Structure Reports

Online
ISSN 1600-5368

Tris(ethylenediamine- $\kappa^{2} N, N^{\prime}$)cadmium hexafluoridogermanate

Guo-Ming Wang, ${ }^{\text {a* }}$ Zeng-Xin Li ${ }^{\mathbf{b}}$ and Pei Wang ${ }^{c}$
${ }^{\text {a }}$ Teachers College, College of Chemistry, Chemical Engineering and Environment, Qingdao University, Shandong 266071, People's Republic of China, ${ }^{\text {b }}$ Teachers College, Qingdao University, Shandong 266071, People's Republic of China, and ${ }^{\text {c }}$ College of Chemistry, Chemical Engineering and Environment, Qingdao University, Shandong 266071, People's Republic of China
Correspondence e-mail: gmwang_pub@163.com

Received 22 February 2012; accepted 6 March 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; disorder in main residue; R factor $=0.024 ; w R$ factor $=0.038$; data-to-parameter ratio $=13.1$.

In the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left(\mathrm{GeF}_{6}\right)$, the $\mathrm{Cd}^{\mathrm{II}}$ atom, lying on a 32 symmetry site, is coordinated by six N atoms from three ethylenediamine (en) ligands in a distorted octahedral geometry. The Ge atom also lies on a 32 symmetry site and is coordinated by six F atoms. The en ligand has a twofold rotation axis passing through the mid-point of the C C bond. The F atom is disordered over two sites with equal occupancy factors. In the crystal, the $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]^{2+}$ cations and $\left[\mathrm{GeF}_{6}\right]^{2-}$ anions are connected through $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds, forming a three-dimensional supramolecular network.

Related literature

For background to the structures and applications of microporous materials, see: Cheetham et al. (1999); Jiang et al. (2010); Liang et al. (2006); Yu \& Xu (2003); Zou et al. (2005). For related fluorides, see: Brauer et al. (1980, 1986); Dadachov et al. (2001); Lukevics et al. (1997); Tang et al. (2001a,b,c,d,e,f); Wang et al. (2004); Wang \& Wang (2011); Zhang et al. (2003). For related structures containing chiral metal complexes, see: Stalder \& Wilkinson (1997); Wang et al. (2003); Yu et al. (2001).

Experimental

Crystal data
$\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left(\mathrm{GeF}_{6}\right)$
$M_{r}=479.33$
Trigonal, $P \overline{3} 1 c$
$a=9.5422$ (3) \AA
$c=9.9977$ (5) \AA
$V=788.37$ (7) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation
$\mu=3.32 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.20 \times 0.18 \times 0.12 \mathrm{~mm}$

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.557, T_{\text {max }}=0.692$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.038$
$S=1.16$
549 reflections
42 parameters

7348 measured reflections 549 independent reflections 496 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.038$

12 restraints
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{~F}^{\mathrm{i}}$	0.90	2.28	$3.135(11)$	158
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{~F}^{\mathrm{i}}$	0.90	2.06	$2.959(11)$	173
$\mathrm{~N} 1-\mathrm{H} 1 D \cdots \mathrm{~F} 1$	0.90	1.94	$2.831(11)$	172
$\mathrm{~N} 1-\mathrm{H} 1 D \cdots \mathrm{~F}^{\prime}$	0.90	2.16	$3.005(11)$	156

Symmetry code: (i) $x-y, x,-z$.
Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This work was supported by the National Natural Science Foundation of China (No. 20901043), the Young Scientist Foundation of Shandong Province (No. BS2009CL041) and the Qingdao University Research Fund (No. 063-06300522).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2520).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Brauer, D. J., Burger, H. \& Eujen, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 836-837.
Brauer, D. J., Wilke, J. \& Eujen, R. (1986). J. Organomet. Chem. 316, 261-269.
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheetham, A. K., Ferey, G. \& Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.
Dadachov, M. S., Tang, L. Q. \& Zou, X. D. (2001). Z. Kristallogr. New Cryst. Struct. 216, 141-142.
Jiang, J. X., Yu, J. H. \& Corma, A. (2010). Angew. Chem. Int. Ed. 49, 31203145.

