Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[tetraaquabis(μ_3 -oxalato- $\kappa^5 O^1, O^2: O^{1'}: O^{1'}, O^{2'})(\mu_2$ -oxalato- $\kappa^4 O^1, O^2: O^{1'}, O^{2'})$ dipraseodymium(III)]

Cheng-Jun Hao* and Hui Xie

College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China Correspondence e-mail: haochengjun2008@163.com

Received 23 February 2012; accepted 13 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.029; *wR* factor = 0.072; data-to-parameter ratio = 14.7.

In the title complex, $[Pr_2(C_2O_4)_3(H_2O)_4]_n$, the two independent Pr^{III} ions are both nine-coordinated in a distorted monocapped square-antiprismatic geometry by seven O atoms from four oxalate ligands and two water molecules. The Pr^{III} ions are bridged by the oxalate ligands, forming a layer parallel to (001). $O-H \cdots O$ hydrogen bonds connect the layers.

Related literature

For the structures and potential applications of lanthanide complexes, see: Ma *et al.* (2001); Shibasaki & Yoshikawa (2002); Song *et al.* (2012).

Experimental

Crystal data

$[Pr_2(C_2O_4)_3(H_2O)_4]$	V = 1390.4 (5) Å ³
$M_r = 617.94$	Z = 4
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 8.6358 (17) Å	$\mu = 7.02 \text{ mm}^{-1}$
b = 9.5356 (19)Å	T = 293 K
c = 16.885 (3) Å	$0.23 \times 0.22 \times 0.20$

Data collection

Rigaku Mercury CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2002) $T_{\rm min} = 0.295, T_{\rm max} = 0.334$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.072$ S = 1.043181 reflections 217 parameters H-atom parameters constrained 13654 measured reflections 3181 independent reflections 2826 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$

 $\begin{array}{l} \Delta \rho_{max} = 1.34 \mbox{ e } \mbox{\AA}^{-3} \\ \Delta \rho_{min} = -1.44 \mbox{ e } \mbox{\AA}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 1344 \mbox{ Friedel pairs} \\ \mbox{Flack parameter: } 0.49 \mbox{ (3)} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1W\cdots O2^{i}$	0.85	2.02	2.852 (6)	166
$O1W - H2W \cdot \cdot \cdot O8^{ii}$	0.85	2.15	2.998 (6)	173
O2W−H3W···O4 ⁱⁱⁱ	0.85	2.40	2.998 (6)	128
$O2W - H4W \cdots O6^{iv}$	0.85	2.01	2.792 (6)	152
$O3W - H5W \cdots O12^{v}$	0.85	1.97	2.780 (6)	158
$O3W - H6W \cdots O3^{v}$	0.85	2.60	3.379 (7)	154
O4W−H7W···O1 ^{vi}	0.85	2.16	2.865 (6)	140
$O4W - H8W \cdots O9^{v}$	0.85	2.04	2.882 (6)	169

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z$; (iii) x + 1, y, z; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$; (vi) x - 1, y, z.

Data collection: *CrystalClear* (Rigaku, 2002); cell refinement: *CrystalClear*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge Pingdingshan University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2521).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Ma, B.-Q., Gao, S., Su, G. & Xu, G.-X. (2001). Angew. Chem. Int. Ed. 40, 434–437.
- Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187-2209.
- Song, W. D., Li, S. J., Miao, D. L., Ji, L. L., Ng, S. W., Tiekink, E. R. R. & Ma, D. Y. (2012). *Inorg. Chem. Commun.* 17, 91–94.

