

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Z)-3-p-Tolyl-2-(p-tolylimino)-1,3-thiazolidin-4-one

Hatem A. Abdel-Aziz,^a Hazem A. Ghabbour,^a Tze Shyang Chia^b and Hoong-Kun Fun^b*‡

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 12 March 2012; accepted 16 March 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.135; data-to-parameter ratio = 14.7.

In the title compound, $C_{17}H_{16}N_2OS$, the central thiazolidin-4one ring forms dihedral angles of 66.49 (9) and 79.45 (6)° with the two methyl-substituted benzene rings. In the crystal, molecules are stacked in columns along the *b* axis through C– $H \cdot \cdot \cdot \pi$ interactions. The H atoms of one of the methyl groups are disordered over two orientations with equal site occupancies.

Related literature

For the chemistry of thiazolidin-4-one and its experimental preparation, see: Abdel-Aziz *et al.* (2010). For a related structure, see: Zeller *et al.* (2011). For reference bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data $C_{17}H_{16}N_2OS$ $M_r = 296.38$ Monoclinic, $P2_1/c$

a = 14.1321 (4) Åb = 5.8524 (2) Åc = 19.0076 (6) Å $\beta = 100.307 \ (2)^{\circ}$ $V = 1546.69 \ (8) \ \text{Å}^3$ Z = 4Cu K α radiation

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\rm min} = 0.264, T_{\rm max} = 0.897$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 194 parameters $wR(F^2) = 0.135$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.35 \text{ e } \text{Å}^{-3}$ 2849 reflections $\Delta \rho_{min} = -0.35 \text{ e } \text{Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the S1/N2/C1–C3 and C4–C9 rings, respectively.

$D-H\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5 - H5A \cdots Cg1^{i}$ $C9 - H9A \cdots Cg2^{ii}$	0.93 0.93	3.00 2.87	3.788 (2) 3.607 (2)	144 138

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HAAA and HAG thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/ PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5090).

References

Abdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427–2432.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Zeller, M., Satam, V., Bandi, R. K., Behera, A. K., Mishra, B. K., Pati, H. & Lee, M. (2011). *Acta Cryst.* E67, o1781–o1782.

 $0.98 \times 0.21 \times 0.06 \text{ mm}$

10830 measured reflections

2849 independent reflections

2293 reflections with $I > 2\sigma(I)$

 $\mu = 1.85 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.041$

organic compounds

[‡] Thomson Reuters ResearcherID: A-3561-2009.

supporting information

Acta Cryst. (2012). E68, o1143 [https://doi.org/10.1107/S160053681201149X]

(Z)-3-p-Tolyl-2-(p-tolylimino)-1,3-thiazolidin-4-one

Hatem A. Abdel-Aziz, Hazem A. Ghabbour, Tze Shyang Chia and Hoong-Kun Fun

S1. Comment

The molecular structure of the title compound is shown in Fig. 1. The mean planes of the two methyl-substituted benzene rings (C4–C9 & C10–C15) make dihedral angles of 66.49 (9) and 79.45 (6)°, respectively, with the mean plane of the central thiazolidin-4-one ring [S1/N2/C1–C3/O1; maximum deviation = 0.0075 (12) Å at atom C3]. In the molecule, the hydrogen atoms which are attached to atom C17 are disordered over two positions, with equal site-occupancies. Bond lengths (Allen *et al.*, 1987) and angles are within normal ranges and are comparable to a related structure (Zeller *et al.*, 2011).

In the crystal structure, no significant intermolecular hydrogen bonds are observed. The crystal structure is stabilized by C—H $\cdots\pi$ interactions (Table 1), involving *Cg*1 and *Cg*2 which are the centroids of S1/N2/C1–C3 and C4–C9 rings, respectively.

S2. Experimental

The title compound was prepared according to the reported method by Abdel-Aziz *et al.* (2010). Crystals of the title compound were obtained by slow evaporation from an ethanol solution at room temperature.

S3. Refinement

The methyl group with atom C17 was found to be disordered over two orientations and the H atoms were located in a difference Fourier map. The site-occupancy ratio was refined to 0.52 (3):0.48 (3) in the refinement using C—H bond distance restraints. In the final refinement, the occupancies were fixed at 0.5 and the H atoms were treated as riding (C—H = 0.96 Å), with $U_{iso}(H) = 1.5U_{eq}(C)$. A rotating group model was used for each of the disordered components. All other H atoms were positioned geometrically (C—H = 0.93, 0.96 or 0.97 Å) and refined using a riding model with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model to the other methyl group.

Figure 1

The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids.

(Z)-3-p-Tolyl-2-(p-tolylimino)-1,3-thiazolidin-4-one

Crystal data

C₁₇H₁₆N₂OS $M_r = 296.38$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.1321 (4) Å b = 5.8524 (2) Å c = 19.0076 (6) Å $\beta = 100.307$ (2)° V = 1546.69 (8) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.264, T_{\max} = 0.897$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.135$ S = 1.072849 reflections 194 parameters 0 restraints F(000) = 624 $D_x = 1.273 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 \mathbf{A} Cell parameters from 1135 reflections $\theta = 4.7-69.2^{\circ}$ $\mu = 1.85 \text{ mm}^{-1}$ T = 296 KNeedle, colourless $0.98 \times 0.21 \times 0.06 \text{ mm}$

10830 measured reflections 2849 independent reflections 2293 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 69.8^\circ, \ \theta_{min} = 4.7^\circ$ $h = -16 \rightarrow 17$ $k = -5 \rightarrow 6$ $l = -23 \rightarrow 22$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0633P)^2 + 0.2896P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.35 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -0.35 \text{ e } \text{\AA}^{-3}$ Extinction correction: *SHELXTL* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0124 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