Liang, J., Li, Y. F., Yu, J. H., Chen, P., Fang, Q. R., Sun, F. X. \& Xu, R. R. (2006). Angew. Chem. Int. Ed. 45, 2546-2548.
Lukevics, E., Belyakov, S., Arsenyan, P. \& Popelis, J. (1997). J. Organomet. Chem. 549, 163-165.

metal-organic compounds

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stalder, S. M. \& Wilkinson, A. P. (1997). Chem. Mater. 9, 2168-2173.
Tang, L. Q., Dadachov, M. S. \& Zou, X. D. (2001a). Z. Kristallogr. New Cryst. Struct. 216, 257-258.
Tang, L. Q., Dadachov, M. S. \& Zou, X. D. (2001b). Z. Kristallogr. New Cryst. Struct. 216, 259-260.
Tang, L. Q., Dadachov, M. S. \& Zou, X. D. (2001c). Z. Kristallogr. New Cryst. Struct. 216, 385-386.
Tang, L. Q., Dadachov, M. S. \& Zou, X. D. (2001d). Z. Kristallogr. New Cryst. Struct. 216, 387-388.
Tang, L. Q., Dadachov, M. S. \& Zou, X. D. (2001e). Z. Kristallogr. New Cryst. Struct. 216, 389-390.

Tang, L. Q., Dadachov, M. S. \& Zou, X. D. (2001f). Z. Kristallogr. New Cryst. Struct. 216, 391-392.
Wang, G.-M., Sun, Y.-Q. \& Yang, G.-Y. (2004). Acta Cryst. E60, m705-m707. Wang, G.-M. \& Wang, P. (2011). Acta Cryst. E67, m1278-m1279.
Wang, Y., Yu, J. H., Guo, M. \& Xu, R. R. (2003). Angew. Chem. Int. Ed. 42, 4089-4092.
Yu, J. H., Wang, Y., Shi, Z. \& Xu, R. R. (2001). Chem. Mater. 13, 2972-2978. Yu, J. H. \& Xu, R. R. (2003). Acc. Chem. Res. 36, 481-490.
Zhang, H.-X., Yang, G.-Y. \& Sun, Y.-Q. (2003). Acta Cryst. E59, m185-m187.
Zou, X. D., Conradsson, T., Klingsteddt, M., Dadachov, M. S. \& O'Keeffe, M. (2005). Nature (London), 437, 716-719.

supporting information

Acta Cryst. (2012). E68, m396-m397 [https://doi.org/10.1107/S160053681200983X]

Tris(ethylenediamine $-\kappa^{2} N, N^{\prime}$)cadmium hexafluoridogermanate

Guo-Ming Wang, Zeng-Xin Li and Pei Wang

S1. Comment

In recent years, there has been much interest in the design and synthesis of crystalline microporous materials because of their rich structural chemistry and potential applications in catalysis, ion-exchange and separation (Cheetham et al., 1999; Jiang et al., 2010; Liang et al., 2006; Yu \& Xu, 2003; Zou et al., 2005). In addition to the most notable zeolites, many non-aluminosilicate-based microporous systems, such as metal phosphates, germanates, borates, etc. have been extensively investigated. In contrast, the progress in the field of fluorides has been limited, though some fluoroaluminates (Tang et al., 2001c, e), fluorosilicate (Tang et al., 2001f), fluorotitanates (Dadachov et al., 2001; Tang et al., 2001a,b,d) and fluorogermanates (Brauer et al., 1980,1986; Lukevics et al., 1997; Wang et al., 2004; Wang \& Wang, 2011; Zhang et al., 2003) have been reported. The main purpose of our work is to prepare microporous germanates templated by transition-metal complexes. Unexpectedly, the title compound, (I), was obtained, which is a new fluorogermanate templated by $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]^{2+}$ cations (en $=$ ethylenediamine).
The crystal structure of (I) consists of discrete $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]^{2+}$ cations and $\left[\mathrm{GeF}_{6}\right]^{2-}$ anions (Fig. 1). Both of the cation and anion lie on 32 symmetry sites. In the $\left[\mathrm{GeF}_{6}\right]^{2-}$ anion, the Ge atom is six-coordinated in a distorted octahedral geometry by six symmetry-related F atoms. The Ge-F bond distances are 1.812 (9) and 1.746 (9) \AA, similar to the distances observed in inorganic complex $\mathrm{K}_{2} \mathrm{GeF}_{6}\left(\mathrm{Ge}-\mathrm{F} 1.77 \AA\right.$) and in other fluorogermanates. In the $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]^{2+}$ cation, the $\mathrm{Cd}^{\mathrm{II}}$ atom is bonded to six amine N aoms from three symmetry-related en ligands. The $\mathrm{Cd}-\mathrm{N}$ bond distance is 2.370 (2) \AA, comparable with those found in other related compounds. Interestingly, the $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]^{2+}$ complex generated in situ is chiral, and the enantiomers are alternately arranged along the a axis (Fig. 2). It is worthy to note that the rigid octahedrally coordinated metal amine complex with chiral features is particularly rare and usually characterized as Co and Ir complexes, such as $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}(\mathrm{tn})_{3}\right]^{3+}(\mathrm{tn}=1,3$-diaminopropane $),\left[\mathrm{Co}(\text { dien })_{2}\right]^{3+}$ (dien $=$ diethylenetriamine $)$, $\left[\operatorname{Ir}(\mathrm{en})_{3}\right]^{3+}$, etc (Stalder \& Wilkinson, 1997; Wang et al., 2003; Yu et al., 2001). Each $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]^{2+}$ cation is linked to three neighboring $\left[\mathrm{GeF}_{6}\right]^{2-}$ anions through $\mathrm{N} 1-\mathrm{H} 1 \mathrm{D} \cdots \mathrm{F} 1$ hydrogen bonds (Table 1), generating a hydrogen-bonded layer along [001] (Fig. 3). Adjacent layers are further connected with each other through N1—H1C‥F1 hydrogen bonds (Fig. 4), giving rise to a three-dimensional supramolecular network .