0.20 mm

supporting information

Acta Cryst. (2012). E68, m444 [https://doi.org/10.1107/S1600536812011014]

Poly[tetraaquabis(μ_3 -oxalato- $\kappa^5 O^1, O^2: O^{1'}, O^{2'}$)(μ_2 -oxalato- $\kappa^4 O^1, O^2: O^{1'}, O^{2'}$)dipraseodymium(III)]

Cheng-Jun Hao and Hui Xie

S1. Comment

During the past decade, considerable efforts have been devoted to the design and construction of new lanthanide coordination polymers due to their intriguing structural diversity and potential applications in many areas (Ma *et al.*, 2001; Shibasaki & Yoshikawa, 2002; Song *et al.*, 2012). Oxalate owning four carboxylate O atoms is highly accessible to lanthanide ions to form novel structures.

As shown in Fig. 1, in the asymmetric unit of the title complex, there are two independent Pr^{III} ions with a similar coordination environment. Each Pr^{III} ion is nine-coordinated by seven O atoms from four oxalate ligands and two O atoms from two terminal water molecules. The Pr1 and Pr2 atoms are bridged by two carboxylate O atoms, forming a Pr_2O_2 subunit with a $Pr\cdots Pr$ distance of 4.2893 (7) Å. Such subunits are connected by the oxalate ligands, generating a layer parallel to (0 0 1). It is noted that the oxalate ligands exhibit two kinds of coordination modes: one adopts a bisbidentate coordination mode bridging two Pr^{III} ions; the other adopts a chelating and bridging coordination mode connecting three Pr^{III} ions. The adjacent layers are further linked into a three-dimensional network *via* intermolecular O—H…O hydrogen bonds (Table 1).

S2. Experimental

A mixture of $Pr(NO_3)_3.6H_2O(0.5 \text{ mmol}, 0.217 \text{ g})$ and oxalic acid (1 mmol, 0.09 g) in 10 ml of H_2O was sealed in an autoclave equipped with a Teflon liner (30 ml) and then heated to 453 K for 4 days. After gradual cooling to room temperature, crystals were obtained and collected by filtration with a yield of 31% based on Pr.

S3. Refinement

H atoms of water molecules were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$. The highest residual electron density was found at 0.82 Å from Pr1 atom and the deepest hole at 0.80 Å from Pr2 atom.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity. [Symmetry codes: (i) x, y+1, z; (ii) -x+1, y-1/2, -z+1/2; (iii) x-1, y-1, z; (iv) -x, y+1/2, -z+1/2.]

Poly[tetraaquabis(μ_3 -oxalato- $\kappa^5 O^1, O^2: O^{1'}; O^{1'}, O^{2'})$ (μ_2 - oxalato- $\kappa^4 O^1, O^2: O^{1'}, O^{2'})$ dipraseodymium(III)]

Crystal data

 $[\Pr_{2}(C_{2}O_{4})_{3}(H_{2}O)_{4}]$ $M_{r} = 617.94$ Orthorhombic, $P2_{1}2_{1}2_{1}$ Hall symbol: P 2ac 2ab a = 8.6358 (17) Å b = 9.5356 (19) Å c = 16.885 (3) Å $V = 1390.4 (5) \text{ Å}^{3}$ Z = 4

Data collection

Rigaku Mercury CCD diffractometer Radiation source: fine-focus sealed tube F(000) = 1160 $D_x = 2.952 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3600 reflections $\theta = 1.4-28.0^{\circ}$ $\mu = 7.02 \text{ mm}^{-1}$ T = 293 KBlock, green $0.23 \times 0.22 \times 0.20 \text{ mm}$

