Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(3-acetylpyridine- κN)bis(methanolκO)bis(thiocyanato- κN)nickel(II)

Julia Werner,* Jan Boeckmann, Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-EythStrasse 2, 24118 Kiel, Germany
Correspondence e-mail: jwerner@ac.uni-kiel.de

Received 13 February 2012; accepted 28 February 2012

Key indicators: single-crystal X-ray study; $T=180 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.039 ; w R$ factor $=0.101 ;$ data-to-parameter ratio $=19.1$.

In the crystal structure of the title compound, $\left[\mathrm{Ni}(\mathrm{NCS})_{2^{-}}\right.$ $\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}$], the Ni^{2+} cations are coordinated by two thiocyanate anions, two 3-acetylpyridine ligands and two methanol molecules within slightly distorted $\mathrm{NiN}_{4} \mathrm{O}_{2}$ octahedra. The asymmetric unit consists of one Ni^{2+} cation, which is located on a center of inversion, as well as one thiocyanate anion, one 3-acetylpyridine ligand and one methanol molecule in general positions. The discrete complexes are linked by two pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the hydroxy H atom and the acetyl O atom into chains along the b axis.

Related literature

For general background information including details on thermal decomposition reactions and magnetic properties of the precursor and $\mu-1,3$ bridging compounds, see: Näther \& Greve (2003); Boeckmann \& Näther (2010, 2011); Wöhlert et al. (2011). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

$\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}\right)\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]$	$V=1089.44(15) \AA^{3}$
$M_{r}=481.23$	$Z=2$
Monoclinic, $P 2^{1} / c$	Mo $K \alpha$ radiation
$a=7.7088(7) \AA$	$\mu=1.11 \mathrm{~mm}^{-1}$
$b=14.6893(9) \AA$	$T=180 \mathrm{~K}$
$c=9.6887(8) \AA$	$0.19 \times 0.14 \times 0.11 \mathrm{~mm}$

$c=9.6887(8) \mathrm{A}$
$0.19 \times 0.14 \times 0.11 \mathrm{~mm}$
$\beta=96.782(10)^{\circ}$
Data collection

Stoe IPDS-1 diffractometer	9642 measured reflections
Absorption correction: numerical	2555 independent reflections
$(X-S H A P E$ and X-RED32; Stoe	2041 reflections with $I>2 \sigma(I)$
\& Cie, 2008)	$R_{\text {int }}=0.060$
$T_{\min }=0.826, T_{\max }=0.881$	

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$	134 parameters
$w R\left(F^{2}\right)=0.101$	H-atom parameters constrained
$S=0.99$	$\Delta \rho_{\max }=0.41 \mathrm{e}^{-3}$
2555 reflections	$\Delta \rho_{\min }=-0.66 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

Ni1-N1	$2.0357(18)$	Ni1-N11	2.1154 (19)
Ni1-O21	$2.0943(14)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O21-H1O $\cdots \mathrm{O}_{1} 1^{\mathrm{ii}}$	0.84	1.87	$2.700(2)$	172

Symmetry code: (ii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.

Data collection: X-AREA (Stoe \& Cie, 2008); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular

metal-organic compounds

graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

We gratefully acknowledge financial support by the DFG (project number NA 720/3-1) and the State of SchleswigHolstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2122).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388
Boeckmann, J. \& Näther, C. (2010). Dalton Trans. 39, 11019-11026.
Boeckmann, J. \& Näther, C. (2011). Chem. Commun. 47, 7104-7106.
Näther, C. \& Greve, J. (2003). J. Solid State Chem. 176, 259-265.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Boeckmann, J., Wriedt, M. \& Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920-6923.

supporting information

Acta Cryst. (2012). E68, m441-m442 [https://doi.org/10.1107/S1600536812008860]
Bis(3-acetylpyridine- κ N)bis(methanol- κ O)bis(thiocyanato- κN)nickel(II)
Julia Werner, Jan Boeckmann, Inke Jess and Christian Näther

S1. Comment

The structure of the title compound was prepared within a project on the synthesis of transition metal coordination polymers containing $\mu-1,3$ bridging thiocyanato anions and neutral N -donor co-ligands by thermal decomposition of suitable precursor compounds with N-terminal bonded anions (Boeckmann \& Näther, 2010, 2011; Wöhlert et al., 2011). In the preparation of a precursor compound using 3 -acetylpyridine as co-ligand crystals of the title compound were obtained and characterized by single crystal x-Ray diffraction.
In the crystal structure the Nickel(II) cations are coordinated by four nitrogen atoms of two terminal N -bonded thiocyanato anions and two terminal bonded 3-acetylpyridine coligands as well as two methanol molecules, all of the related by symmetry into discrete complexes (Fig. 1). The coordination polyhedron of the Ni cations can be described as a slightly distorted octahedra with the Ni cation located on a centre of inversion (Table 1).
The discrete complexes are linked by two pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the hydroxy H atom and the acetyl O atom into chains, which are elongated in the direction of the crystallographic b axis (Fig. 2 and Table 2). It must be noted that according to a search in the CCDC database (ConQuest Ver.1.14.2012) (Allen, 2002) coordination compounds based on metal thiocyanates and 3-acetylpyridine are unknown.