S2. Experimental

The title compound was obtained by hydrothermal methods. Typically, a mixture of $\mathrm{GeO}_{2}(0.104 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{CdCO}_{3}$ $(0.174 \mathrm{~g}, 1 \mathrm{mmol})$, en $(1.34 \mathrm{ml})$, pyridine $(2.50 \mathrm{ml})$, hydrofluoric acid $(40 \%, 0.20 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1.00 \mathrm{ml})$ in a molar ratio of 1:1:20:31:10:56 was sealed in a 25 ml Teflon-lined steel autoclave and heated under autogenous pressure at 443 K for 7 days. The block crystals obtained were recovered by filtration, washed with distilled water and dried in air.

S3. Refinement

Atom F1 was refined as disordered over two positions, each with 50% site occupancy. All H atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.97$ and $\mathrm{N}-\mathrm{H}=0.90 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $-x+$ $y, y, 1 / 2-z$; (ii) $x, 1+x-y, 1 / 2-z$; (iii) $-x+y, 1-x, z$; (iv) $1-y, 1+x-y, z$; (v) $1-y, 1-x, 1 / 2-z$.]

Figure 2
The arrangement of the chiral $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]^{2+}$ complexes along the a axis.

Figure 3
View of the hydrogen-bonded layer from the $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]^{2+}$ and $\left[\mathrm{GeF}_{6}\right]^{2-}$ ions.

Figure 4
The expansion of adjacent layers into a three-dimensional hydrogen-bonded network.

Tris(ethylenediamine $-\kappa^{2} N, N^{\prime}$)cadmium hexafluoridogermanate

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left(\mathrm{GeF}_{6}\right)$
$M_{r}=479.33$
Trigonal, $P \overline{3} 1 c$
Hall symbol: -P 3 2c
$a=9.5422$ (3) \AA
$c=9.9977$ (5) \AA
$V=788.37(7) \AA^{3}$
$Z=2$
$F(000)=472$
$D_{\mathrm{x}}=2.019 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 549 reflections
$\theta=4.1-26.5^{\circ}$
$\mu=3.32 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colorless

Data collection

Bruker APEX CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.557, T_{\text {max }}=0.692$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.038$
$S=1.16$
549 reflections
42 parameters
12 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$0.20 \times 0.18 \times 0.12 \mathrm{~mm}$