Graphite monochromator ω scans

Absorption correction: multi-scan	$R_{\rm int} = 0.047$
(CrystalClear; Rigaku, 2002)	$\theta_{\rm max} = 27.4^\circ, \ \theta_{\rm min} = 3.2^\circ$
$T_{\min} = 0.295, \ T_{\max} = 0.334$	$h = -9 \rightarrow 11$
13654 measured reflections	$k = -12 \rightarrow 12$
3181 independent reflections	$l = -21 \rightarrow 21$
2826 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.072$	$w = 1/[\sigma^2(F_o^2) + (0.0284P)^2 + 3.201P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
3181 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
217 parameters	$\Delta ho_{ m max} = 1.34 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.44 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1344 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.49 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pr1	0.37510 (4)	0.75389 (2)	0.143154 (14)	0.01214 (9)	
Pr2	-0.12589 (4)	0.26126 (3)	0.137142 (14)	0.01185 (8)	
01	0.3263 (5)	0.4984 (4)	0.1336 (3)	0.0245 (10)	
O2	0.1023 (5)	0.6852 (4)	0.1081 (2)	0.0220 (9)	
03	0.1479 (5)	0.3304 (5)	0.1473 (3)	0.0383 (12)	
O4	-0.0761 (5)	0.5159 (5)	0.1102 (3)	0.0236 (10)	
05	0.5734 (5)	0.8913 (4)	0.0744 (2)	0.0220 (9)	
O6	0.4832 (5)	0.9677 (5)	0.2184 (2)	0.0221 (9)	
O7	0.6490 (5)	1.1490 (4)	0.2172 (2)	0.0209 (9)	
08	0.7467 (5)	1.0643 (5)	0.0716 (3)	0.0255 (10)	
09	0.0572 (5)	0.0999 (5)	0.0683 (2)	0.0205 (9)	
O10	-0.0198 (5)	0.0560 (4)	0.2191 (2)	0.0230 (9)	
011	0.1596 (4)	-0.1155 (4)	0.2289 (2)	0.0186 (9)	
O12	0.2521 (5)	-0.0484 (4)	0.0791 (2)	0.0219 (9)	
O1W	0.4097 (7)	0.6778 (5)	0.0052 (2)	0.0361 (14)	
H1W	0.4747	0.7253	-0.0215	0.054*	
H2W	0.3561	0.6140	-0.0168	0.054*	