S1 0.86258 (4) -0.00010 (12) 0.47164 (3) 0.0765 (3)N1 0.84789 (10) -0.0771 (3) 0.32906 (8) 0.0522 (4)N2 0.73053 (10) 0.1441 (3) 0.36745 (8) 0.0523 (4)O1 0.63384 (14) 0.3619 (4) 0.42357 (10) 0.1118 (8)C1 0.7698 (2) 0.1807 (7) 0.49367 (13) 0.1031 (11)H1A 0.7349 0.1019 0.5260 $0.124*$ C2 0.70278 (16) 0.2406 (5) 0.42561 (12) 0.0757 (7)C3 0.81438 (12) 0.0103 (3) 0.37930 (10) 0.0496 (4)C4 0.93412 (12) -0.2091 (3) 0.34399 (9) 0.0479 (4)C5 0.93843 (14) -0.4167 (3) 0.37950 (12) 0.0584 (5)H5A 0.8857 -0.4678 0.3983 $0.070*$ C6 1.02137 (14) -0.5478 (3) 0.32587 (12) 0.0591 (5)H6A 1.0236 -0.6864 0.4117 $0.071*$ C7 1.10064 (13) -0.4772 (3) 0.36101 (11) 0.0515 (5)C8 1.09587 (13) -0.2684 (3) 0.32587 (10) 0.0530 (4)H8A 1.1492 -0.2155 0.3292 $0.062*$ C10 0.67884 (12) 0.1860 (3) 0.22574 (10) 0.0535 (5)H11A 0.6064 -0.1124 0.2857 $0.064*$ C9 1.01362 (13) 0.0238 (3) 0.26253 (11) 0.0535 (5)H11A 0.6064 -0.1124 0.2857 <t< th=""><th></th><th>x</th><th>У</th><th>Ζ</th><th>$U_{ m iso}$*/$U_{ m eq}$</th><th>Occ. (<1)</th></t<>		x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1 $0.84789 (10)$ $-0.0771 (3)$ $0.32906 (8)$ $0.0522 (4)$ N2 $0.73053 (10)$ $0.1441 (3)$ $0.36745 (8)$ $0.0523 (4)$ O1 $0.63384 (14)$ $0.3619 (4)$ $0.42357 (10)$ $0.1118 (8)$ C1 $0.7698 (2)$ $0.1807 (7)$ $0.49367 (13)$ $0.1031 (11)$ H1A 0.7349 0.1019 0.5260 $0.124*$ H1B 0.7977 0.3185 0.5171 $0.124*$ C2 $0.70278 (16)$ $0.2406 (5)$ $0.42561 (12)$ $0.0757 (7)$ C3 $0.81438 (12)$ $0.0103 (3)$ $0.37930 (10)$ $0.0496 (4)$ C4 $0.93412 (12)$ $-0.2091 (3)$ $0.34399 (9)$ $0.0479 (4)$ C5 $0.93843 (14)$ $-0.4167 (3)$ $0.37958 (12)$ $0.0584 (5)$ H5A 0.8857 -0.4678 0.3983 $0.070*$ C6 $1.02137 (14)$ $-0.4578 (3)$ $0.38750 (12)$ $0.0591 (5)$ H6A 1.0236 -0.6864 0.4117 $0.071*$ C7 $1.10064 (13)$ $-0.4772 (3)$ $0.36010 (11)$ $0.515 (5)$ C8 $1.09587 (13)$ $-0.2684 (3)$ $0.32587 (10)$ $0.0530 (4)$ H8A 1.1492 -0.2155 0.3083 $0.064*$ C9 $1.0136 (13)$ $-0.1362 (3)$ $0.31707 (10)$ $0.0514 (4)$ H9A 1.0117 0.0025 0.2929 $0.662*$ C10 $0.6784 (12)$ $0.1860 (3)$ $0.29574 (10)$ $0.0475 (4)$ C11 $0.61531 (13)$ $0.0238 (3)$ $0.26253 (11)$ $0.0584 $	S1	0.86258 (4)	-0.00010 (12)	0.47164 (3)	0.0765 (3)	
N20.73053 (10)0.1441 (3)0.36745 (8)0.0523 (4)O10.63384 (14)0.3619 (4)0.42357 (10)0.1118 (8)C10.7698 (2)0.1807 (7)0.49367 (13)0.1031 (11)H1A0.73490.10190.52600.124*H1B0.79770.31850.51710.124*C20.70278 (16)0.2406 (5)0.42561 (12)0.0757 (7)C30.81438 (12)0.0103 (3)0.37930 (10)0.0496 (4)C40.93412 (12)-0.2091 (3)0.34399 (9)0.0479 (4)C50.93843 (14)-0.4167 (3)0.37968 (12)0.0584 (5)H5A0.8857-0.46780.39830.070*C61.02137 (14)-0.5478 (3)0.38750 (12)0.0591 (5)H6A1.0236-0.68640.41170.071*C71.10064 (13)-0.472 (3)0.36010 (11)0.0513 (5)C81.09587 (13)-0.2684 (3)0.32587 (10)0.0514 (4)H9A1.0170.00250.29290.062*C100.67884 (12)0.1860 (3)0.2557 (10)0.0475 (4)C110.61531 (13)0.0238 (3)0.26253 (11)0.0535 (5)H1A0.6064-0.11240.28570.664*C120.50500 (14)0.0599 (4)0.19452 (11)0.0554 (5)H1A0.6064-0.11240.28570.664*C120.50500 (14)0.0591 (4)0.19452 (11)0.0551 (5)H1A0.60640.11240.2857 <t< td=""><td>N1</td><td>0.84789 (10)</td><td>-0.0771 (3)</td><td>0.32906 (8)</td><td>0.0522 (4)</td><td></td></t<>	N1	0.84789 (10)	-0.0771 (3)	0.32906 (8)	0.0522 (4)	
