N2—C8	118.98 (17)	N1—C5—C6	121.23 (15)
01—C1—H1A	108.8 (12)	N1	122.24 (15)
01—C1—H1B	106.8 (11)	C6—C5—C10	116.50 (16)

O1—C1—C2	112.60 (18)	С5—С6—Н6	121.2 (12)
H1A—C1—H1B	110.1 (17)	C7—C6—C5	121.78 (18)
C2—C1—H1A	108.2 (12)	С7—С6—Н6	117.0 (12)
C2—C1—H1B	110.3 (12)	С6—С7—Н7	121.1 (12)
N1-C2-C1	111.18 (17)	C6—C7—C8	119.81 (18)
N1—C2—H2A	110.4 (11)	С8—С7—Н7	119.1 (12)
N1—C2—H2B	109.4 (11)	C7—C8—N2	119.25 (17)
C1—C2—H2A	108.0 (11)	С7—С8—С9	120.55 (17)
C1—C2—H2B	109.2 (11)	C9—C8—N2	120.20 (17)
H2A—C2—H2B	108.6 (16)	С8—С9—Н9	120.3 (11)
N1—C3—H3A	109.2 (12)	С10—С9—С8	119.62 (18)
N1—C3—H3B	110.2 (11)	С10—С9—Н9	120.1 (11)
N1—C3—C4	111.20 (16)	С5—С10—Н10	120.4 (11)
НЗА—СЗ—НЗВ	105.7 (16)	C9—C10—C5	121.68 (17)
С4—С3—Н3А	111.2 (12)	С9—С10—Н10	117.9 (11)
C4—C3—H3B	109.2 (11)		