S2. Experimental

Nickel thiocyanate and 3-acetylpyridine were purchased from Alfa Aesar. The title compound was prepared by the reaction of $174.9 \mathrm{mg} \mathrm{Ni}(\mathrm{NCS})_{2}(1.00 \mathrm{mmol})$ and $27.3 \mu \mathrm{~L} 3$-acetylpyridine $(0.25 \mathrm{mmol})$ in 2 mL methanol at RT in a closed 3 ml snap cap vial. After three days colourless blocks of the title compound were obtained.

S3. Refinement

The C-H H atoms were positioned with idealized geometry and were refined isotropically with $U_{\text {eq }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms (1.5 for methyl H atoms) using a riding model with $\mathrm{C}-\mathrm{H}=0.95 \AA$ (aromatic) and with $\mathrm{C}-\mathrm{H}=0.98$ \AA (methyl). The O-H H atom was located in a difference map, its bond lengths set to ideal values of $0.84 \AA$ and afterwards they were refined using a riding model with $U \sim$ eq $\sim(\mathrm{H})=1.5 \quad U \sim \mathrm{eq} \sim(\mathrm{O})$

Figure 1
Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: $\mathrm{i}=-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$.

Figure 2
Packing diagram of the title compound with view along the crystallographic a axis. Hydrogen bonding is shown as dashed lines and for clarity only the $\mathrm{O}-\mathrm{H} \mathrm{H}$ atoms are shown.

Bis(3-acetylpyridine- κN)bis(methanol- κ O)bis(thiocyanato- κN)nickel(II)
Crystal data
$\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}\right)\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]$
$M_{r}=481.23$
Monoclinic, $P 2_{1} / c$

Hall symbol: -P 2ybc
$a=7.7088$ (7) \AA
$b=14.6893$ (9) \AA
$c=9.6887(8) \AA$
$\beta=96.782(10)^{\circ}$
$V=1089.44(15) \AA^{3}$
$Z=2$
$F(000)=500$
$D_{\mathrm{x}}=1.467 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$

Data collection

Stoe IPDS-1

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ scans
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\text {min }}=0.826, T_{\text {max }}=0.881$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.101$
$S=0.99$
2555 reflections
134 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Cell parameters from 9642 reflections
$\theta=2.5-28.0^{\circ}$
$\mu=1.11 \mathrm{~mm}^{-1}$
$T=180 \mathrm{~K}$
Block, blue
$0.19 \times 0.14 \times 0.11 \mathrm{~mm}$

9642 measured reflections
2555 independent reflections
2041 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-19 \rightarrow 18$
$l=-12 \rightarrow 12$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0688 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right)^{2} / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.66$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.028 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {is }} * / U_{\text {eq }}$
Ni1	0.5000	0.5000	0.5000	$0.01655(14)$
N1	$0.6742(2)$	$0.59365(12)$	$0.5873(2)$	$0.0254(4)$
C1	$0.7710(3)$	$0.62982(13)$	$0.6700(2)$	$0.0205(4)$
S1	$0.90677(8)$	$0.68081(4)$	$0.78668(7)$	$0.03342(18)$
N11	$0.6038(2)$	$0.51317(11)$	$0.30841(19)$	$0.0195(4)$
O11	$0.6251(2)$	$0.28548(11)$	$0.0710(2)$	$0.0333(4)$
C11	$0.6169(3)$	$0.43931(14)$	$0.2295(2)$	$0.0203(4)$
H11	0.5778	0.3827	0.2619	0.024^{*}