O1 $0.63384 (14)$ $0.3619 (4)$ $0.42357 (10)$ $0.1118 (8)$ $C1$ $0.7698 (2)$ $0.1807 (7)$ $0.49367 (13)$ $0.1031 (11)$ $H1A$ 0.7349 0.1019 0.5260 $0.124*$ $H1B$ 0.7977 0.3185 0.5171 $0.124*$ $C2$ $0.70278 (16)$ $0.2406 (5)$ $0.42561 (12)$ $0.0757 (7)$ $C3$ $0.81438 (12)$ $0.0103 (3)$ $0.37930 (10)$ $0.0496 (4)$ $C4$ $0.93412 (12)$ $-0.2091 (3)$ $0.34399 (9)$ $0.0479 (4)$ $C5$ $0.93843 (14)$ $-0.4167 (3)$ $0.37968 (12)$ $0.0584 (5)$ $H5A$ 0.8857 -0.4678 0.3983 $0.070*$ $C6$ $1.02137 (14)$ $-0.5478 (3)$ $0.35750 (12)$ $0.0591 (5)$ $H6A$ 1.0236 -0.6864 0.4117 $0.071*$ $C7$ $1.10064 (13)$ $-0.4772 (3)$ $0.36010 (11)$ $0.0515 (5)$ $C8$ $1.09587 (13)$ $-0.2684 (3)$ $0.32587 (10)$ $0.0530 (4)$ $H8A$ 1.1492 -0.2155 0.3083 $0.064*$ $C9$ $1.01362 (13)$ $-0.1362 (3)$ $0.31707 (10)$ $0.0514 (4)$ $H9A$ 1.0117 0.0025 0.2929 $0.662*$ $C10$ $0.6784 (12)$ $0.1860 (3)$ $0.29574 (10)$ $0.0475 (4)$ $C11$ $0.61531 (13)$ $0.0238 (3)$ $0.26253 (11)$ $0.0584 (5)$ $H1A$ 0.6064 -0.1124 0.2857 $0.064*$ $C12$ $0.5500 (14)$ $0.659 (4)$ 0.1942	N2	0.73053 (10)	0.1441 (3)	0.36745 (8)	0.0523 (4)	
C1 0.7698 (2) 0.1807 (7) 0.49367 (13) 0.1031 (11)H1A 0.7349 0.1019 0.5260 $0.124*$ H1B 0.7977 0.3185 0.5171 $0.124*$ C2 0.70278 (16) 0.2406 (5) 0.42561 (12) 0.0757 (7)C3 0.81438 (12) 0.0103 (3) 0.37930 (10) 0.0496 (4)C4 0.93412 (12) -0.2091 (3) 0.34399 (9) 0.0479 (4)C5 0.93843 (14) -0.4167 (3) 0.37968 (12) 0.0584 (5)H5A 0.8857 -0.4678 0.3983 $0.070*$ C6 1.02137 (14) -0.5478 (3) 0.38750 (12) 0.0591 (5)H6A 1.0236 -0.6864 0.4117 $0.071*$ C7 1.10064 (13) -0.4772 (3) 0.36010 (11) 0.0515 (5)C8 1.09587 (13) -0.2684 (3) 0.32587 (10) 0.0530 (4)H8A 1.1492 -0.2155 0.3083 $0.064*$ C9 1.0117 0.0025 0.2929 $0.662*$ C10 0.67884 (12) 0.1860 (3) 0.29574 (10) 0.0475 (4)C11 0.61531 (13) 0.0238 (3) 0.26253 (11) 0.0535 (5)H1AA 0.6064 -0.1124 0.2857 $0.664*$ C12 0.56500 (14) 0.0659 (4) 0.19452 (11) 0.0594 (5)H12A 0.5222 -0.0434 0.1721 $0.070*$ C13 0.57711 (13) 0.2673 (4) 0.15916 (10) 0.0561 (5)C14	01	0.63384 (14)	0.3619 (4)	0.42357 (10)	0.1118 (8)	
H1A0.73490.10190.52600.124*H1B0.79770.31850.51710.124*C20.70278 (16)0.2406 (5)0.42561 (12)0.0757 (7)C30.81438 (12)0.0103 (3)0.37930 (10)0.0496 (4)C40.93412 (12)-0.2091 (3)0.34399 (9)0.0479 (4)C50.93843 (14)-0.4167 (3)0.37968 (12)0.0584 (5)H5A0.8857-0.46780.39830.070*C61.02137 (14)-0.5478 (3)0.38750 (12)0.0591 (5)H6A1.0236-0.68640.41170.071*C71.10064 (13)-0.4772 (3)0.36010 (11)0.0515 (5)C81.09587 (13)-0.2684 (3)0.32587 (10)0.0530 (4)H8A1.1492-0.21550.30830.064*C91.01362 (13)-0.1362 (3)0.31707 (10)0.0514 (4)H9A1.01170.00250.29290.062*C100.67884 (12)0.1860 (3)0.29574 (10)0.0475 (4)C110.61531 (13)0.0238 (3)0.26253 (11)0.0584 (5)H11A0.6064-0.11240.28570.064*C120.56500 (14)0.0659 (4)0.19452 (11)0.0584 (5)H12A0.5222-0.04340.17210.070*C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)H14A0.64057 (13)0.3888 (3)0.26226 (11)	C1	0.7698 (2)	0.1807 (7)	0.49367 (13)	0.1031 (11)	
H1B 0.7977 0.3185 0.5171 $0.124*$ C2 $0.70278 (16)$ $0.2406 (5)$ $0.42561 (12)$ $0.0757 (7)$ C3 $0.81438 (12)$ $0.0103 (3)$ $0.37930 (10)$ $0.0496 (4)$ C4 $0.93412 (12)$ $-0.2091 (3)$ $0.34399 (9)$ $0.0479 (4)$ C5 $0.93843 (14)$ $-0.4167 (3)$ $0.37968 (12)$ $0.0584 (5)$ H5A 0.8857 -0.4678 0.3983 $0.070*$ C6 $1.02137 (14)$ $-0.5478 (3)$ $0.38750 (12)$ $0.0591 (5)$ H6A 1.0236 -0.6864 0.4117 $0.071*$ C7 $1.10064 (13)$ $-0.4772 (3)$ $0.36010 (11)$ $0.0515 (5)$ C8 $1.09587 (13)$ $-0.2684 (3)$ $0.32587 (10)$ $0.0530 (4)$ H8A 1.1492 -0.2155 0.3083 $0.064*$ C9 $1.01362 (13)$ $-0.1362 (3)$ $0.31707 (10)$ $0.0514 (4)$ H9A 1.0117 0.0025 0.2929 $0.662*$ C10 $0.67884 (12)$ $0.1860 (3)$ $0.29574 (10)$ $0.0475 (4)$ C11 $0.61531 (13)$ $0.0238 (3)$ $0.26253 (11)$ $0.0538 (5)$ H11A 0.6064 -0.1124 0.2857 $0.664*$ C12 $0.56500 (14)$ $0.0659 (4)$ $0.19452 (11)$ $0.0584 (5)$ H12A 0.5222 -0.0434 0.1721 $0.070*$ C13 $0.57711 (13)$ $0.2673 (4)$ $0.19421 (11)$ $0.0552 (5)$ H14A 0.6495 0.5644 0.1714 $0.071*$ C15<	H1A	0.7349	0.1019	0.5260	0.124*	