supporting information

O2W	0.6418 (6)	0.6597 (5)	0.1743 (3)	0.0357 (11)	
H3W	0.7010	0.6599	0.1341	0.053*	
H4W	0.6369	0.5950	0.2088	0.053*	
O3W	-0.1196 (7)	0.3125 (5)	-0.0081 (2)	0.0296 (10)	
H5W	-0.1447	0.3960	-0.0200	0.044*	
H6W	-0.1567	0.2530	-0.0404	0.044*	
O4W	-0.3828 (6)	0.3679 (5)	0.0986 (2)	0.0303 (10)	
H7W	-0.4443	0.4093	0.1304	0.045*	
H8W	-0.4120	0.3834	0.0513	0.045*	
C1	0.1907 (7)	0.4536 (6)	0.1341 (4)	0.0214 (13)	
C2	0.0597 (7)	0.5610 (6)	0.1160 (3)	0.0196 (12)	
C3	0.6393 (7)	0.9949 (6)	0.1035 (3)	0.0160 (12)	
C4	0.5861 (6)	1.0398 (6)	0.1870 (3)	0.0169 (12)	
C5	0.1355 (7)	0.0127 (5)	0.1057 (3)	0.0164 (11)	
C6	0.0863 (6)	-0.0190 (6)	0.1925 (3)	0.0166 (12)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pr1	0.01379 (15)	0.00894 (14)	0.01370 (14)	-0.00143 (13)	0.00092 (11)	0.00098 (9)
Pr2	0.01324 (15)	0.00861 (13)	0.01371 (14)	-0.00137 (13)	0.00076 (12)	-0.00112 (9)
01	0.025 (2)	0.013 (2)	0.035 (2)	-0.0023 (16)	-0.001 (2)	0.0004 (18)
O2	0.019 (2)	0.019 (2)	0.028 (2)	-0.0007 (18)	-0.0038 (19)	0.0043 (16)
O3	0.018 (2)	0.0103 (19)	0.086 (4)	-0.0033 (18)	-0.005 (2)	0.009(2)
O4	0.022 (2)	0.018 (2)	0.031 (2)	-0.0029 (16)	-0.0023 (19)	0.0017 (18)
O5	0.030 (2)	0.015 (2)	0.020 (2)	-0.0103 (17)	0.0063 (18)	-0.0088 (17)
06	0.025 (2)	0.025 (2)	0.0165 (18)	-0.0139 (18)	0.0081 (18)	-0.0051 (18)
O7	0.028 (2)	0.0162 (19)	0.0188 (18)	-0.0058 (17)	0.0033 (19)	-0.0052 (15)
08	0.030 (2)	0.022 (3)	0.024 (2)	-0.0126 (19)	0.010 (2)	-0.0098 (19)
09	0.025 (2)	0.020 (2)	0.0162 (19)	0.0110 (18)	0.0016 (18)	0.0036 (17)
O10	0.027 (2)	0.024 (2)	0.019 (2)	0.0093 (18)	0.0056 (19)	0.0051 (19)
O11	0.021 (2)	0.019 (2)	0.0155 (18)	0.0023 (16)	-0.0005 (17)	0.0045 (15)
O12	0.027 (2)	0.017 (2)	0.022 (2)	0.0088 (18)	0.0093 (18)	0.0092 (18)
O1W	0.056 (4)	0.027 (3)	0.025 (2)	-0.023 (2)	0.016 (2)	-0.0094 (17)
O2W	0.030 (3)	0.030 (3)	0.046 (3)	0.008 (2)	0.003 (3)	0.006 (2)
O3W	0.046 (3)	0.020 (2)	0.024 (2)	0.007 (3)	0.002 (2)	0.0062 (15)
O4W	0.027 (2)	0.038 (3)	0.027 (2)	0.008 (2)	-0.001 (2)	0.0004 (17)
C1	0.022 (3)	0.013 (3)	0.029 (3)	-0.003 (2)	0.002 (3)	0.000 (3)
C2	0.027 (3)	0.018 (3)	0.014 (3)	-0.001 (2)	0.000(2)	-0.001 (2)
C3	0.016 (3)	0.015 (3)	0.017 (3)	0.002 (3)	0.004 (3)	-0.0010 (18)
C4	0.021 (3)	0.014 (3)	0.015 (3)	-0.001 (2)	-0.001 (2)	-0.002 (2)
C5	0.022 (3)	0.009 (3)	0.018 (3)	0.000 (3)	0.000 (3)	0.0023 (18)
C6	0.020 (3)	0.016 (3)	0.014 (2)	-0.001 (2)	-0.002 (2)	0.002 (2)

Geometric parameters (Å, °)

Pr1—O12 ⁱ	2.419 (4)	O4—C2	1.253 (7)
Pr105	2.449 (4)	O5—C3	1.241 (6)

