

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-(Phenyldiazenyl)tropolone

Tania N. Hill,* Moeketsi S. Mangwaela and Gideon Steyl

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa

Correspondence e-mail: tania.hill@gmail.com

Received 13 February 2012; accepted 27 February 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.128; data-to-parameter ratio = 17.2.

The title compound [systematic name: (*E*)-2-hydroxy-5-(phenyldiazenyl)cyclohepta-2,4,6-trien-1-one], $C_{13}H_{10}N_2O_2$, is essentially planar with an r.m.s. deviation of 0.036 (2) Å and a dihedral angle of 1.57 (8)° between the phenyl and tropolone rings. In the crystal, molecules are linked by pairs of $O-H\cdots O$ hydrogen bonds into inversion dimers. The dimers are further connected by $C-H\cdots O$ hydrogen bonds and $\pi-\pi$ stacking interactions, with centroid–centroid distances of 3.6934 (9) and 3.6282 (9) Å.

Related literature

For synthetic background, see: Gao & Zheng (2001). For applications of azo-substituted tropolones, see: Mori *et al.* (2002). For related systems, see: Shimanouchi & Sasada (1973); Steyl & Roodt (2006). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{10}N_2O_2\\ M_r = 226.23\\ \text{Monoclinic, } P2_1/c\\ a = 6.2838 \ (2) \ \text{\AA}\\ b = 24.8474 \ (13) \ \text{\AA}\\ c = 8.0478 \ (3) \ \text{\AA}\\ \beta = 122.255 \ (2)^\circ \end{array}$

 $V = 1062.64 (8) Å^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 0.10 \text{ mm}^{-1}\) T = 100 K 0.35 \times 0.32 \times 0.05 \text{ mm}\) 10621 measured reflections

 $R_{\rm int} = 0.050$

2669 independent reflections

1925 reflections with $I > 2\sigma(I)$

Data collection

Bruker X8 APEXII 4K KappaCCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\rm min} = 0.967, T_{\rm max} = 0.995$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	155 parameters
$wR(F^2) = 0.128$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
2669 reflections	$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond	geometry	(A, °).
2 0	0 3	< /	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} D1 - H1 \cdots O2 \\ C5 - H5 \cdots O1^{i} \\ D1 - H1 \cdots O2^{ii} \end{array}$	0.84	2.08	2.5754 (15)	117
	0.95	2.40	3.1866 (19)	140
	0.84	1.96	2.6686 (15)	141

Symmetry codes: (i) x - 1, y, z - 1; (ii) -x + 1, -y, -z + 3.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Financial assistance from the University of the Free State is gratefully acknowledged. We also express our gratitude towards SASOL and the South African National Research Foundation (SA-NRF/THRIP) for financial support of this project. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5073).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gao, W. T. & Zheng, Z. (2001). Chin. Chem. Lett. 12, 103-106.
- Mori, A., Uno, K. & Takeshita, H. (2002). Liq. Cryst. 29, 1539-1545.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shimanouchi, H. & Sasada, Y. (1973). Acta Cryst. B29, 81-90.
- Steyl, G. & Roodt, A. (2006). S. Afr. J. Chem. 59, 21-27.

supporting information

Acta Cryst. (2012). E68, o941 [https://doi.org/10.1107/S1600536812008677]

5-(Phenyldiazenyl)tropolone

Tania N. Hill, Moeketsi S. Mangwaela and Gideon Steyl

S1. Comment

Due to the special nature of the tropolone ring it demonstrates similar aromaticity as the benzene ring, undergoing electrophilic substitution reactions with electrophilic reagents. As part of our study on the functionlization of the tropolone moeity we report the structure of the title compound, (I) (Fig. 1), with the aim of contributing to a deeper understanding of troponoids and its functionlization. The original tropolone crystal structure was done by Shimanouchi & Sasada (1973). A search of the Cambridge structural database (CSD) (Allen, 2002) yielded thirteen troponoid compounds with a mono-substituted 5-position, of these only seven were with the tropolone backbone, none of which had an azo linking group.