C2 $0.70278 (16)$ $0.2406 (5)$ $0.42561 (12)$ $0.0757 (7)$ C3 $0.81438 (12)$ $0.0103 (3)$ $0.37930 (10)$ $0.0496 (4)$ C4 $0.93412 (12)$ $-0.2091 (3)$ $0.34399 (9)$ $0.0479 (4)$ C5 $0.93843 (14)$ $-0.4167 (3)$ $0.37968 (12)$ $0.0584 (5)$ H5A 0.8857 -0.4678 0.3983 $0.070*$ C6 $1.02137 (14)$ $-0.5478 (3)$ $0.38750 (12)$ $0.0591 (5)$ H6A 1.0236 -0.6864 0.4117 $0.071*$ C7 $1.10064 (13)$ $-0.4772 (3)$ $0.36010 (11)$ $0.0530 (4)$ H8A 1.1492 -0.2155 0.3083 $0.064*$ C9 $1.01362 (13)$ $-0.1362 (3)$ $0.31707 (10)$ $0.0514 (4)$ H9A 1.0117 0.0025 0.2929 $0.062*$ C10 $0.6784 (12)$ $0.1860 (3)$ $0.29574 (10)$ $0.0475 (4)$ C11 0.6054 -0.1124 0.2857 $0.064*$ C12 $0.56500 (14)$ $0.0659 (4)$ $0.19452 (11)$ $0.0584 (5)$ H12A 0.5222 -0.0434 0.1721 $0.070*$ C13 $0.57711 (13)$ $0.2673 (4)$ $0.15916 (10)$ $0.0561 (5)$ C14 0.6495 0.5644 0.1714 $0.071*$ C15 $0.69157 (13)$ $0.3888 (3)$ $0.26226 (11)$ $0.0563 (5)$ H14A 0.6495 0.5644 0.1714 $0.071*$ C13 $0.57711 (13)$ $0.3888 (3)$ $0.2622 (11)$ $0.0563 (5)$ H14A <td>H1B</td> <td>0.7977</td> <td>0.3185</td> <td>0.5171</td> <td>0.124*</td> <td></td>	H1B	0.7977	0.3185	0.5171	0.124*	
C3 $0.81438 (12)$ $0.0103 (3)$ $0.37930 (10)$ $0.0496 (4)$ C4 $0.93412 (12)$ $-0.2091 (3)$ $0.34399 (9)$ $0.0479 (4)$ C5 $0.93843 (14)$ $-0.4167 (3)$ $0.37968 (12)$ $0.0584 (5)$ H5A 0.8857 -0.4678 0.3983 $0.070*$ C6 $1.02137 (14)$ $-0.5478 (3)$ $0.38750 (12)$ $0.0591 (5)$ H6A 1.0236 -0.6864 0.4117 $0.071*$ C7 $1.10064 (13)$ $-0.472 (3)$ $0.36010 (11)$ $0.0515 (5)$ C8 $1.09587 (13)$ $-0.2684 (3)$ $0.32587 (10)$ $0.0530 (4)$ H8A 1.1492 -0.2155 0.3083 $0.064*$ C9 $1.01362 (13)$ $-0.1362 (3)$ $0.31707 (10)$ $0.0514 (4)$ H9A 1.0117 0.0025 0.2929 $0.062*$ C10 $0.6784 (12)$ $0.1860 (3)$ $0.29574 (10)$ $0.0475 (4)$ C11 $0.61531 (13)$ $0.0238 (3)$ $0.26253 (11)$ $0.0535 (5)$ H11A 0.6064 -0.1124 0.2857 $0.064*$ C12 $0.56500 (14)$ $0.0659 (4)$ $0.19452 (11)$ $0.0584 (5)$ H12A 0.5222 -0.0434 0.1721 $0.070*$ C13 $0.57711 (13)$ $0.2673 (4)$ $0.19421 (11)$ $0.0592 (5)$ H14A 0.6495 0.5644 0.1714 $0.071*$ C15 $0.69157 (13)$ $0.3888 (3)$ $0.26226 (11)$ $0.0563 (5)$ H15A 0.7338 0.4986 0.2851 $0.668*$ C16<	C2	0.70278 (16)	0.2406 (5)	0.42561 (12)	0.0757 (7)	
C4 $0.93412 (12)$ $-0.2091 (3)$ $0.34399 (9)$ $0.0479 (4)$ C5 $0.93843 (14)$ $-0.4167 (3)$ $0.37968 (12)$ $0.0584 (5)$ H5A 0.8857 -0.4678 0.3983 0.070^* C6 $1.02137 (14)$ $-0.5478 (3)$ $0.38750 (12)$ $0.0591 (5)$ H6A 1.0236 -0.6864 0.4117 0.071^* C7 $1.10064 (13)$ $-0.4772 (3)$ $0.36010 (11)$ $0.0515 (5)$ C8 $1.09587 (13)$ $-0.2684 (3)$ $0.32587 (10)$ $0.0530 (4)$ H8A 1.1492 -0.2155 0.3083 0.064^* C9 $1.01362 (13)$ $-0.1362 (3)$ $0.31707 (10)$ $0.514 (4)$ H9A 1.0117 0.0025 0.2929 0.062^* C10 $0.67884 (12)$ $0.1860 (3)$ $0.29574 (10)$ $0.0475 (4)$ C11 $0.61531 (13)$ $0.0238 (3)$ $0.26253 (11)$ $0.0535 (5)$ H11A 0.6064 -0.1124 0.2857 0.064^* C12 $0.56500 (14)$ $0.0659 (4)$ $0.19452 (11)$ $0.0584 (5)$ H12A 0.5222 -0.0434 0.1721 0.070^* C13 $0.57711 (13)$ $0.2673 (4)$ $0.15916 (10)$ $0.0561 (5)$ C14 0.6495 0.5644 0.1714 0.071^* C15 $0.69157 (13)$ $0.3888 (3)$ $0.26226 (11)$ $0.0563 (5)$ H15A 0.7338 0.4986 0.2851 0.068^* C16 $0.52221 (18)$ $0.3121 (5)$ $0.08465 (13)$ $0.0838 (8)$ <tr< td=""><td>C3</td><td>0.81438 (12)</td><td>0.0103 (3)</td><td>0.37930 (10)</td><td>0.0496 (4)</td><td></td></tr<>	C3	0.81438 (12)	0.0103 (3)	0.37930 (10)	0.0496 (4)	