7348 measured reflections
549 independent reflections
496 reflections with $I>2 \sigma \mathrm{a}(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=26.5^{\circ}, \theta_{\text {min }}=4.1^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-12 \rightarrow 12$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0048 P)^{2}+0.9629 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.23$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0045 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Cd1	0.3333	0.6667	0.2500	$0.03249(17)$	
Ge1	0.6667	0.3333	0.2500	$0.02960(19)$	
N1	$0.2829(3)$	$0.4387(3)$	$0.1196(2)$	$0.0444(6)$	
H1C	0.2637	0.4538	0.0341	0.053^{*}	0.053^{*}
H1D	0.3698	0.4254	0.1212	$0.0504(8)$	
C1	$0.1425(4)$	$0.2956(4)$	$0.1743(3)$	0.060^{*}	
H1A	0.1381	0.1989	0.1388	0.060^{*}	
H1B	0.0443	0.2949	0.1479	$0.065(2)$	0.50
F1	$0.5391(11)$	$0.3708(8)$	$0.1387(10)$	$0.064(2)$	0.50
F1'	$0.5004(11)$	$0.2974(8)$	$0.1521(10)$		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.0326(2)$	$0.0326(2)$	$0.0323(3)$	$0.01630(10)$	0.000	0.000
Ge1	$0.0312(3)$	$0.0312(3)$	$0.0264(4)$	$0.01559(13)$	0.000	0.000
N1	$0.0559(17)$	$0.0475(16)$	$0.0364(13)$	$0.0309(14)$	$-0.0008(12)$	$-0.0037(12)$
C1	$0.056(2)$	$0.0397(18)$	$0.0518(18)$	$0.0214(16)$	$-0.0092(16)$	$-0.0112(14)$
F1	$0.074(5)$	$0.092(5)$	$0.051(3)$	$0.058(4)$	$-0.012(3)$	$0.001(4)$
F1'	$0.049(4)$	$0.098(5)$	$0.049(3)$	$0.040(4)$	$-0.021(3)$	$-0.010(4)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Cd} 1-\mathrm{N} 1^{1}$	2.370 (2)	Ge1-F1 ${ }^{\text {vi }}$	1.812 (9)
$\mathrm{Cd} 1-\mathrm{N} 1^{\text {ii }}$	2.370 (2)	Ge1-F1 ${ }^{\text {viii }}$	1.812 (9)
Cd1-N1 $1^{\text {iii }}$	2.370 (2)	Ge1-F1 ${ }^{\text {ix }}$	1.812 (9)
Cd1-N1	2.370 (2)	Ge1-F1 ${ }^{\text { }}$	1.812 (9)
$\mathrm{Cd} 1-\mathrm{N} 1{ }^{\text {iv }}$	2.370 (2)	Ge1-F1	1.812 (9)
$\mathrm{Cd} 1-\mathrm{N} 1^{\text {v }}$	2.370 (2)	N1-C1	1.459 (4)
Ge1-F1 ${ }^{\text {vi }}$	1.746 (9)	N1-H1C	0.9000
Ge1-F1 ${ }^{\text {sii }}$	1.746 (9)	N1-H1D	0.9000
Ge1-F1 ${ }^{\text {siii }}$	1.746 (9)	$\mathrm{C} 1-\mathrm{C} 1^{\text {iii }}$	1.518 (6)
Ge1-F1'v	1.746 (9)	C1-H1A	0.9700
Ge1-F1 ${ }^{\text {ix }}$	1.746 (9)	C1-H1B	0.9700
Ge1-F1'	1.746 (9)	F1-F1'	0.621 (10)
Ge1-F1 ${ }^{\text {vii }}$	1.812 (9)		
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{N} 1^{\text {ii }}$	74.72 (12)	$\mathrm{F} 1^{\text {'ix }}-\mathrm{Ge} 1-\mathrm{F} 1^{\text {viii }}$	176.1 (7)
$\mathrm{N} 1^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1^{\text {iii }}$	92.62 (8)	F1'-Ge1-F1 ${ }^{\text {viii }}$	91.4 (3)