In I the dihedral angle between the least-squares planes A (O1/O2/C1–C7/N1) and B (N2/C11–C16) was found to be 1.41 (6)°, resulting in an almost planar molecule with an *r.m.s.* deviation of 0.036 (2) Å. The largest variance from the molecular plane was found to be the O1 atom with a value of 0.058 (1) Å. The well known O—H…H interactions found for tropolone are present and lead to the formation of centrosymmetric dimers (Fig. 2). These interactions along with the last interaction found in Fig. 2, that of tropolone (C5) with an adjacent tropolone (O2) results in the formation of a planar sheet packing configuration (Fig 3). π – π Interactions were observed between the phenyl ring and the tropolone ring with a distance of 3.6934 (9) Å and two tropolone rings with a distance of 3.6282 (9) Å (Fig. 4).

S2. Experimental

Sodium nitrite (1.4 mmol) dissolved in water (1 ml) was added dropwise to a solution containing aniline (1.6 mmol), hydrochloric acid (2 ml, conc) and water (7 ml). Upon cooling the resultant mixture to *ca.* 4 °C it was slowly added to a solution of sodium hydroxide (1.8 mmol), tropolone (1.6 mmol) in water (4 ml) keeping the temperature < 5 °C. The resulting solution was stirred for 30 minutes, filtered and air-dried. Crystals suitable for X-ray diffraction were obtained by recrystalization with CHCl₃.

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms.

Figure 2

Intermolecular hydrogen bond interactions (dashed bonds) of the title compound. Symmetry codes: (i) x - 1, y, z - 1 (ii) 1 - x, -y, 3 - z. Non-relevant hydrogen atoms have been omitted for clarity.

A packing diagram of the title compound, illustrating the parallel sheet configuration as viewed along the *a* axis.

Figure 4

Partially filled unit cell of the title compound, illustrating π - π stacking interactions. Hydrogen atoms have been omitted for clarity.

(E)-2-hydroxy-5-(phenyldiazenyl)cyclohepta-2,4,6-trien-1-one

Crystal data

$C_{13}H_{10}N_{2}O_{2}$ $M_{r} = 226.23$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc $a = 6.2838 (2) \text{ Å}$ $b = 24.8474 (13) \text{ Å}$ $c = 8.0478 (3) \text{ Å}$ $\beta = 122.255 (2)^{\circ}$ $V = 1062.64 (8) \text{ Å}^{3}$ $Z = 4$	F(000) = 472 $D_x = 1.414 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1666 reflections $\theta = 3.3-24.9^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 100 K Plate, red $0.35 \times 0.32 \times 0.05 \text{ mm}$
Data collection Bruker X8 APEXII 4K KappaCCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 512 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004) $T_{\min} = 0.967, T_{\max} = 0.995$	10621 measured reflections 2669 independent reflections 1925 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 28.4^\circ, \ \theta_{min} = 3.1^\circ$ $h = -8 \rightarrow 8$ $k = -31 \rightarrow 32$ $l = -10 \rightarrow 10$

Refinement

Refinement on F^2	0 restraints
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.048$	$w = 1/[\sigma^2(F_o^2) + (0.0566P)^2 + 0.2818P]$
$wR(F^2) = 0.128$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
2669 reflections	$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$
155 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
Special details	