Pr1—O1W	2.458 (4)	O6—C4	1.242 (7)
Pr1—O1	2.478 (4)	O7—C4	1.281 (7)
Pr1—O2	2.516 (4)	O8—C3	1.261 (7)
Pr1—O2W	2.527 (5)	O9—C5	1.244 (7)
Pr1—O7 ⁱⁱ	2.570 (4)	O10—C6	1.247 (7)
Pr1—06	2.578 (4)	O11—C6	1.275 (7)
Pr1—O11 ⁱ	2.666 (4)	O12—C5	1.247 (7)
Pr2—O8 ⁱⁱⁱ	2.442 (4)	O1W—H1W	0.8500
Pr2-03	2.460 (4)	O1W—H2W	0.8501
Pr2-09	2 494 (4)	O2W—H3W	0.8500
Pr2-03W	2.591(4)	$\Omega^2 W - H4W$	0.8500
Pr2-04	2.501(1) 2 508 (4)	O_3W —H5W	0.8500
Pr2	2.506 (4)	O3W_H6W	0.8300
$Pr2_011^{iv}$	2.520(5) 2 565 (4)	O4W H7W	0.8511
$Pr^2 = 010$	2.565 (4)	O4W H8W	0.8513
Pr2 = 0.7	2.500(4)	$C_{4} = 118 \text{ W}$	1,556 (0)
112-07	2.398(4)	$C_1 = C_2$	1.550(9)
01-01	1.247 (7)	C3C4	1.544 (7)
02-02	1.247 (7)	05-06	1.555 (8)
03-01	1.252 (7)		
010 D.1 05	71.02 (15)	00 P /2 010	(2.55(12))
012 ⁻	/1.23 (15)	09-Pf2-010	63.55 (13)
Ol2-Prl—Olw	81.93 (16)	O_3W —Pr2—O10	132.08 (14)
O5—Pr1—O1W	67.89 (15)	04—Pr2—010	140.82 (14)
$O12^{i}$ —Pr1—O1	131.49 (15)	O4W—Pr2—O10	139.42 (14)
O5—Pr1—O1	127.89 (14)	O11 ^{iv} —Pr2—O10	85.07 (13)
O1W—Pr1—O1	70.66 (15)	$O8^{iii}$ —Pr2—O7 ⁱⁱⁱ	65.29 (13)
$O12^{i}$ —Pr1—O2	71.72 (14)	O3—Pr2—O7 ⁱⁱⁱ	142.48 (15)
O5—Pr1—O2	133.05 (13)	$O9$ — $Pr2$ — $O7^{iii}$	117.55 (13)
O1W—Pr1—O2	79.30 (16)	O3W—Pr2—O7 ⁱⁱⁱ	127.34 (15)
O1—Pr1—O2	64.51 (14)	O4—Pr2—O7 ⁱⁱⁱ	128.43 (13)
O12 ⁱ —Pr1—O2W	140.37 (15)	O4W—Pr2—O7 ⁱⁱⁱ	69.05 (14)
O5—Pr1—O2W	69.61 (15)	$O11^{iv}$ — $Pr2$ — $O7^{iii}$	69.21 (11)
O1W—Pr1—O2W	88.94 (17)	O10—Pr2—O7 ⁱⁱⁱ	70.88 (13)
O1—Pr1—O2W	79.57 (15)	C1	119.7 (4)
O2—Pr1—O2W	144.08 (15)	C2—O2—Pr1	119.9 (4)
$O12^{i}$ — $Pr1$ — $O7^{ii}$	132.68 (13)	C1—O3—Pr2	121.5 (4)
O5—Pr1—O7 ⁱⁱ	134.42 (14)	C2—O4—Pr2	118.6 (4)
O1W—Pr1—O7 ⁱⁱ	139.87 (15)	C3—O5—Pr1	123.9 (4)
O1—Pr1—O7 ⁱⁱ	70.32 (14)	C4—O6—Pr1	119.1 (3)
O2—Pr1—O7 ⁱⁱ	92.21 (13)	C4—O7— $Pr1^{v}$	130.3 (3)
$O2W$ —Pr1— $O7^{ii}$	75.20 (14)	$C4-O7-Pr2^{vi}$	116.5 (3)
$O12^{i}$ Pr1-O6	76.29 (15)	$Pr1^{v} O7 Pr2^{vi}$	112.19(14)
05—Pr1—06	63.73 (12)	$C3 - O8 - Pr2^{vi}$	122.8 (3)
01W—Pr1— 06	131.05 (14)	$C5-09-Pr^{2}$	122.0(3) 1213(4)
01 - Pr1 - 06	150 63 (14)	$C6-010-Pr^{2}$	121.3(1) 1204(3)
0^{2} Pr1-06	131 37 (13)	C6-011-Pr2vii	120.7(3) 134 4 (3)
$02W_{Pr1}_{06}$	81 29 (14)	$C6-011-Pr1^{viii}$	1140(3)
0.2^{ii} _Pr106	83 38 (13)	$Pr2^{vii}$ $O11$ $Pr1^{viii}$	110 13 (14)
$0_{1} - 111 - 00$	03.30(13)	112	110.13(14)

