

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

7-Chloro-5-(chloromethyl)pyrazolo-[1,5-a]pyrimidine-3-carbonitrile

Jingli Xu, Hang Liu, Guixia Li and Chuanmin Qi*

Key Laboratory of Radiopharmaceuticals, Ministry of Education, Department of Chemistry, Beijing Normal University, Xin Jie Kou Wai Street 19, 100875 Beijing, People's Republic of China

Correspondence e-mail: gicmin@sohu.com

Received 23 February 2012; accepted 18 March 2012

Key indicators: single-crystal X-ray study; T = 301 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.104; data-to-parameter ratio = 16.6.

All non-H atoms of the title compound, $C_8H_4Cl_2N_4$, are essentially coplanar, with an r.m.s. deviation of 0.011 Å. In the crystal, weak $C-H \cdots N$ hydrogen bonds link the molecules into infinite sheets parallel to the bc plane.

Related literature

For details of the synthesis, see: Li et al. (2006). For applications of pyrazolo[1,5-a]pyrimidines as pharmacophores or building blocks in anti-tumor drug design, see: Li et al. (2006); Di Grandi et al. (2009); Powell et al. (2007); Gopalsamy et al. (2005).

Experimental

Crystal data

 $C_8H_4Cl_2N_4$ M = 227.05Monoclinic, $P2_1/c$ a = 4.9817 (4) Å b = 18.4025 (15) Å c = 10.1526 (9) Å $\beta = 95.924 \ (1)^{\circ}$

 $V = 925.78 (13) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.66 \text{ mm}^{-1}$ T = 301 K $0.60 \times 0.48 \times 0.20 \ \mathrm{mm}$ 5429 measured reflections

 $R_{\rm int} = 0.017$

2111 independent reflections

1749 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\rm min} = 0.693, T_{\rm max} = 0.879$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	127 parameters
$wR(F^2) = 0.104$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
2111 reflections	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8-H8\cdots N2^{i}$	0.93	2.50	3.337 (3)	150
$C2 - H2 \cdot \cdot \cdot N2^{ii}$	0.93	2.70	3.515 (3)	146

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x - 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This project was sponsored by the National Natural Science Foundation of China (No.21071022) and the Fundamental Research Funds for the Central Universities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2361).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Di Grandi, M. J., Berger, D. M., Hopper, D. W., Zhang, C., Dutia, M., Dunnick, A. L., Torres, N., Levin, J. I., Diamantidis, G., Zapf, C. W., Bloom, J. D., Dennis Powell, Y. B. H., Wojciechowicz, D., Collins, K. & Frommer, E. (2009). Bioorg. Med. Chem. Lett. 19, 6957-6961.
- Gopalsamy, A., Yang, H., Ellingboe, J. W., Tsou, H.-R., Zhang, N., Honores, E., Powell, D., Miranda, M., McGinnisb, J. P. & Rabindranb, S. K. (2005). Bioorg. Med. Chem. Lett. 15, 1591-1594.
- Li, J., Zhao, Y., Zhao, X., Yuan, X. & Gong, P. (2006). Arch. Pharm. Chem. Life Sci. 339, 593-597.
- Powell, D., Gopalsamy, A., Wang, Y. D., Zhang, N., Miranda, M., McGinnis, J. P. & Rabindran, S. K. (2007). Bioorg. Med. Chem. Lett. 17, 1641-1645. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o1161 [https://doi.org/10.1107/S160053681201166X]

7-Chloro-5-(chloromethyl)pyrazolo[1,5-a]pyrimidine-3-carbonitrile

Jingli Xu, Hang Liu, Guixia Li and Chuanmin Qi

S1. Comment

Pyrazolo[1,5-*a*]pyrimidines are widely applied as important pharmacophores or building blocks in anti-tumor drug design (Di Grandi *et al.*, 2009; Powell *et al.*, 2007; Gopalsamy *et al.*, 2005; Li *et al.*, 2006). Thus, the synthesis of the title compound may lead to the development of further pyrazolo[1,5-*a*]pyrimidine derivatives as new anti-tumor drugs. Here we report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The complete molecule is essentially planar, except the H atoms of the methylene group. Each molecule acts as a donor and a acceptor of weak intermolecular C—H \cdots N hydrogen-bond interactions linking the molecules into infinite sheets (Fig. 2).

S2. Experimental

The title compound can prepared by the reaction of 5-(chloromethyl)-7-hydroxypyrazolo[1,5-*a*]pyrimidine-3-carbonitrile with phosphorus oxychloride (Li *et al.*, 2006). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the crude product in ethyl acetate at ambient temperature.