C12	$0.6841(3)$	$0.44086(14)$	$0.1032(2)$	$0.0199(4)$
C13	$0.7383(3)$	$0.52410(16)$	$0.0541(2)$	$0.0248(5)$
H13	0.7830	0.5280	-0.0330	0.030^{*}
C14	$0.7256(3)$	$0.60105(15)$	$0.1351(3)$	$0.0265(5)$
H14	0.7621	0.6586	0.1044	0.032^{*}
C15	$0.6593(3)$	$0.59317(14)$	$0.2609(2)$	$0.0228(4)$
H15	0.6525	0.6462	0.3162	0.027^{*}
C16	$0.6908(3)$	$0.35298(15)$	$0.0263(2)$	$0.0249(5)$
C17	$0.7795(4)$	$0.3502(2)$	$-0.1025(3)$	$0.0365(6)$
H17A	0.7727	0.2884	-0.1408	0.055^{*}
H17B	0.9023	0.3677	-0.0800	0.055^{*}
H17C	0.7217	0.3927	-0.1711	0.055^{*}
O21	$0.3202(2)$	$0.60443(10)$	$0.44475(18)$	$0.0242(3)$
H1O	0.3466	0.6599	0.4452	0.036^{*}
C21	$0.1344(3)$	$0.59987(17)$	$0.4463(3)$	$0.0311(5)$
H21A	0.0818	0.6583	0.4156	0.047^{*}
H21B	0.1085	0.5868	0.5409	0.047^{*}
H21C	0.0862	0.5515	0.3835	0.047^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Ni1	$0.0195(2)$	$0.01456(19)$	$0.0153(2)$	$-0.00132(13)$	$0.00091(13)$	$-0.00197(13)$
N1	$0.0268(9)$	$0.0240(9)$	$0.0251(11)$	$-0.0070(7)$	$0.0017(8)$	$-0.0042(7)$
C1	$0.0229(10)$	$0.0166(9)$	$0.0223(11)$	$-0.0008(7)$	$0.0047(8)$	$0.0015(7)$
S1	$0.0345(3)$	$0.0316(3)$	$0.0306(3)$	$-0.0083(2)$	$-0.0113(2)$	$-0.0015(2)$
N11	$0.0215(9)$	$0.0202(8)$	$0.0167(9)$	$0.0005(6)$	$0.0018(7)$	$0.0007(6)$
O11	$0.0400(10)$	$0.0245(8)$	$0.0364(10)$	$0.0004(7)$	$0.0085(8)$	$-0.0078(7)$
C11	$0.0229(10)$	$0.0192(9)$	$0.0183(11)$	$0.0000(7)$	$0.0004(8)$	$-0.0006(8)$
C12	$0.0190(9)$	$0.0224(10)$	$0.0176(10)$	$0.0017(7)$	$-0.0003(7)$	$-0.0003(8)$
C13	$0.0238(11)$	$0.0308(11)$	$0.0202(11)$	$-0.0013(8)$	$0.0040(8)$	$0.0046(9)$
C14	$0.0285(11)$	$0.0226(10)$	$0.0285(12)$	$-0.0024(8)$	$0.0035(9)$	$0.0050(9)$
C15	$0.0239(10)$	$0.0192(10)$	$0.0249(12)$	$-0.0024(8)$	$0.0010(8)$	$-0.0003(8)$
C16	$0.0244(10)$	$0.0274(11)$	$0.0218(11)$	$0.0039(8)$	$-0.0013(8)$	$-0.0046(8)$
C17	$0.0398(13)$	$0.0476(15)$	$0.0224(13)$	$0.0060(11)$	$0.0044(10)$	$-0.0088(11)$
O21	$0.0221(7)$	$0.0184(7)$	$0.0318(9)$	$0.0034(5)$	$0.0019(6)$	$0.0038(6)$
C21	$0.0231(11)$	$0.0335(12)$	$0.0368(14)$	$0.0041(9)$	$0.0046(9)$	$0.0042(10)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.0357(18)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.386(3)$
$\mathrm{Ni} 1-\mathrm{N} 1$	$2.0357(18)$	$\mathrm{C} 13-\mathrm{H} 13$	0.9500
$\mathrm{Ni} 1-\mathrm{O} 21^{\mathrm{i}}$	$2.0943(14)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.380(3)$
$\mathrm{Ni} 1-\mathrm{O} 21$	$2.0943(14)$	$\mathrm{C} 14-\mathrm{H} 14$	0.9500
$\mathrm{Ni} 1-\mathrm{N} 11$	$2.1154(19)$	$\mathrm{C} 15-\mathrm{H} 15$	0.9500
$\mathrm{Ni} 1-\mathrm{N} 11^{\mathrm{i}}$	$2.1154(19)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.493(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.157(3)$	$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	0.9800
$\mathrm{C} 1-\mathrm{S} 1$	$1.629(2)$	$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	0.9800

$\mathrm{N} 11-\mathrm{C} 11$	$1.338(3)$
$\mathrm{N} 11-\mathrm{C} 15$	$1.350(3)$
$\mathrm{O} 11-\mathrm{C} 16$	$1.216(3)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.384(3)$
$\mathrm{C} 11-\mathrm{H} 11$	0.9500
$\mathrm{C} 12-\mathrm{C} 13$	$1.394(3)$
$\mathrm{C} 12-\mathrm{C} 16$	$1.494(3)$

