

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Acetyl-5-phenyl-1-p-tolyl-1H-pyrazole-4-carbonitrile

Hatem A. Abdel-Aziz,^a Hazem A. Ghabbour,^a Suchada Chantrapromma^b‡ and Hoong-Kun Fun^c*§

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Rivadh 11451, Saudi Arabia, ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 16 March 2012; accepted 19 March 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.118; data-to-parameter ratio = 12.8.

In the title pyrazole derivative, C₁₉H₁₅N₃O, the central pyrazole ring makes dihedral angles of 42.71 (9) and $61.34 (9)^{\circ}$, respectively, with the phenyl and *p*-tolyl rings. The dihedral angle between the phenyl and *p*-tolyl rings is $58.22 (9)^{\circ}$. The 3-acetyl-1*H*-pyrazole-4-carbonitrile unit is essentially planar, with an r.m.s. deviation of 0.0295 (1) Å for the ten non-H atoms.

Related literature

For bond-length data, see: Allen et al. (1987). For background to and the bioactivity of pyrazole derivatives, see: Abdel-Aziz et al. (2009, 2010); Abdel-Wahab et al. (2009); Dawood et al. (2003). For a related structure, see: Abdel-Aziz et al. (2012).

Experimental

Crystal data

G H N O	IZ 1(17 7((7) Å3
$C_{19}H_{15}N_{3}O$	$V = 161/.6(5) \text{ A}^{2}$
$M_r = 301.34$	Z = 4
Monoclinic, $P2_1/c$	Cu $K\alpha$ radiation
a = 10.2433 (2) Å	$\mu = 0.63 \text{ mm}^{-1}$
b = 10.6467 (2) Å	T = 296 K
c = 15.7547 (3) Å	$0.57 \times 0.28 \times 0.22 \text{ mm}$
$\beta = 109.684 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.718, \ T_{\max} = 0.876$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.118$ S = 1.052720 reflections

10344 measured reflections 2720 independent reflections 2427 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.032$

213 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.14$ e Å⁻³

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University, and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. HKF also thanks the King Saud University, Riyadh, Saudi Arabia, for the award of a visiting Professorship (December 23rd 2011 to January 14th 2012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5093).

References

- Abdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427-2432.
- Abdel-Aziz, H. A., Gamal-Eldeen, A. M., Hamdy, N. A. & Fakhr, I. M. I. (2009). Arch. Pharm. 342, 230-237.
- Abdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1095-o1096.
- Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601-605.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dawood, K. M., Ragab, E. A. & Farag, A. M. (2003). J. Chem. Res. (S), 11, 685-686.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-5085-2009.

[§] College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

supporting information

Acta Cryst. (2012). E68, o1167 [https://doi.org/10.1107/S1600536812011762]

3-Acetyl-5-phenyl-1-p-tolyl-1H-pyrazole-4-carbonitrile

Hatem A. Abdel-Aziz, Hazem A. Ghabbour, Suchada Chantrapromma and Hoong-Kun Fun

S1. Comment

During the course of our medicinal chemistry research on pyrazole derivatives (Abdel-Aziz *et al.*, 2009, 2010; Abdel-Wahab *et al.*, 2009), we previously reported the crystal structure of 3-acetyl-1,5-diphenyl-1*H*-pyrazole-4-carbonitrile (I) (Abdel-Aziz *et al.*, 2012). The title compound (II), was synthesized by retaining the core part but changing the phenyl group which was attached to N atom at position 1 of the pyrazole ring in compound (I) to the *p*-tolyl in order to investigate the influence of the substituents to their biological properties. Herein, the crystal structure of (II) was reported.