C50.93843 (14)-0.4167 (3)0.37968 (12)0.0584 (5)H5A0.8857-0.46780.39830.070*C61.02137 (14)-0.5478 (3)0.38750 (12)0.0591 (5)H6A1.0236-0.68640.41170.071*C71.10064 (13)-0.4772 (3)0.36010 (11)0.0515 (5)C81.09587 (13)-0.2684 (3)0.32587 (10)0.0530 (4)H8A1.1492-0.21550.30830.064*C91.01362 (13)-0.1362 (3)0.31707 (10)0.0514 (4)H9A1.01170.00250.29290.062*C100.67884 (12)0.1860 (3)0.29574 (10)0.0475 (4)C110.61531 (13)0.0238 (3)0.26253 (11)0.0584 (5)H11A0.6064-0.11240.28570.064*C120.56500 (14)0.0659 (4)0.17210.070*C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)C140.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.5221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	C4	0.93412 (12)	-0.2091 (3)	0.34399 (9)	0.0479 (4)	
H5A0.8857-0.46780.39830.070*C61.02137 (14)-0.5478 (3)0.38750 (12)0.0591 (5)H6A1.0236-0.68640.41170.071*C71.10064 (13)-0.4772 (3)0.36010 (11)0.0515 (5)C81.09587 (13)-0.2684 (3)0.32587 (10)0.0530 (4)H8A1.1492-0.21550.30830.064*C91.01362 (13)-0.1362 (3)0.31707 (10)0.0514 (4)H9A1.01170.00250.29290.062*C100.67884 (12)0.1860 (3)0.29574 (10)0.0475 (4)C110.61531 (13)0.0238 (3)0.26253 (11)0.0535 (5)H11A0.6064-0.11240.28570.064*C120.56500 (14)0.0659 (4)0.19452 (11)0.0584 (5)H12A0.5222-0.04340.17210.070*C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)H14A0.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	C5	0.93843 (14)	-0.4167 (3)	0.37968 (12)	0.0584 (5)	
C6 $1.02137(14)$ $-0.5478(3)$ $0.38750(12)$ $0.0591(5)$ H6A 1.0236 -0.6864 0.4117 $0.071*$ C7 $1.10064(13)$ $-0.4772(3)$ $0.36010(11)$ $0.0515(5)$ C8 $1.09587(13)$ $-0.2684(3)$ $0.32587(10)$ $0.0530(4)$ H8A 1.1492 -0.2155 0.3083 $0.064*$ C9 $1.01362(13)$ $-0.1362(3)$ $0.31707(10)$ $0.0514(4)$ H9A 1.0117 0.0025 0.2929 $0.062*$ C10 $0.67884(12)$ $0.1860(3)$ $0.29574(10)$ $0.0475(4)$ C11 $0.61531(13)$ $0.0238(3)$ $0.26253(11)$ $0.0535(5)$ H11A 0.6064 -0.1124 0.2857 $0.064*$ C12 $0.56500(14)$ $0.0659(4)$ $0.19452(11)$ $0.0584(5)$ H12A 0.5222 -0.0434 0.1721 $0.070*$ C13 $0.57711(13)$ $0.2673(4)$ $0.19421(11)$ $0.0592(5)$ H14A 0.6495 0.5644 0.1714 $0.071*$ C15 $0.69157(13)$ $0.3888(3)$ $0.26226(11)$ $0.0563(5)$ H15A 0.7338 0.4986 0.2851 $0.068*$ C16 $0.52221(18)$ $0.3121(5)$ $0.08465(13)$ $0.0838(8)$ H16A 0.4567 0.2639 0.0816 $0.126*$	H5A	0.8857	-0.4678	0.3983	0.070*	
H6A1.0236-0.68640.41170.071*C71.10064 (13)-0.4772 (3)0.36010 (11)0.0515 (5)C81.09587 (13)-0.2684 (3)0.32587 (10)0.0530 (4)H8A1.1492-0.21550.30830.064*C91.01362 (13)-0.1362 (3)0.31707 (10)0.0514 (4)H9A1.01170.00250.29290.062*C100.67884 (12)0.1860 (3)0.29574 (10)0.0475 (4)C110.61531 (13)0.0238 (3)0.26253 (11)0.0535 (5)H11A0.6064-0.11240.28570.064*C120.56500 (14)0.0659 (4)0.19452 (11)0.0584 (5)H12A0.5222-0.04340.17210.070*C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)H14A0.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	C6	1.02137 (14)	-0.5478 (3)	0.38750 (12)	0.0591 (5)	