S3. Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (CH) and C—H = 0.97 Å (CH₂) with U_{iso} (H) =1.2 U_{eq} (C).

Molecular structure of the title compound showing displacement ellipsoids at the 45% probability level.

Figure 2

Packing diagram of the title compound, viewed along the *a* axis. Dashed lines indicate hydrogen bonds.

7-Chloro-5-(chloromethyl)pyrazolo[1,5-a]pyrimidine-3-carbonitrile

Crystal data

 $C_{8}H_{4}Cl_{2}N_{4}$ $M_{r} = 227.05$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 4.9817 (4) Å b = 18.4025 (15) Å c = 10.1526 (9) Å $\beta = 95.924$ (1)° V = 925.78 (13) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans F(000) = 456 $D_x = 1.629 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2237 reflections $\theta = 3.9-27.6^{\circ}$ $\mu = 0.66 \text{ mm}^{-1}$ T = 301 KBlock, red $0.60 \times 0.48 \times 0.20 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{min} = 0.693$, $T_{max} = 0.879$ 5429 measured reflections 2111 independent reflections 1749 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.017$	$k = -13 \rightarrow 23$
$\theta_{\rm max} = 27.6^\circ, \ \theta_{\rm min} = 2.3^\circ$	$l = -12 \rightarrow 12$
$h = -6 \rightarrow 6$	

Refinement	
Refinement on F^2	
Least-squares matrix: full	
$R[F^2 > 2\sigma(F^2)] = 0.038$	
$wR(F^2) = 0.104$	
S = 1.04	
2111 reflections	
127 parameters	

Primary atom site location: structure-invariant

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.050P)^2 + 0.3703P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.46$ e Å⁻³ $\Delta\rho_{min} = -0.53$ e Å⁻³