The molecule of (II), $C_{19}H_{15}N_3O$, has the same butterfly-like structure as in (I) (Abdel-Aziz *et al.*, 2012). However there are differences in the dihedral angles between the equivalent moieties and the crystal packing of (I) and (II). In (II), the pyrazole ring forms dihedral angles of 42.71 (9) and 61.34 (9)°, respectively, with the C5–C10 and C11-C16 benzene rings [the corresponding values in (I) are 59.31 (8) and 57.24 (8)°] and the dihedral angle between these two benzene rings is 58.22 (9)° [the corresponding value in (I) is 64.03 (8)°]. The cabonitrile and acetyl substituents in (II) lie essentially on the same plane with the pyrazole ring with the *r.m.s.* 0.0295 (1) Å for the ten non H atoms (C1–C4/C17/C18/N1–N3/O1) and the dihedral angle between the C-C=O planes of the acetyl unit and pyrazole ring is 4.8 (2)° [whereas in (I) the acetyl moiety is slightly deviated from the pyrazole ring with the dihedral angle between the C-C=O planes of the acetyl and pyrazole moieties being 7.95 (18)°]. The bond distances in (II) are within normal ranges (Allen *et al.*, 1987) and are comparable to the closely related structure (Abdel-Aziz *et al.*, 2012). The crystal packing of (II) is stabilized by van der Waals interactions. Even there is no hydrogen bonds, the crystal packing of (II) was shown in Fig. 2 for comparison with that of (I).

S2. Experimental

The title compound was prepared according to the reported method (Dawood *et al.*, 2003). Single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by the slow evaporation of the solvent at room temperature after several days.

S3. Refinement

All H atoms were placed in calculated positions with C—H = 0.93 Å for aromatic and 0.96 Å for CH₃ atoms. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups.

The structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

A packing diagram of the title compound viewed along the *a* axis.

3-Acetyl-5-phenyl-1-p-tolyl-1H-pyrazole-4-carbonitrile

Crystal data

C₁₉H₁₅N₃O $M_r = 301.34$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.2433 (2) Å b = 10.6467 (2) Å c = 15.7547 (3) Å $\beta = 109.684$ (1)° V = 1617.76 (5) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.718, T_{\max} = 0.876$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.118$ S = 1.052720 reflections 213 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 632 $D_x = 1.237 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 \rangle A Cell parameters from 272 reflections $\theta = 4.6-65.0^{\circ}$ $\mu = 0.63 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.57 \times 0.28 \times 0.22 \text{ mm}$

10344 measured reflections 2720 independent reflections 2427 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 65.0^{\circ}, \theta_{min} = 4.6^{\circ}$ $h = -12 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -18 \rightarrow 18$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.050P)^2 + 0.2871P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.14 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXTL* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0113 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2$ sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.28761 (14)	0.55281 (14)	0.42141 (9)	0.0837 (4)	
N1	0.05513 (13)	0.54275 (12)	0.68539 (8)	0.0536 (3)	
N2	-0.05757 (13)	0.47588 (13)	0.63730 (8)	0.0585 (3)	
N3	-0.07458 (17)	0.81153 (17)	0.43476 (10)	0.0795 (5)	
C1	-0.11442 (15)	0.54122 (15)	0.56191 (10)	0.0544 (4)	
C2	-0.03698 (14)	0.65058 (14)	0.56181 (9)	0.0513 (4)	
C3	0.07256 (14)	0.64969 (14)	0.64318 (9)	0.0499 (4)	
C4	-0.05890 (15)	0.74023 (16)	0.49130 (10)	0.0578 (4)	
C5	0.18570 (15)	0.74010 (15)	0.67940 (9)	0.0521 (4)	
C6	0.15724 (18)	0.86766 (16)	0.67039 (11)	0.0637 (4)	
H6A	0.0669	0.8947	0.6412	0.076*	
C7	0.2610 (2)	0.9544 (2)	0.70412 (14)	0.0833 (6)	
H7A	0.2405	1.0398	0.6983	0.100*	
C8	0.3956 (2)	0.9150 (2)	0.74673 (14)	0.0876 (6)	
H8A	0.4659	0.9736	0.7699	0.105*	
С9	0.42553 (18)	0.7887 (2)	0.75483 (13)	0.0781 (6)	
H9A	0.5165	0.7624	0.7828	0.094*	
C10	0.32237 (16)	0.70133 (18)	0.72207 (11)	0.0644 (4)	
H10A	0.3435	0.6161	0.7283	0.077*	
C11	0.13953 (15)	0.49602 (15)	0.77206 (9)	0.0530 (4)	
C12	0.15432 (17)	0.56511 (16)	0.84811 (10)	0.0587 (4)	
H12A	0.1096	0.6420	0.8442	0.070*	
C13	0.23678 (17)	0.51883 (17)	0.93088 (10)	0.0625 (4)	
H13A	0.2470	0.5654	0.9827	0.075*	
C14	0.30436 (16)	0.40481 (17)	0.93820 (10)	0.0605 (4)	
C15	0.2845 (2)	0.33649 (18)	0.86054 (12)	0.0723 (5)	
H15A	0.3274	0.2587	0.8644	0.087*	
C16	0.2024 (2)	0.38067 (17)	0.77706 (11)	0.0690 (5)	
H16A	0.1900	0.3334	0.7253	0.083*	
C17	-0.24206 (18)	0.49704 (17)	0.49213 (11)	0.0641 (4)	
C18	-0.3103 (2)	0.3819 (2)	0.51218 (15)	0.0947 (7)	
H18A	-0.3925	0.3639	0.4621	0.142*	
H18B	-0.3346	0.3959	0.5652	0.142*	
H18C	-0.2475	0.3122	0.5222	0.142*	
C19	0.39693 (19)	0.3572 (2)	1.02859 (12)	0.0778 (5)	
H19C	0.3602	0.2800	1.0425	0.117*	
H19A	0.4011	0.4185	1.0741	0.117*	
H19B	0.4884	0.3429	1.0266	0.117*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0771 (8)	0.0812 (9)	0.0701 (8)	0.0013 (7)	-0.0049 (6)	0.0061 (7)
N1	0.0510(7)	0.0597 (7)	0.0486 (6)	0.0035 (5)	0.0147 (5)	0.0065 (5)
N2	0.0554 (7)	0.0637 (8)	0.0545 (7)	0.0002 (6)	0.0162 (6)	0.0032 (6)