C7 $1.10064(13)$ $-0.4772(3)$ $0.36010(11)$ $0.0515(5)$ C8 $1.09587(13)$ $-0.2684(3)$ $0.32587(10)$ $0.0530(4)$ H8A 1.1492 -0.2155 0.3083 $0.064*$ C9 $1.01362(13)$ $-0.1362(3)$ $0.31707(10)$ $0.0514(4)$ H9A 1.0117 0.0025 0.2929 $0.062*$ C10 $0.67884(12)$ $0.1860(3)$ $0.29574(10)$ $0.0475(4)$ C11 $0.61531(13)$ $0.0238(3)$ $0.26253(11)$ $0.0535(5)$ H11A 0.6064 -0.1124 0.2857 $0.064*$ C12 $0.56500(14)$ $0.0659(4)$ $0.19452(11)$ $0.0584(5)$ H12A 0.5222 -0.0434 0.1721 $0.070*$ C13 $0.57711(13)$ $0.2673(4)$ $0.15916(10)$ $0.0561(5)$ C14 $0.64077(14)$ $0.4275(4)$ $0.19421(11)$ $0.0592(5)$ H14A 0.6495 0.5644 0.1714 $0.071*$ C15 $0.69157(13)$ $0.3888(3)$ $0.26226(11)$ $0.068*$ C16 $0.52221(18)$ $0.3121(5)$ $0.08465(13)$ $0.0838(8)$ H16A 0.4567 0.2639 0.0816 $0.126*$	H6A	1.0236	-0.6864	0.4117	0.071*	
C8 $1.09587(13)$ $-0.2684(3)$ $0.32587(10)$ $0.0530(4)$ H8A 1.1492 -0.2155 0.3083 $0.064*$ C9 $1.01362(13)$ $-0.1362(3)$ $0.31707(10)$ $0.0514(4)$ H9A 1.0117 0.0025 0.2929 $0.062*$ C10 $0.67884(12)$ $0.1860(3)$ $0.29574(10)$ $0.0475(4)$ C11 $0.61531(13)$ $0.0238(3)$ $0.26253(11)$ $0.0535(5)$ H11A 0.6064 -0.1124 0.2857 $0.064*$ C12 $0.56500(14)$ $0.0659(4)$ $0.19452(11)$ $0.0584(5)$ H12A 0.5222 -0.0434 0.1721 $0.070*$ C13 $0.57711(13)$ $0.2673(4)$ $0.19421(11)$ $0.0592(5)$ H14A 0.6495 0.5644 0.1714 $0.071*$ C15 $0.69157(13)$ $0.3888(3)$ $0.26226(11)$ $0.0563(5)$ H15A 0.7338 0.4986 0.2851 $0.068*$ C16 $0.52221(18)$ $0.3121(5)$ $0.08465(13)$ $0.0838(8)$ H16A 0.4567 0.2639 0.0816 $0.126*$	C7	1.10064 (13)	-0.4772 (3)	0.36010 (11)	0.0515 (5)	
H8A1.1492-0.21550.30830.064*C91.01362 (13)-0.1362 (3)0.31707 (10)0.0514 (4)H9A1.01170.00250.29290.062*C100.67884 (12)0.1860 (3)0.29574 (10)0.0475 (4)C110.61531 (13)0.0238 (3)0.26253 (11)0.0535 (5)H11A0.6064-0.11240.28570.064*C120.56500 (14)0.0659 (4)0.19452 (11)0.0584 (5)H12A0.5222-0.04340.17210.070*C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)H14A0.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	C8	1.09587 (13)	-0.2684 (3)	0.32587 (10)	0.0530 (4)	
C91.01362 (13)-0.1362 (3)0.31707 (10)0.0514 (4)H9A1.01170.00250.29290.062*C100.67884 (12)0.1860 (3)0.29574 (10)0.0475 (4)C110.61531 (13)0.0238 (3)0.26253 (11)0.0535 (5)H11A0.6064-0.11240.28570.064*C120.56500 (14)0.0659 (4)0.19452 (11)0.0584 (5)H12A0.5222-0.04340.17210.070*C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)H14A0.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	H8A	1.1492	-0.2155	0.3083	0.064*	
H9A1.01170.00250.29290.062*C100.67884 (12)0.1860 (3)0.29574 (10)0.0475 (4)C110.61531 (13)0.0238 (3)0.26253 (11)0.0535 (5)H11A0.6064-0.11240.28570.064*C120.56500 (14)0.0659 (4)0.19452 (11)0.0584 (5)H12A0.5222-0.04340.17210.070*C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)H14A0.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	C9	1.01362 (13)	-0.1362 (3)	0.31707 (10)	0.0514 (4)	
C100.67884 (12)0.1860 (3)0.29574 (10)0.0475 (4)C110.61531 (13)0.0238 (3)0.26253 (11)0.0535 (5)H11A0.6064-0.11240.28570.064*C120.56500 (14)0.0659 (4)0.19452 (11)0.0584 (5)H12A0.5222-0.04340.17210.070*C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)H14A0.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	H9A	1.0117	0.0025	0.2929	0.062*	
C110.61531 (13)0.0238 (3)0.26253 (11)0.0535 (5)H11A0.6064-0.11240.28570.064*C120.56500 (14)0.0659 (4)0.19452 (11)0.0584 (5)H12A0.5222-0.04340.17210.070*C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)H14A0.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	C10	0.67884 (12)	0.1860 (3)	0.29574 (10)	0.0475 (4)	
H11A0.6064-0.11240.28570.064*C120.56500 (14)0.0659 (4)0.19452 (11)0.0584 (5)H12A0.5222-0.04340.17210.070*C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)H14A0.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	C11	0.61531 (13)	0.0238 (3)	0.26253 (11)	0.0535 (5)	