$\mathrm{N} 1{ }^{\text {iii }}$ - $\mathrm{Cd} 1-\mathrm{N} 1{ }^{\text {iii }}$	103.54 (12)	F1 ${ }^{\text {vii-Ge1-F1 }}{ }^{\text {viii }}$	86.2 (5)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1$	159.72 (12)	F1 ${ }^{\text {vi}}$-Ge1-F1 ${ }^{\text {viii }}$	82.4 (6)
N1ii-Cd1-N1	92.62 (8)	F1 ${ }^{\text {vi }}$ - $\mathrm{Ge} 1-\mathrm{F} 1^{\text {ix }}$	73.7 (3)
$\mathrm{N} 1{ }^{\text {iii }}$ - $\mathrm{Cd} 1-\mathrm{N} 1$	74.72 (12)	F1 ${ }^{\text {vii }}$ - Ge1-F1 ${ }^{\text {ix }}$	90.6 (2)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\text {iv }}$	103.54 (12)	F1'viii-Ge1-F1 ${ }^{\text {ix }}$	176.1 (7)
$\mathrm{N} 1{ }^{\text {iii }}$ - $\mathrm{Cd} 1-\mathrm{N} 1{ }^{\text {iv }}$	92.62 (8)	$\mathrm{F} 1^{\prime v}$-Gel-F1 ${ }^{\text {ix }}$	91.4 (3)
$\mathrm{N} 1{ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{N} 1^{\text {iv }}$	159.72 (12)	F1'-Ge1-F1 ${ }^{\text {ix }}$	100.8 (2)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\text {iv }}$	92.62 (8)	F1 ${ }^{\text {vii }}$-Ge1-F1 ${ }^{\text {ix }}$	82.4 (6)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1^{\text {v }}$	92.62 (8)	F1 ${ }^{\text {vi }}$-Ge1-F1 ${ }^{\text {ix }}$	86.2 (5)
$\mathrm{N} 1^{1 i}-\mathrm{Cd} 1-\mathrm{N} 1^{v}$	159.72 (12)	F1 ${ }^{\text {viii-Ge1-F1 }}{ }^{\text {ix }}$	160.3 (5)
$\mathrm{N} 1{ }^{\text {iii- }} \mathrm{Cd} 1-\mathrm{N} 1^{v}$	92.62 (8)	F1 ${ }^{\text {vi }}$ - $\mathrm{Ge} 1-\mathrm{F} 1^{\text {v }}$	176.1 (7)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\text {v }}$	103.54 (12)	F1'vii-Ge1-F1v	100.8 (2)
$\mathrm{N} 1^{\mathrm{iv}}-\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{v}}$	74.72 (12)	$\mathrm{F} 1^{\text {siiii- }}$-Ge1-F1 ${ }^{\text {v }}$	73.7 (3)
F1 ${ }^{\text {vii - Ge1-F1 }}{ }^{\text {'vii }}$	76.2 (6)	F1 ${ }^{\text {'ix }}$ - $\mathrm{Ge} 1-\mathrm{F} 1^{\text {v }}$	91.4 (3)
F1 ${ }^{\text {vi }}$-Ge1-F1 ${ }^{\text {viii }}$	103.8 (6)	F1'-Ge1-F1 ${ }^{\text {v }}$	90.6 (2)
F1 ${ }^{\text {'vii - Ge1-F1 }}$ 'siii	91.7 (5)	F1 ${ }^{\text {vii - }} \mathrm{Ge} 1-\mathrm{F} 1^{v}$	86.2 (5)
$\mathrm{F} 1^{\text {vi }}$ - $\mathrm{Ge} 1-\mathrm{F} 1^{\prime v}$	160.4 (5)	F1 ${ }^{\text {vi}}-\mathrm{Ge} 1-\mathrm{F} 1^{\text {v }}$	160.3 (5)
F1 ${ }^{\text {vii }}$-Ge1-F1'v	91.7 (5)	F1 ${ }^{\text {viii- }}$ Ge1-F1 ${ }^{\text {v }}$	86.2 (5)
$\mathrm{F} 1^{\text {siii }}$ - $\mathrm{Ge} 1-\mathrm{F} 1^{\prime v}$	91.7 (5)	$\mathrm{F} 1^{\mathrm{ix}}$ - Ge1-F1 ${ }^{\text {v }}$	108.8 (5)
$\mathrm{F} 1^{\text {vi }}$-Ge1-F1 ${ }^{\text {'ix }}$	91.7 (5)	F1 ${ }^{\text {vii }}$-Ge1-F1	100.8 (2)