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.6923 (3)	0.05118 (6)	1.3134 (2)	0.0163 (3)	
C2	0.8463 (3)	0.07450 (7)	1.2597 (2)	0.0179 (3)	
H2	1.0185	0.077	1.3622	0.022*	
C3	0.7891 (3)	0.09498 (7)	1.0787 (2)	0.0175 (3)	
H3	0.9269	0.1095	1.0758	0.021*	
C4	0.5591 (3)	0.09684 (7)	0.9038 (2)	0.0172 (3)	
C5	0.3285 (3)	0.07598 (7)	0.8670 (2)	0.0177 (3)	
H5	0.1911	0.08	0.7352	0.021*	
C6	0.2696 (3)	0.05111 (7)	0.9882 (2)	0.0181 (4)	
H6	0.099	0.04	0.9262	0.022*	
C7	0.4217 (3)	0.03894 (6)	1.1931 (2)	0.0163 (3)	
C11	0.6741 (3)	0.16352 (6)	0.5654 (2)	0.0178 (3)	
C12	0.4382 (3)	0.16419 (7)	0.3910 (2)	0.0209 (4)	
H12	0.2969	0.1489	0.3868	0.025*	
C13	0.4112 (3)	0.18728 (7)	0.2241 (2)	0.0247 (4)	
H13	0.251	0.1878	0.105	0.03*	
C14	0.6179 (3)	0.20974 (7)	0.2304 (2)	0.0258 (4)	
H14	0.5989	0.2255	0.1158	0.031*	
C15	0.8514 (3)	0.20909 (7)	0.4036 (3)	0.0252 (4)	
H15	0.9922	0.2246	0.4076	0.03*	
C16	0.8811 (3)	0.18585 (7)	0.5718 (2)	0.0213 (4)	
H16	1.0418	0.1852	0.6904	0.026*	
N1	0.5284 (2)	0.11965 (6)	0.72852 (19)	0.0194 (3)	
N2	0.7201 (3)	0.14104 (6)	0.74631 (18)	0.0196 (3)	
01	0.8030 (2)	0.03666 (5)	1.50085 (15)	0.0204 (3)	
H1	0.6956	0.0231	1.5202	0.031*	
O2	0.3290 (2)	0.01652 (5)	1.27961 (15)	0.0219 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0157 (8)	0.0170 (8)	0.0138 (7)	0.0017 (6)	0.0064 (6)	-0.0002 (6)

supporting information

C2	0.0134 (8)	0.0216 (9)	0.0144 (7)	-0.0009 (6)	0.0046 (6)	-0.0004 (6)	
C3	0.0162 (8)	0.0195 (9)	0.0185 (8)	-0.0022 (6)	0.0103 (7)	-0.0004 (6)	
C4	0.0185 (8)	0.0174 (9)	0.0151 (7)	-0.0002 (6)	0.0087 (6)	-0.0003 (6)	
C5	0.0154 (8)	0.0204 (9)	0.0142 (7)	0.0007 (6)	0.0058 (6)	-0.0006 (6)	
C6	0.0139 (7)	0.0218 (9)	0.0162 (7)	-0.0007 (6)	0.0065 (6)	-0.0013 (6)	
C7	0.0160 (8)	0.0170 (9)	0.0176 (7)	0.0008 (6)	0.0101 (6)	-0.0010 (6)	
C11	0.0223 (8)	0.0149 (8)	0.0186 (8)	0.0008 (6)	0.0125 (7)	0.0004 (6)	
C12	0.0217 (8)	0.0198 (9)	0.0214 (8)	-0.0015 (7)	0.0115 (7)	0.0003 (6)	
C13	0.0296 (9)	0.0216 (10)	0.0192 (8)	0.0011 (7)	0.0105 (7)	0.0037 (7)	
C14	0.0387 (10)	0.0183 (9)	0.0244 (9)	-0.0006 (8)	0.0195 (8)	0.0037 (7)	
C15	0.0315 (10)	0.0197 (9)	0.0324 (9)	-0.0029 (7)	0.0225 (8)	0.0001 (7)	
C16	0.0223 (8)	0.0209 (9)	0.0218 (8)	-0.0001 (7)	0.0125 (7)	-0.0009 (7)	
N1	0.0182 (7)	0.0218 (8)	0.0182 (7)	-0.0015 (6)	0.0097 (6)	0.0009 (5)	
N2	0.0204 (7)	0.0213 (8)	0.0188 (7)	-0.0005 (6)	0.0116 (6)	0.0004 (6)	
01	0.0152 (6)	0.0285 (7)	0.0151 (5)	-0.0033 (5)	0.0065 (5)	0.0033 (5)	
O2	0.0162 (6)	0.0306 (7)	0.0185 (6)	-0.0019 (5)	0.0089 (5)	0.0036 (5)	

Geometric parameters (Å, °)