C120.56500 (14)0.0659 (4)0.19452 (11)0.0584 (5)H12A0.5222-0.04340.17210.070*C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)H14A0.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	H11A	0.6064	-0.1124	0.2857	0.064*	
H12A0.5222-0.04340.17210.070*C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)H14A0.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	C12	0.56500 (14)	0.0659 (4)	0.19452 (11)	0.0584 (5)	
C130.57711 (13)0.2673 (4)0.15916 (10)0.0561 (5)C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)H14A0.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	H12A	0.5222	-0.0434	0.1721	0.070*	
C140.64077 (14)0.4275 (4)0.19421 (11)0.0592 (5)H14A0.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	C13	0.57711 (13)	0.2673 (4)	0.15916 (10)	0.0561 (5)	
H14A0.64950.56440.17140.071*C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	C14	0.64077 (14)	0.4275 (4)	0.19421 (11)	0.0592 (5)	
C150.69157 (13)0.3888 (3)0.26226 (11)0.0563 (5)H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	H14A	0.6495	0.5644	0.1714	0.071*	
H15A0.73380.49860.28510.068*C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	C15	0.69157 (13)	0.3888 (3)	0.26226 (11)	0.0563 (5)	
C160.52221 (18)0.3121 (5)0.08465 (13)0.0838 (8)H16A0.45670.26390.08160.126*	H15A	0.7338	0.4986	0.2851	0.068*	
H16A 0.4567 0.2639 0.0816 0.126*	C16	0.52221 (18)	0.3121 (5)	0.08465 (13)	0.0838 (8)	
	H16A	0.4567	0.2639	0.0816	0.126*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H16B	0.5512	0.2284	0.0506	0.126*		
H16C	0.5239	0.4725	0.0744	0.126*		
C17	1.18878 (15)	-0.6264 (4)	0.36447 (13)	0.0688 (6)		
H17A	1.2442	-0.5449	0.3885	0.103*	0.50	
H17B	1.1977	-0.6659	0.3171	0.103*	0.50	
H17C	1.1804	-0.7631	0.3906	0.103*	0.50	
H17D	1.2256	-0.6203	0.4120	0.103*	0.50	
H17E	1.2273	-0.5724	0.3311	0.103*	0.50	
H17F	1.1694	-0.7811	0.3530	0.103*	0.50	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0617 (4)	0.1143 (5)	0.0480 (4)	0.0285 (3)	-0.0047 (2)	0.0048 (3)
N1	0.0461 (8)	0.0559 (9)	0.0516 (9)	0.0101 (7)	0.0007 (6)	0.0030(7)
N2	0.0441 (8)	0.0635 (10)	0.0461 (8)	0.0110 (7)	-0.0010 (6)	-0.0011 (7)
O1	0.0957 (13)	0.165 (2)	0.0691 (11)	0.0751 (14)	-0.0007 (9)	-0.0207 (12)
C1	0.0900 (18)	0.159 (3)	0.0529 (13)	0.0537 (19)	-0.0063 (12)	-0.0151 (16)
C2	0.0616 (12)	0.1040 (18)	0.0575 (12)	0.0279 (13)	-0.0003 (10)	-0.0105 (12)
C3	0.0412 (9)	0.0541 (10)	0.0502 (10)	0.0044 (7)	-0.0009 (8)	0.0044 (8)
C4	0.0464 (9)	0.0470 (9)	0.0472 (9)	0.0061 (7)	0.0003 (7)	-0.0010 (7)
C5	0.0487 (10)	0.0565 (11)	0.0701 (13)	0.0018 (8)	0.0110 (9)	0.0098 (9)
C6	0.0561 (11)	0.0474 (11)	0.0718 (13)	0.0066 (8)	0.0062 (9)	0.0119 (9)
C7	0.0491 (10)	0.0494 (10)	0.0530 (10)	0.0064 (7)	0.0013 (8)	-0.0053 (8)
C8	0.0492 (9)	0.0546 (11)	0.0550 (10)	0.0001 (8)	0.0092 (8)	-0.0027 (8)
C9	0.0559 (10)	0.0455 (10)	0.0516 (10)	0.0038 (8)	0.0061 (8)	0.0039 (7)
C10	0.0377 (8)	0.0539 (10)	0.0477 (9)	0.0077 (7)	-0.0010 (7)	-0.0008 (7)
C11	0.0495 (10)	0.0507 (10)	0.0573 (11)	-0.0010 (7)	0.0017 (8)	0.0047 (8)
C12	0.0487 (10)	0.0642 (12)	0.0575 (11)	-0.0066 (8)	-0.0030 (8)	-0.0023 (9)
C13	0.0456 (9)	0.0677 (12)	0.0524 (11)	0.0038 (8)	0.0017 (8)	0.0036 (9)
C14	0.0572 (11)	0.0557 (11)	0.0625 (12)	0.0008 (9)	0.0053 (9)	0.0117 (9)
C15	0.0492 (10)	0.0516 (11)	0.0639 (12)	-0.0032 (8)	-0.0011 (8)	-0.0037 (9)
C16	0.0790 (15)	0.108 (2)	0.0574 (13)	-0.0013 (14)	-0.0077 (11)	0.0135 (13)
C17	0.0595 (11)	0.0652 (13)	0.0810 (15)	0.0165 (10)	0.0111 (10)	0.0006 (11)