$O12^{i}$ — $Pr1$ — $O11^{i}$	64.69 (12)	C5—O12—Pr1 ^{viii}	123.9 (3)
O5—Pr1—O11 ⁱ	119.72 (13)	Pr1—O1W—H1W	115.2
$O1W$ — $Pr1$ — $O11^{i}$	137.50 (16)	Pr1—O1W—H2W	124.0
$O1$ — $Pr1$ — $O11^{i}$	112.07 (13)	H1W—O1W—H2W	120.6
O2—Pr1—O11 ⁱ	66.14 (12)	Pr1—O2W—H3W	112.4
O2W—Pr1—O11 ⁱ	133.55 (12)	Pr1—O2W—H4W	110.8
$O7^{ii}$ —Pr1—O11 ⁱ	68.09 (12)	H3W—O2W—H4W	125.4
$O6$ — $Pr1$ — $O11^{i}$	67.40 (12)	Pr2—O3W—H5W	114.3
O8 ⁱⁱⁱ —Pr2—O3	132.12 (15)	Pr2—O3W—H6W	119.4
O8 ⁱⁱⁱ —Pr2—O9	66.40 (15)	H5W—O3W—H6W	112.1
O3—Pr2—O9	65.72 (15)	Pr2—O4W—H7W	124.9
O8 ⁱⁱⁱ —Pr2—O3W	73.46 (15)	Pr2—O4W—H8W	124.9
O3—Pr2—O3W	89.72 (18)	H7W—O4W—H8W	109.1
O9—Pr2—O3W	69.50 (14)	O1—C1—O3	126.9 (6)
O8 ⁱⁱⁱ —Pr2—O4	137.69 (15)	O1—C1—C2	117.2 (5)
O3—Pr2—O4	65.69 (14)	O3—C1—C2	116.0 (5)
O9—Pr2—O4	113.85 (14)	O2—C2—O4	126.4 (6)
O3W—Pr2—O4	68.22 (15)	O2—C2—C1	115.6 (5)
O8 ⁱⁱⁱ —Pr2—O4W	78.30 (16)	O4—C2—C1	118.0 (5)
O3—Pr2—O4W	138.94 (15)	O5—C3—O8	125.9 (5)
O9—Pr2—O4W	133.26 (13)	O5—C3—C4	116.5 (5)
O3W—Pr2—O4W	71.82 (15)	O8—C3—C4	117.6 (5)
O4—Pr2—O4W	73.38 (14)	O6—C4—O7	125.7 (5)
$O8^{iii}$ — $Pr2$ — $O11^{iv}$	134.49 (13)	O6—C4—C3	116.7 (5)
O3—Pr2—O11 ^{iv}	85.69 (15)	O7—C4—C3	117.6 (5)
O9—Pr2—O11 ^{iv}	139.96 (13)	O9—C5—O12	124.6 (5)
O3W—Pr2—O11 ^{iv}	141.03 (13)	O9—C5—C6	117.4 (5)
O4—Pr2—O11 ^{iv}	74.70 (14)	O12—C5—C6	118.0 (5)
$O4W$ — $Pr2$ — $O11^{iv}$	86.72 (13)	O10-C6-O11	127.2 (5)
O8 ⁱⁱⁱ —Pr2—O10	79.57 (15)	O10—C6—C5	115.4 (5)
O3—Pr2—O10	79.85 (14)	O11—C6—C5	117.3 (5)
O12 ⁱ —Pr1—O1—C1	-43.6 (5)	O4W—Pr2—O9—C5	-146.9 (4)
O5—Pr1—O1—C1	-141.8 (4)	O11 ^{iv} —Pr2—O9—C5	29.4 (5)
O1W—Pr1—O1—C1	-103.0 (5)	O10—Pr2—O9—C5	-12.7 (4)
O2—Pr1—O1—C1	-15.9 (4)	O7 ⁱⁱⁱ —Pr2—O9—C5	-60.5 (5)
O2W—Pr1—O1—C1	164.5 (5)	O8 ⁱⁱⁱ —Pr2—O10—C6	77.6 (4)
O7 ⁱⁱ —Pr1—O1—C1	86.6 (5)	O3—Pr2—O10—C6	-58.9 (4)
O6—Pr1—O1—C1	114.3 (5)	O9—Pr2—O10—C6	8.9 (4)
O11 ⁱ —Pr1—O1—C1	31.5 (5)	O3W—Pr2—O10—C6	21.4 (5)
O12 ⁱ —Pr1—O2—C2	171.5 (4)	O4—Pr2—O10—C6	-87.1 (5)
O5—Pr1—O2—C2	132.1 (4)	O4W—Pr2—O10—C6	135.4 (4)
O1W—Pr1—O2—C2	86.6 (4)	O11 ^{iv} —Pr2—O10—C6	-145.4 (4)
O1—Pr1—O2—C2	13.0 (4)	O7 ⁱⁱⁱ —Pr2—O10—C6	144.9 (5)
O2W—Pr1—O2—C2	13.6 (5)	Pr1-01-C1-03	-163.0 (6)
O7 ⁱⁱ —Pr1—O2—C2	-53.9 (4)	Pr1-01-C1-C2	17.5 (7)
O6—Pr1—O2—C2	-137.1 (4)	Pr2-03-C1-01	-176.1 (5)
011 ⁱ —Pr1—O2—C2	-118.8 (4)	Pr2—O3—C1—C2	3.5 (8)