supporting information

N3	0.0781 (10)	0.0908 (11)	0.0680 (9)	0.0115 (8)	0.0223 (7)	0.0254 (9)
C1	0.0505 (8)	0.0616 (9)	0.0511 (8)	0.0074 (7)	0.0171 (6)	0.0015 (7)
C2	0.0465 (7)	0.0596 (8)	0.0488 (7)	0.0116 (6)	0.0171 (6)	0.0055 (6)
C3	0.0453 (7)	0.0566 (8)	0.0503 (7)	0.0093 (6)	0.0194 (6)	0.0063 (6)
C4	0.0488 (8)	0.0695 (10)	0.0540 (8)	0.0105 (7)	0.0161 (6)	0.0076 (8)
C5	0.0471 (7)	0.0632 (9)	0.0467 (7)	0.0054 (6)	0.0169 (6)	0.0085 (6)
C6	0.0585 (9)	0.0638 (10)	0.0639 (9)	0.0070 (7)	0.0144 (7)	0.0091 (7)
C7	0.0894 (14)	0.0662 (11)	0.0825 (12)	-0.0095 (10)	0.0134 (10)	0.0130 (9)
C8	0.0761 (12)	0.0946 (15)	0.0774 (12)	-0.0279 (11)	0.0067 (9)	0.0208 (11)
C9	0.0497 (9)	0.1040 (15)	0.0710 (10)	-0.0060 (9)	0.0075 (7)	0.0297 (10)
C10	0.0502 (8)	0.0743 (10)	0.0661 (9)	0.0068 (7)	0.0163 (7)	0.0184 (8)
C11	0.0500 (8)	0.0608 (9)	0.0486 (7)	0.0026 (6)	0.0172 (6)	0.0099 (6)
C12	0.0587 (9)	0.0603 (9)	0.0573 (8)	0.0057 (7)	0.0198 (7)	0.0049 (7)
C13	0.0638 (9)	0.0709 (10)	0.0504 (8)	-0.0040 (8)	0.0162 (7)	0.0027 (7)
C14	0.0503 (8)	0.0732 (10)	0.0569 (8)	-0.0028 (7)	0.0168 (7)	0.0164 (8)
C15	0.0816 (12)	0.0679 (10)	0.0680 (10)	0.0210 (9)	0.0259 (9)	0.0178 (8)
C16	0.0836 (12)	0.0681 (10)	0.0553 (9)	0.0156 (9)	0.0234 (8)	0.0060 (8)
C17	0.0581 (9)	0.0690 (10)	0.0606 (9)	0.0049 (8)	0.0139 (7)	-0.0033 (8)
C18	0.0866 (14)	0.1014 (16)	0.0848 (13)	-0.0296 (12)	0.0139 (11)	0.0028 (12)
C19	0.0634 (10)	0.0968 (14)	0.0650 (10)	0.0000 (9)	0.0110 (8)	0.0238 (10)