Geometric parameters (Å, °)

S1—C3	1.7664 (19)	С9—Н9А	0.9300
S1—C1	1.792 (3)	C10—C15	1.374 (3)
N1—C3	1.249 (2)	C10-C11	1.379 (3)
N1-C4	1.428 (2)	C11—C12	1.381 (3)
N2—C2	1.360 (3)	C11—H11A	0.9300
N2—C3	1.405 (2)	C12—C13	1.383 (3)
N2-C10	1.448 (2)	C12—H12A	0.9300
O1—C2	1.200 (3)	C13—C14	1.385 (3)
C1—C2	1.502 (3)	C13—C16	1.511 (3)
C1—H1A	0.9700	C14—C15	1.381 (3)
C1—H1B	0.9700	C14—H14A	0.9300

supporting information

C4—C9	1.383 (3)	C15—H15A	0.9300
C4—C5	1.387 (3)	C16—H16A	0.9600
C5—C6	1.387 (3)	C16—H16B	0.9600
C5—H5A	0.9300	C16—H16C	0.9600
C6—C7	1.381 (3)	С17—Н17А	0.9600
C6—H6A	0.9300	C17—H17B	0.9600
C7 - C8	1,380(3)	C17—H17C	0.9600
C7-C17	1.500(3) 1 511(3)	C17—H17D	0.9600
C_{8}	1.311(3) 1 381(3)	C17H17E	0.9600
C8 H8A	0.0300	C17_H17E	0.9600
Co—110A	0.9500	017—11171	0.9000
C3—S1—C1	92.50 (10)	С4—С9—Н9А	119.9
C3—N1—C4	119.78 (15)	C15—C10—C11	120.72 (17)
C2—N2—C3	117.32 (15)	C15—C10—N2	119.79 (16)
C2—N2—C10	121.64 (15)	C11—C10—N2	119.46 (17)
C3—N2—C10	120.97 (15)	C10—C11—C12	119.31 (18)
C2-C1-S1	108.16 (17)	C10—C11—H11A	120.3
C2-C1-H1A	110.1	C12—C11—H11A	120.3
S1—C1—H1A	110.1	C11-C12-C13	121.27 (18)
C2-C1-H1B	110.1	C11—C12—H12A	119.4
S1—C1—H1B	110.1	C13 - C12 - H12A	119.4
H1A—C1—H1B	108.4	C12 - C13 - C14	118.00 (17)
$01-C^2-N^2$	100.4 124 7 (2)	C12 - C13 - C16	1211(2)
O1 C2 C1	124.7(2) 123.3(2)	C12 $C13$ $C16$	121.1(2) 120.0(2)
$N_{2} = C_{2} = C_{1}$	123.3(2)	C15 C14 C13	120.9(2) 121.58(10)
$N_2 - C_2 - C_1$ $N_1 - C_2 - N_2$	111.90 (16)	C15 - C14 - C15	121.30 (19)
N1 = C3 = N2	122.02(10) 127.80(14)	C13 - C14 - H14A	119.2
$NI = C_3 = S_1$	127.89 (14)	C13 - C14 - H14A	119.2
$N_2 = C_3 = S_1$	110.05 (13)	C10-C15-C14	119.10 (17)
C_{2}	118.94 (17)	CIO-CIS-HISA	120.4
C9—C4—N1	118./1 (16)	CI4—CI5—HISA	120.4
C5—C4—N1	122.16 (17)	C13—C16—H16A	109.5
C6—C5—C4	119.96 (19)	C13—C16—H16B	109.5
C6—C5—H5A	120.0	H16A—C16—H16B	109.5
C4—C5—H5A	120.0	C13—C16—H16C	109.5
C7—C6—C5	121.40 (18)	H16A—C16—H16C	109.5
С7—С6—Н6А	119.3	H16B—C16—H16C	109.5
С5—С6—Н6А	119.3	С7—С17—Н17А	109.5
C8—C7—C6	117.93 (17)	C7—C17—H17B	109.5
C8—C7—C17	120.51 (19)	C7—C17—H17C	109.5
C6—C7—C17	121.51 (19)	C7—C17—H17D	109.5
C7—C8—C9	121.47 (18)	С7—С17—Н17Е	109.5
С7—С8—Н8А	119.3	H17D—C17—H17E	109.5
С9—С8—Н8А	119.3	C7—C17—H17F	109.5
C8—C9—C4	120.27 (18)	H17D—C17—H17F	109.5
С8—С9—Н9А	119.9	H17E—C17—H17F	109.5
C3—S1—C1—C2	0.6 (3)	C5—C6—C7—C17	-176.1 (2)
C3-N2-C2-O1	178.7 (3)	C6—C7—C8—C9	-2.0(3)

1.7 (4)	С17—С7—С8—С9	175.62 (19)
-0.4 (3)	C7—C8—C9—C4	1.3 (3)
-177.4 (2)	C5—C4—C9—C8	-0.1 (3)
-179.3 (3)	N1-C4-C9-C8	-175.14 (17)
-0.2 (4)	C2—N2—C10—C15	77.3 (3)
179.14 (16)	C3—N2—C10—C15	-99.6 (2)
1.9 (3)	C2-N2-C10-C11	-101.0 (2)
-176.8 (2)	C3—N2—C10—C11	82.1 (2)
0.2 (3)	C15—C10—C11—C12	0.7 (3)
0.9 (2)	N2-C10-C11-C12	179.01 (17)
177.91 (14)	C10-C11-C12-C13	0.0 (3)
176.7 (2)	C11—C12—C13—C14	-0.5 (3)
-0.82 (19)	C11—C12—C13—C16	179.7 (2)
-118.4 (2)	C12—C13—C14—C15	0.4 (3)
66.7 (3)	C16—C13—C14—C15	-179.9 (2)
-0.4 (3)	C11-C10-C15-C14	-0.9 (3)
174.46 (19)	N2-C10-C15-C14	-179.14 (17)
-0.3 (3)	C13—C14—C15—C10	0.3 (3)
1.5 (3)		
	$\begin{array}{c} 1.7 \ (4) \\ -0.4 \ (3) \\ -177.4 \ (2) \\ -179.3 \ (3) \\ -0.2 \ (4) \\ 179.14 \ (16) \\ 1.9 \ (3) \\ -176.8 \ (2) \\ 0.2 \ (3) \\ 0.9 \ (2) \\ 177.91 \ (14) \\ 176.7 \ (2) \\ -0.82 \ (19) \\ -118.4 \ (2) \\ 66.7 \ (3) \\ -0.4 \ (3) \\ 174.46 \ (19) \\ -0.3 \ (3) \\ 1.5 \ (3) \end{array}$	1.7 (4) $C17-C7-C8-C9$ $-0.4 (3)$ $C7-C8-C9-C4$ $-177.4 (2)$ $C5-C4-C9-C8$ $-179.3 (3)$ $N1-C4-C9-C8$ $-0.2 (4)$ $C2-N2-C10-C15$ $179.14 (16)$ $C3-N2-C10-C15$ $1.9 (3)$ $C2-N2-C10-C11$ $-176.8 (2)$ $C3-N2-C10-C11$ $0.2 (3)$ $C15-C10-C11-C12$ $0.9 (2)$ $N2-C10-C11-C12$ $177.91 (14)$ $C10-C11-C12-C13$ $176.7 (2)$ $C11-C12-C13-C14$ $-0.82 (19)$ $C12-C13-C14-C15$ $66.7 (3)$ $C16-C13-C14-C15$ $-0.4 (3)$ $C11-C10-C15-C14$ $174.46 (19)$ $N2-C10-C15-C14$ $-0.3 (3)$ $C13-C14-C15-C10$

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S1/N2/C1–C3 and C4–C9 rings, respectively.

D—H···A	D—H	H···A	D····A	D—H···A
$C5$ —H5 A ··· $Cg1^i$	0.93	3.00	3.788 (2)	144
C9—H9A···Cg2 ⁱⁱ	0.93	2.87	3.607 (2)	138

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) –*x*+2, *y*+1/2, –*z*+1/2.