F1 ${ }^{\text {viii }}-\mathrm{Ge} 1-\mathrm{F} 1^{\text {ix }}$	103.8 (6)	F1 ${ }^{\text {vii }}$-Ge1-F1	176.1 (7)
F1 ${ }^{\text {siiii }}$ - $\mathrm{Ge} 1-\mathrm{F} 1^{\text {jix }}$	160.4 (5)	F1 ${ }^{\text {svii- }}$-Ge1-F1	91.4 (3)
F1'0-Ge1-F1 ${ }^{\text {ix }}$	76.2 (6)	F1'v-Ge1-F1	90.6 (2)
F1'vi-Ge1-F1'	91.7 (5)	F1 ${ }^{\text {'ix }}$-Ge1-F1	73.7 (3)
F1 ${ }^{\text {'vii }}$-Ge1-F1'	160.4 (5)	F1 ${ }^{\text {vii-Ge1-F1 }}$	160.3 (5)
F1 ${ }^{\text {siii-_Ge1-F1' }}$	76.2 (6)	F1 ${ }^{\text {vi}}$-Ge1-F1	86.2 (5)
$\mathrm{F} 1^{\prime \prime}$ - $\mathrm{Ge} 1-\mathrm{F} 1^{\prime}$	103.8 (6)	F1 ${ }^{\text {viii-Ge1-F1 }}$	108.8 (5)
F1 ${ }^{\text {'ix }}$-Ge1-F1'	91.7 (5)	F1 ${ }^{\text {ix }}$ - $\mathrm{Ge} 1-\mathrm{F} 1$	86.2 (5)
F1 $1^{\text {vi }}$-Ge1-F1 $1^{\text {vii }}$	91.4 (3)	F1'-Ge1-F1	82.4 (6)
F1 ${ }^{\text {viii }}$-Ge1-F1 $1^{\text {vii }}$	100.8 (2)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1$	108.83 (17)
$\mathrm{F}^{\prime \prime}$ - $\mathrm{Ge} 1-\mathrm{F}{ }^{\text {vii }}$	73.7 (3)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.9
F1 $1^{\text {ix }}$ - Ge1-F1 ${ }^{\text {vii }}$	90.6 (2)	Cd1-N1-H1C	109.9
F1'-Ge1-F1 ${ }^{\text {vii }}$	176.1 (7)	C1-N1-H1D	109.9
F1 ${ }^{\text {vii }}$-Ge1-F1 ${ }^{\text {vi }}$	91.4 (3)	Cd1-N1-H1D	109.9
F1 $1^{\text {viii }}-\mathrm{Ge} 1-\mathrm{F} 1^{\text {vi }}$	90.6 (2)	H1C-N1-H1D	108.3
F1'v-Ge1-F1 ${ }^{\text {vi }}$	176.1 (7)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 1^{\text {iii }}$	110.1 (2)
$\mathrm{F}^{\text {'ix }}$ - $\mathrm{Ge} 1-\mathrm{F} 1^{\text {vi }}$	100.8 (2)	N1-C1-H1A	109.6
F1'-Ge1-F1 ${ }^{\text {vi }}$	73.7 (3)	$\mathrm{Cl}^{\text {iii- }} \mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.6
F1 ${ }^{\text {vii }}$-Ge1-F1 ${ }^{\text {vi }}$	108.8 (5)	N1-C1-H1B	109.6
F1 ${ }^{\text {vi }}$-Ge1-F1 ${ }^{\text {viii }}$	90.6 (2)	$\mathrm{Cl}^{\text {iiii- }} \mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.6
F1 $1^{\text {vii }}-\mathrm{Ge} 1-\mathrm{F} 1^{\text {viii }}$	73.7 (3)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.2
F1'v-Ge1-F1 ${ }^{\text {viii }}$	100.8 (2)		

Symmetry codes: (i) $x, x-y+1,-z+1 / 2$; (ii) $-x+y,-x+1, z$; (iii) $-x+y, y,-z+1 / 2$; (iv) $-y+1, x-y+1, z$; (v) $-y+1,-x+1,-z+1 / 2$; (vi) $-y+1, x-y, z$; (vii) $-x+y+1, y,-z+1 / 2$; (viii) $x, x-y,-z+1 / 2$; (ix) $-x+y+1,-x+1, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 C \cdots \mathrm{~F} 1^{\mathrm{x}}$	0.90	2.28	$3.135(11)$	158
$\mathrm{~N} 1 — \mathrm{H} 1 C \cdots \mathrm{~F} 1^{\prime \mathrm{x}}$	0.90	2.06	$2.959(11)$	173
$\mathrm{~N} 1 — \mathrm{H} 1 D \cdots \mathrm{~F} 1$	0.90	1.94	$2.831(11)$	172
$\mathrm{~N} 1 — \mathrm{H} 1 D \cdots \mathrm{~F} 1^{\prime}$	0.90	2.16	$3.005(11)$	156

Symmetry code: (x) $x-y, x,-z$.