O8 ⁱⁱⁱ —Pr2—O3—C1	132.1 (5)	Pr1	170.7 (5)
O9—Pr2—O3—C1	132.4 (6)	Pr1-02-C2-C1	-9.8 (7)
O3W—Pr2—O3—C1	64.9 (5)	Pr2-04-C2-02	-176.5 (5)
O4—Pr2—O3—C1	-1.2 (5)	Pr2-04-C2-C1	4.0 (7)
O4W—Pr2—O3—C1	3.6 (6)	O1—C1—C2—O2	-5.0 (8)
O11 ^{iv} —Pr2—O3—C1	-76.4 (5)	O3—C1—C2—O2	175.4 (6)
O10—Pr2—O3—C1	-162.1 (5)	O1—C1—C2—O4	174.6 (5)
O7 ⁱⁱⁱ —Pr2—O3—C1	-123.3 (5)	O3—C1—C2—O4	-5.0 (9)
O8 ⁱⁱⁱ —Pr2—O4—C2	-128.4 (4)	Pr1	176.5 (5)
O3—Pr2—O4—C2	-1.8 (4)	Pr1	-2.1 (7)
O9—Pr2—O4—C2	-47.9 (5)	Pr2 ^{vi} —O8—C3—O5	-177.6 (5)
O3W—Pr2—O4—C2	-101.8 (5)	$Pr2^{vi}$ —O8—C3—C4	1.0 (7)
O4W—Pr2—O4—C2	-178.4 (5)	Pr1-06-C4-07	179.3 (4)
O11 ^{iv} —Pr2—O4—C2	90.4 (4)	Pr1O6C4C3	0.9 (6)
O10—Pr2—O4—C2	28.9 (5)	Pr1 ^v O7C4O6	8.5 (9)
$O7^{iii}$ — $Pr2$ — $O4$ — $C2$	137.0 (4)	$Pr2^{vi}$ —O7—C4—O6	175.9 (5)
O12 ⁱ —Pr1—O5—C3	85.5 (5)	Pr1 ^v O7C4C3	-173.1 (3)
O1W—Pr1—O5—C3	174.2 (5)	$Pr2^{vi}$ —O7—C4—C3	-5.7 (6)
O1—Pr1—O5—C3	-146.1 (4)	O5—C3—C4—O6	0.7 (8)
O2—Pr1—O5—C3	125.0 (4)	O8—C3—C4—O6	-178.0 (6)
O2W—Pr1—O5—C3	-88.3 (5)	O5—C3—C4—O7	-177.8 (6)
O7 ⁱⁱ —Pr1—O5—C3	-46.6 (5)	O8—C3—C4—O7	3.4 (8)
O6—Pr1—O5—C3	1.8 (4)	Pr2—O9—C5—O12	-163.2 (4)
$O11^{i}$ —Pr1—O5—C3	41.0 (5)	Pr2—O9—C5—C6	15.3 (7)
O12 ⁱ —Pr1—O6—C4	-76.9 (4)	Pr1 ^{viii} —O12—C5—O9	-168.6 (4)
O5—Pr1—O6—C4	-1.3 (4)	Pr1 ^{viii} —O12—C5—C6	12.9 (7)
O1W—Pr1—O6—C4	-10.7 (5)	Pr2-010-C6-011	173.1 (4)
O1—Pr1—O6—C4	120.0 (4)	Pr2-010-C6-C5	-5.4 (7)