Special details

direct methods

0 restraints

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.32935 (9)	0.26419 (3)	0.40816 (5)	0.04533 (17)	
Cl2	0.73176 (14)	0.03358 (3)	0.13931 (8)	0.0784 (3)	
N1	0.9223 (3)	0.23861 (8)	0.10690 (15)	0.0376 (3)	
N2	1.2065 (4)	0.41634 (10)	-0.0585 (2)	0.0636 (5)	
N3	0.5932 (4)	0.38077 (9)	0.26671 (18)	0.0503 (4)	
N4	0.6551 (3)	0.31043 (8)	0.24035 (15)	0.0374 (3)	
C1	0.5553 (4)	0.25052 (10)	0.29599 (18)	0.0363 (4)	
C2	0.6391 (4)	0.18420 (10)	0.25839 (18)	0.0390 (4)	
H2	0.5762	0.1420	0.2952	0.047*	
C3	0.8249 (4)	0.18073 (10)	0.16175 (18)	0.0378 (4)	
C4	0.9331 (5)	0.10975 (11)	0.1153 (2)	0.0554 (6)	
H4A	1.1109	0.1018	0.1615	0.066*	
H4B	0.9540	0.1138	0.0216	0.066*	
C5	0.8380 (3)	0.30370 (10)	0.14617 (17)	0.0352 (4)	
C6	0.8930 (4)	0.37484 (10)	0.11144 (19)	0.0423 (4)	
C7	1.0677 (4)	0.39787 (10)	0.0175 (2)	0.0473 (5)	
C8	0.7377 (5)	0.41835 (11)	0.1879 (2)	0.0520 (5)	
H8	0.7362	0.4688	0.1837	0.062*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0409 (3)	0.0559 (3)	0.0418 (3)	-0.0012 (2)	0.01678 (19)	-0.0018 (2)
Cl2	0.0764 (4)	0.0456 (3)	0.1169 (6)	-0.0135 (3)	0.0270 (4)	-0.0184 (3)
N1	0.0376 (8)	0.0389 (8)	0.0378 (8)	0.0000 (6)	0.0108 (6)	0.0019 (6)
N2	0.0747 (13)	0.0502 (11)	0.0710 (13)	-0.0039 (10)	0.0321 (11)	0.0098 (10)
N3	0.0591 (11)	0.0374 (9)	0.0574 (10)	0.0019 (8)	0.0213 (8)	-0.0043 (8)
N4	0.0381 (8)	0.0379 (8)	0.0377 (8)	-0.0003 (6)	0.0110 (6)	-0.0009 (6)
C1	0.0323 (8)	0.0449 (10)	0.0328 (8)	-0.0023 (7)	0.0089 (7)	0.0012 (7)
C2	0.0403 (9)	0.0381 (10)	0.0398 (9)	-0.0032 (8)	0.0099 (8)	0.0035 (8)
C3	0.0403 (9)	0.0364 (9)	0.0376 (9)	-0.0009 (7)	0.0075 (7)	0.0007 (7)
C4	0.0654 (14)	0.0379 (11)	0.0676 (14)	0.0002 (10)	0.0292 (11)	-0.0003 (10)
C5	0.0333 (8)	0.0391 (9)	0.0341 (9)	-0.0023 (7)	0.0078 (7)	0.0007 (7)
C6	0.0458 (10)	0.0368 (10)	0.0458 (10)	-0.0045 (8)	0.0114 (8)	0.0033 (8)
C7	0.0549 (12)	0.0360 (10)	0.0527 (12)	-0.0045 (9)	0.0137 (10)	0.0047 (9)
C8	0.0621 (13)	0.0350 (10)	0.0612 (13)	-0.0022 (9)	0.0177 (11)	-0.0011 (9)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—C1	1.7006 (18)	С2—С3	1.418 (2)
Cl2—C4	1.755 (2)	C2—H2	0.9300
N1—C3	1.318 (2)	C3—C4	1.507 (3)
N1—C5	1.343 (2)	C4—H4A	0.9700
N2—C7	1.139 (3)	C4—H4B	0.9700
N3—C8	1.325 (3)	C5—C6	1.390 (3)
N3—N4	1.364 (2)	C6—C8	1.402 (3)
N4—C1	1.356 (2)	C6—C7	1.421 (3)
N4—C5	1.393 (2)	C8—H8	0.9300
C1—C2	1.357 (3)		
C3—N1—C5	117.09 (15)	C3—C4—H4A	108.6
C8—N3—N4	103.25 (16)	Cl2—C4—H4A	108.6
C1—N4—N3	126.15 (15)	C3—C4—H4B	108.6
C1—N4—C5	120.50 (15)	Cl2—C4—H4B	108.6
N3—N4—C5	113.35 (15)	H4A—C4—H4B	107.5
N4—C1—C2	118.49 (16)	N1—C5—C6	133.52 (16)
N4—C1—C11	117.07 (14)	N1	121.99 (15)
C2-C1-Cl1	124.44 (14)	C6C5N4	104.50 (15)
C1—C2—C3	118.48 (16)	C5—C6—C8	105.24 (17)
C1—C2—H2	120.8	C5—C6—C7	126.97 (18)
С3—С2—Н2	120.8	C8—C6—C7	127.79 (19)
N1-C3-C2	123.45 (17)	N2—C7—C6	179.6 (3)
N1-C3-C4	114.14 (16)	N3—C8—C6	113.67 (19)
C2—C3—C4	122.40 (16)	N3—C8—H8	123.2
C3—C4—Cl2	114.86 (15)	С6—С8—Н8	123.2
C8—N3—N4—C1	-179.43 (19)	C3—N1—C5—C6	-179.6 (2)

C8—N3—N4—C5	0.3(2)	C3—N1—C5—N4	-0.2(3)
$N_3 N_4 C_1 C_2$	-170.00(18)	C1 NA C5 N1	0.2(3)
NJ—N 1 —C1—C2	179.90 (18)	C1—114—C5—111	0.0 (3)
C5—N4—C1—C2	0.4 (3)	N3—N4—C5—N1	-179.71 (17)
N3—N4—C1—C11	0.6 (3)	C1—N4—C5—C6	179.58 (16)
C5—N4—C1—Cl1	-179.05 (13)	N3—N4—C5—C6	-0.1 (2)
N4—C1—C2—C3	-0.6 (3)	N1-C5-C6-C8	179.4 (2)
Cl1—C1—C2—C3	178.78 (14)	N4—C5—C6—C8	0.0 (2)
C5—N1—C3—C2	-0.1 (3)	N1-C5-C6-C7	0.0 (4)
C5—N1—C3—C4	-178.66 (18)	N4—C5—C6—C7	-179.5 (2)
C1-C2-C3-N1	0.5 (3)	N4—N3—C8—C6	-0.3 (3)
C1—C2—C3—C4	178.98 (19)	C5—C6—C8—N3	0.2 (3)
N1-C3-C4-Cl2	-159.03 (16)	C7—C6—C8—N3	179.7 (2)
C2—C3—C4—Cl2	22.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C8—H8···N2 ⁱ	0.93	2.50	3.337 (3)	150
C2—H2···N2 ⁱⁱ	0.93	2.70	3.515 (3)	146

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) *x*-1, -*y*+1/2, *z*+1/2.