N1 ${ }^{\text {i }}-\mathrm{Ni} 1-\mathrm{N} 1$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 21^{\mathrm{i}}$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 21^{\mathrm{i}}$
N 1 - $\mathrm{Ni} 1-\mathrm{O} 21$
N1—Ni1-O21
O21- ${ }^{\text {i }} \mathrm{Ni} 1-\mathrm{O} 21$
N1 ${ }^{\mathrm{i}}$-Nil—N11
N1—Ni1—N11
O21 ${ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 11$
O21—Ni1—N11
N1 ${ }^{\text {i }}-\mathrm{Ni} 1-\mathrm{N} 11^{i}$
N1—Ni1-N11 ${ }^{i}$
$\mathrm{O} 21^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 11^{\mathrm{i}}$
O21-Ni1-N11 ${ }^{\text {i }}$
N11-Nil-N11 ${ }^{\text {i }}$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1$
N1—C1—S1
C11-N11-C15
C11-N11-Ni1
C15-N11-Ni1
N11- C11-C12
N11-C11-H11
C12-C11- H 11
C11-C12-C13
C11-C12-C16
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 16$
C14-C13-C12
180.00 (13)
89.75 (7)
90.25 (7)
90.25 (7)
89.75 (7)
180.00 (9)
89.80 (7)
90.20 (7)
89.06 (7)
90.94 (7)
90.20 (7)
89.80 (7)
90.94 (7)
89.06 (7)
180.0
159.66 (19)
179.8 (2)
117.6 (2)
119.28 (14)
123.16 (15)
123.58 (19)
118.2
118.2
118.3 (2)
117.70 (19)
124.0 (2)
118.6 (2)

$\mathrm{C} 17-\mathrm{H} 17 \mathrm{C}$	0.9800
$\mathrm{O} 21-\mathrm{C} 21$	$1.435(3)$
$\mathrm{O} 21-\mathrm{H} 1 \mathrm{O}$	0.8399
$\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$	0.9800
$\mathrm{C} 21-\mathrm{H} 21 \mathrm{~B}$	0.9800
$\mathrm{C} 21-\mathrm{H} 21 \mathrm{C}$	0.9800

C14-C13-H13
120.7
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13 \quad 120.7$
C15-C14-C13 119.3 (2)
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14 \quad 120.3$
C13-C14-H14 120.3
N11-C15-C14 122.6 (2)
$\mathrm{N} 11-\mathrm{C} 15-\mathrm{H} 15 \quad 118.7$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15 \quad 118.7$
$\mathrm{O} 11-\mathrm{C} 16-\mathrm{C} 17 \quad 121.8$ (2)
$\mathrm{O} 11-\mathrm{C} 16-\mathrm{C} 12 \quad 119.1$ (2)
C17-C16-C12 119.1 (2)
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A} \quad 109.5$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B} \quad 109.5$
$\mathrm{H} 17 \mathrm{~A}-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B} \quad 109.5$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{H} 17 \mathrm{C} \quad 109.5$
$\mathrm{H} 17 \mathrm{~A}-\mathrm{C} 17-\mathrm{H} 17 \mathrm{C} \quad 109.5$
$\mathrm{H} 17 \mathrm{~B}-\mathrm{C} 17-\mathrm{H} 17 \mathrm{C} \quad 109.5$
$\mathrm{C} 21-\mathrm{O} 21-\mathrm{Ni1} \quad 126.46$ (13)
$\mathrm{C} 21-\mathrm{O} 21-\mathrm{H} 1 \mathrm{O} \quad 106.7$
$\mathrm{Ni}-\mathrm{O} 21-\mathrm{H} 1 \mathrm{O} \quad 123.8$
$\mathrm{O} 21-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A} \quad 109.5$
$\mathrm{O} 21-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~B} \quad 109.5$
$\mathrm{H} 21 \mathrm{~A}-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~B} \quad 109.5$
$\mathrm{O} 21-\mathrm{C} 21-\mathrm{H} 21 \mathrm{C} \quad 109.5$
$\mathrm{H} 21 \mathrm{~A}-\mathrm{C} 21-\mathrm{H} 21 \mathrm{C} \quad 109.5$
$\mathrm{H} 21 \mathrm{~B}-\mathrm{C} 21-\mathrm{H} 21 \mathrm{C} \quad 109.5$

Symmetry code: (i) $-x+1,-y+1,-z+1$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 21 — \mathrm{H} 1 O \cdots \mathrm{O} 11^{\mathrm{ii}}$	0.84	1.87	$2.700(2)$	172

Symmetry code: (ii) $-x+1, y+1 / 2,-z+1 / 2$.