Geometric parameters (Å, °)

O1—C17	1.209 (2)	С9—Н9А	0.9300
N1—N2	1.3507 (18)	C10—H10A	0.9300
N1—C3	1.3603 (19)	C11—C12	1.370 (2)
N1-C11	1.4367 (18)	C11—C16	1.377 (2)
N2—C1	1.330 (2)	C12—C13	1.384 (2)
N3—C4	1.140 (2)	C12—H12A	0.9300
C1—C2	1.409 (2)	C13—C14	1.383 (3)
C1—C17	1.473 (2)	C13—H13A	0.9300
C2—C3	1.390 (2)	C14—C15	1.378 (3)
C2—C4	1.424 (2)	C14—C19	1.508 (2)
C3—C5	1.466 (2)	C15—C16	1.383 (2)
C5—C6	1.386 (2)	C15—H15A	0.9300
C5—C10	1.396 (2)	C16—H16A	0.9300
С6—С7	1.373 (3)	C17—C18	1.496 (3)
С6—Н6А	0.9300	C18—H18A	0.9600
С7—С8	1.380 (3)	C18—H18B	0.9600
C7—H7A	0.9300	C18—H18C	0.9600
С8—С9	1.375 (3)	C19—H19C	0.9600
C8—H8A	0.9300	C19—H19A	0.9600
C9—C10	1.372 (3)	C19—H19B	0.9600
N2—N1—C3	113.27 (12)	C12—C11—N1	119.94 (14)
N2-N1-C11	118.53 (12)	C16—C11—N1	118.91 (14)
C3—N1—C11	128.20 (13)	C11—C12—C13	119.05 (15)
C1—N2—N1	105.05 (13)	C11—C12—H12A	120.5