O2—Pr1—O6—C4	-126.7 (4)	Pr2 ^{vii} —O11—C6—O10	9.0 (9)
O2W—Pr1—O6—C4	70.2 (4)	Pr1 ^{viii} —O11—C6—O10	179.4 (5)
O7 ⁱⁱ —Pr1—O6—C4	146.1 (4)	Pr2 ^{vii} —O11—C6—C5	-172.6 (3)
$O11^{i}$ —Pr1—O6—C4	-144.9 (4)	Pr1 ^{viii} —O11—C6—C5	-2.2 (6)
O8 ⁱⁱⁱ —Pr2—O9—C5	-102.6 (5)	O9—C5—C6—O10	-6.3 (8)
O3—Pr2—O9—C5	77.7 (4)	O12—C5—C6—O10	172.3 (5)
O3W—Pr2—O9—C5	177.1 (5)	09—C5—C6—O11	175.1 (5)
O4—Pr2—O9—C5	123.9 (4)	O12—C5—C6—O11	-6.4 (8)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+1, *y*-1/2, -*z*+1/2; (iii) *x*-1, *y*-1, *z*; (iv) -*x*, *y*+1/2, -*z*+1/2; (v) -*x*+1, *y*+1/2, -*z*+1/2; (vi) *x*+1, *y*+1, *z*; (vii) -*x*, *y*-1/2, -*z*+1/2; (viii) *x*, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1 <i>W</i> —H1 <i>W</i> ····O2 ^{ix}	0.85	2.02	2.852 (6)	166
O1 <i>W</i> —H2 <i>W</i> ···O8 ^x	0.85	2.15	2.998 (6)	173
O2 <i>W</i> —H3 <i>W</i> ····O4 ^{xi}	0.85	2.40	2.998 (6)	128
O2 <i>W</i> —H4 <i>W</i> ···O6 ⁱⁱ	0.85	2.01	2.792 (6)	152
O3 <i>W</i> —H5 <i>W</i> ····O12 ^{xii}	0.85	1.97	2.780 (6)	158
O3 <i>W</i> —H6 <i>W</i> ····O3 ^{xii}	0.85	2.60	3.379 (7)	154

supporting information

O4W—H7W····O1 ^{xiii}	0.85	2.16	2.865 (6)	140	
O4 <i>W</i> —H8 <i>W</i> ···O9 ^{xii}	0.85	2.04	2.882 (6)	169	

Symmetry codes: (ii) -*x*+1, *y*-1/2, -*z*+1/2; (ix) *x*+1/2, -*y*+3/2, -*z*; (x) *x*-1/2, -*y*+3/2, -*z*; (xi) *x*+1, *y*, *z*; (xii) *x*-1/2, -*y*+1/2, -*z*; (xiii) *x*-1, *y*, *z*.