C101	1.3301 (18)	C11—C16	1.389 (2)
C1—C2	1.380 (2)	C11—C12	1.395 (2)
C1—C7	1.471 (2)	C11—N2	1.4378 (19)
C2—C3	1.397 (2)	C12—C13	1.385 (2)
C2—H2	0.95	C12—H12	0.95
C3—C4	1.379 (2)	C13—C14	1.389 (2)
С3—Н3	0.95	C13—H13	0.95
C4—C5	1.414 (2)	C14—C15	1.383 (2)
C4—N1	1.4342 (19)	C14—H14	0.95
C5—C6	1.362 (2)	C15—C16	1.390 (2)
С5—Н5	0.95	C15—H15	0.95
C6—C7	1.429 (2)	C16—H16	0.95
С6—Н6	0.95	N1—N2	1.2530 (19)
С7—О2	1.2521 (18)	O1—H1	0.84
O1—C1—C2	116.06 (13)	C16—C11—C12	120.25 (14)
O1—C1—C7	114.31 (13)	C16—C11—N2	116.06 (14)
C2—C1—C7	129.62 (14)	C12—C11—N2	123.69 (14)
C1—C2—C3	130.28 (14)	C13—C12—C11	119.66 (15)
C1—C2—H2	114.9	C13—C12—H12	120.2
С3—С2—Н2	114.9	C11—C12—H12	120.2
C4—C3—C2	128.53 (15)	C12—C13—C14	120.16 (16)
С4—С3—Н3	115.7	C12—C13—H13	119.9
С2—С3—Н3	115.7	C14—C13—H13	119.9
C3—C4—C5	126.89 (14)	C15—C14—C13	120.03 (15)
C3—C4—N1	122.36 (14)	C15-C14-H14	120
C5-C4-N1	110.72 (13)	C13—C14—H14	120
C6—C5—C4	131.02 (15)	C14—C15—C16	120.34 (16)
С6—С5—Н5	114.5	C14—C15—H15	119.8

C4—C5—H5 C5—C6—C7 C5—C6—H6 C7—C6—H6 O2—C7—C6 O2—C7—C1 C6—C7—C1	114.5 130.70 (15) 114.7 114.7 120.84 (14) 116.31 (14) 122.85 (14)	C16—C15—H15 C11—C16—C15 C11—C16—H16 C15—C16—H16 N2—N1—C4 N1—N2—C11 C1—O1—H1	119.8 119.55 (15) 120.2 120.2 116.00 (13) 112.83 (13) 109.5
O1C1C2C3 C7C1C2C3	-178.41(16) 2 7 (3)	C16—C11—C12—C13 N2—C11—C12—C13	0.0 (2)
C1-C2-C3-C4	-0.4 (3)	C11—C12—C13—C14	-0.1(3)
C2—C3—C4—C5	-2.9 (3)	C12—C13—C14—C15	0.0 (3)
C2—C3—C4—N1	179.51 (16)	C13—C14—C15—C16	0.3 (3)
C3—C4—C5—C6	2.2 (3)	C12-C11-C16-C15	0.3 (2)
N1-C4-C5-C6	-179.90 (17)	N2-C11-C16-C15	-179.08 (15)
C4—C5—C6—C7	1.3 (3)	C14—C15—C16—C11	-0.4 (3)
C5—C6—C7—O2	178.42 (17)	C3—C4—N1—N2	-4.4 (2)
C5—C6—C7—C1	-2.1 (3)	C5—C4—N1—N2	177.61 (14)
O1—C1—C7—O2	-0.2 (2)	C4—N1—N2—C11	-179.34 (13)
C2-C1-C7-O2	178.73 (16)	C16—C11—N2—N1	-177.26 (14)
O1—C1—C7—C6	-179.64 (14)	C12—C11—N2—N1	3.4 (2)
C2—C1—C7—C6	-0.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
O1—H1…O2	0.84	2.08	2.5754 (15)	117
C5—H5…O1 ⁱ	0.95	2.40	3.1866 (19)	140
O1—H1…O2 ⁱⁱ	0.84	1.96	2.6686 (15)	141

Symmetry codes: (i) x-1, y, z-1; (ii) -x+1, -y, -z+3.