N2—C1—C2	110.85 (13)	C13—C12—H12A	120.5
N2—C1—C17	120.73 (15)	C14—C13—C12	121.38 (16)
C2—C1—C17	128.41 (14)	C14—C13—H13A	119.3
C3—C2—C1	105.85 (13)	C12—C13—H13A	119.3
C3—C2—C4	126.16 (14)	C15—C14—C13	117.98 (14)
C1—C2—C4	127.87 (13)	C15-C14-C19	121.26 (17)
N1-C3-C2	104.97 (13)	C13—C14—C19	120.77(17)
N1-C3-C5	125 17 (13)	C14-C15-C16	121.69 (16)
$C_2 - C_3 - C_5$	129.86 (13)	C14—C15—H15A	119.2
$N_3 - C_4 - C_2$	178 98 (17)	C16—C15—H15A	119.2
C6-C5-C10	118 77 (16)	C_{11} C_{16} C_{15}	118 74 (16)
C6-C5-C3	119 47 (13)	$C_{11} - C_{16} - H_{16A}$	120.6
$C_{10} - C_{5} - C_{3}$	121.76 (15)	C_{15} C_{16} H_{16A}	120.6
C7 - C6 - C5	120.73 (16)	01 - C17 - C1	120.0 120.06(17)
C7 - C6 - H6A	119.6	01 - C17 - C18	120.00(17) 122.28(17)
C5-C6-H6A	119.6	C1 - C17 - C18	122.26(17) 117.66(16)
C_{6} C_{7} C_{8}	110.07 (10)	$C_{17} C_{18} H_{18A}$	100 5
$C_{0} = C_{7} = C_{8}$	119.97 (19)	C17 C18 H18P	109.5
C_{0} C_{7} H_{7}	120.0	$\begin{array}{c} 112 \\$	109.5
C_{8} C_{7} C_{7}	120.0 110.85(10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{2} = C_{3} = C_{1}$	119.05 (19)		109.5
$C_7 = C_8 = H_8 \Lambda$	120.1	$\begin{array}{c} 1110A - C10 - 1110C \\ 1110P - C19 - 1110C \\ 110P - C19 - 110C \\ 110P - C19 - 100C \\ 110P - C10P - 100C \\ 100P - C10P - 100C \\ 100P - C10P - 100C \\ 100P - 100P $	109.5
$C_{10} C_{0} C_{8}$	120.1 120.58(17)	118D - 10 - 118C	109.5
$C_{10} = C_{9} = C_{8}$	120.36 (17)	C14 C19 H19C	109.5
$C_{10} - C_{9} - H_{9}A$	119.7		109.5
C_{8} C_{9} H_{9} C_{5}	119.7	H19C - C19 - H19A	109.5
C_{9}	120.08 (17)		109.5
C_{2}	120.0	H19C—C19—H19B	109.5
C_{12} C_{10} H_{10A}	120.0	Н19А—С19—Н19В	109.5
C12—C11—C16	121.13 (14)		
C2 N1 N2 C1	0.11.(17)	C(-C7-C8-C9)	0.4.(2)
$C_3 = N_1 = N_2 = C_1$	0.11(10)	$C_{0} - C_{1} - C_{0} - C_{1}$	0.4(3)
CII - NI - N2 - CI	1/9.0/(13)	$C^{2} = C^{2} = C^{2$	-1.0(3)
NI - N2 - CI - C2	0.18(10)	$C_{8} = C_{9} = C_{10} = C_{3}$	0.5(3)
N1 - N2 - C1 - C17	-1/9.55(15)	$C_{0} = C_{0} = C_{10} = C_{9}$	0.5(2)
$N_2 - C_1 - C_2 - C_3$	-0.39(10)	$C_3 = C_5 = C_{10} = C_{12}$	1/9./8 (15)
C1/-C1-C2-C3	1/9.31 (15)	N2-NI-CII-CI2	-11/.95(16)
$N_2 - C_1 - C_2 - C_4$	1/5./3(14)	$C_3 = N_1 = C_{11} = C_{12}$	61.5(2)
C1/-C1-C2-C4	-4.6(2)	$N_2 - N_1 - C_{11} - C_{16}$	60.91 (19)
$N_2 - N_1 - C_3 - C_2$	-0.35 (16)		-119.60 (18)
C11-N1-C3-C2	-179.86 (13)	C16—C11—C12—C13	1.6 (2)
N2—N1—C3—C5	-179.96 (13)	NI-CII-CI2-CI3	-179.59 (14)
C11—N1—C3—C5	0.5 (2)	C11—C12—C13—C14	0.1 (3)
C1C2C3N1	0.43 (15)	C12—C13—C14—C15	-1.6 (2)
C4—C2—C3—N1	-175.78 (13)	C12—C13—C14—C19	178.34 (16)
C1—C2—C3—C5	-179.98 (14)	C13—C14—C15—C16	1.5 (3)
C4—C2—C3—C5	3.8 (2)	C19—C14—C15—C16	-178.44 (18)
N1—C3—C5—C6	-138.02 (15)	C12—C11—C16—C15	-1.7 (3)
C2—C3—C5—C6	42.5 (2)	N1-C11-C16-C15	179.48 (16)

supporting information

N1—C3—C5—C10	42.7 (2)	C14—C15—C16—C11	0.1 (3)
C2—C3—C5—C10	-136.79 (16)	N2-C1-C17-O1	-175.12 (16)
C10—C5—C6—C7	-1.1 (3)	C2-C1-C17-O1	5.2 (3)
C3—C5—C6—C7	179.61 (16)	N2-C1-C17-C18	4.4 (2)
C5—C6—C7—C8	0.7 (3)	C2-C1-C17-C18	-175.32 (18)