Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[dichloridomercury(II)]- N^{\prime} nicotinoylnicotinohydrazide]

Teng Ma, Yuanlu Wang, Fengliang Wang and Fei Li*
College of Pharmacy, Nanjing Medical University, Nanjing 210029, People's Republic of China
Correspondence e-mail: nanjinglf@gmail.com

Received 17 February 2012; accepted 28 February 2012

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \mathrm{~A}$; R factor $=0.016 ; w R$ factor $=0.038$; data-to-parameter ratio $=13.4$.

The title complex, $\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right]_{n}$, is composed of one $\mathrm{Hg}^{\text {II }}$ ion, one nnh ligand ($\mathrm{nnh}=N^{\prime}$-nicotinoylnicotinohydrazide) and two coordinated chloride ions. The $\mathrm{Hg}^{\mathrm{II}}$ ion shows a distorted tetrahedral geometry, being surrounded by two N atoms from two nnh ligands and two chloride ions. Due to the bridging role of nnh , the $\mathrm{Hg}^{\mathrm{II}}$ atoms are connected into polymeric chains along the c axis, which are further interlinked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen-bonding interactions, forming a three-dimensional network.

Related literature

For the coordination systems of N -donor heterocyclic groups, see: Zhang \& Chen (2010); Ma et al. (2005); Tao et al. (2010).

Experimental

Crystal data

$\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right]$
$M_{r}=513.73$

Monoclinic, $P 2 / c$
$a=7.2514$ (4) A
$b=4.7113$ (3) \AA
$c=21.8591$ (11) \AA
$\beta=103.394$ (2) ${ }^{\circ}$
$V=726.47$ (7) A^{3}
$Z=2$
Mo $K \alpha$ radiation
$\mu=10.97 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.30 \times 0.26 \times 0.22 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector	3510 measured reflections
diffractometer	1288 independent reflections
Absorption correction: multi-scan	1244 reflections with $I>2 \sigma(I)$
$(S A D A B S ;$ Sheldrick, 1996)	$R_{\text {int }}=0.018$
$\quad T$	

$T_{\text {min }}=0.137, T_{\text {max }}=0.196$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016 \quad 96$ parameters
$w R\left(F^{2}\right)=0.038$
H -atom parameters constrained
$S=1.09$
1288 reflections
$\Delta \rho_{\text {max }}=0.52 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.93	2.81	$3.558(4)$	138
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots 1^{\mathrm{ii}}$	0.86	2.15	$2.844(3)$	137

Symmetry codes: (i) $x-1, y-1, z$; (ii) $x, y+1, z$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We acknowledge the staff of the Shanghai Institute of Materia Medica for their active cooperation in this work. We also thank the Instrument Analysis and Research Center of Nanjing University for the structural characterization.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2029).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Ma, B.-Q., Mulfort, K. L. \& Hupp, J. T. (2005). Inorg. Chem. 44, 4912-4914.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tao, Y., Li, J.-R., Chang, Z. \& Bu, X.-H. (2010). Cryst. Growth Des. 10, 564 574
Zhang, S.-S. \& Chen, L.-J. (2010). Acta Cryst. E66, m1456.

supporting information

Acta Cryst. (2012). E68, m367 [https://doi.org/10.1107/S1600536812008884]

catena-Poly[[dichloridomercury(II)]- N^{\prime}-nicotinoylnicotinohydrazide]

Teng Ma, Yuanlu Wang, Fengliang Wang and Fei Li

S1. Comment

Flexible ligands containing N-donor heterocyclic groups, such as pyridyl, pyrazinyl, and triazolyl (see: Zhang et al., 2010; Ma et al., 2005; Tao et al., 2010), have been widely studied in the realm of metal-organic coordination assemblies. With regard to this, N^{\prime}-nicotinoylnicotinohydrazide (nnh), an interesting ligand with flexible spacer and multiple binding sites, has attract our attention. Herein, we report the title complex $\left[\operatorname{Hg}(n n h) \mathrm{Cl}_{2}\right]_{n}$, which crystallizes in the monoclinic space group $P 2 / c$, and shows a one-dimensional polymeric array and H -bonding supramolecular network.
As shown in Fig.1, the asymmetric unit of the complex is provided by a $\mathrm{Hg}^{I I}$ center, one nnh ligand and two chloride ions. The $\mathrm{Hg}^{I I}$ ion is tetra-coordinated to two nitrogen atoms from two nnh ligands with the $\mathrm{Hg}-\mathrm{N}$ distance of 2.475 (2) \AA, as well as two chloride ions with the $\mathrm{Hg}-\mathrm{Cl}$ distance of 2.3405 (9) \AA. The adjacent Hg centers are bridged by the nnh ligands to afford a one-dimensional zigzag chain with the $\mathrm{Hg} \cdots \mathrm{Hg}$ separation of $c a 12.8371$ (6) Å (see Fig. 2).
Notably, H-bonding interactions do play a decisive role in the crystal packing arrangement. As shown in Fig. 3, the adjacent one-dimensional arrays are linked to form a two-dimensional layer via $\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{i}}$ [symmetry operation (i) $=x, 1+y, z]$ hydrogen bonding between the nnh ligands from different chains. Furthermore, such two-dimensional layers are interlinked by the weak hydrogen bonds $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cl}^{\mathrm{ii}}[$ symmetry operation (ii) $=-1+x,-1+y, z$] to generate a threedimensional supramolecular network (see Fig. 4).

S2. Experimental

$\mathrm{ACH}_{3} \mathrm{OH}$ solution $(10 \mathrm{ml})$ of $\mathrm{nnh}(24.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ was carefully layered onto an aqueous solution of $\mathrm{HgCl}_{2}(27.1$ $\mathrm{mg}, 0.1 \mathrm{mmol}$) in a straight glass tube. After evaporating the solvents slowly for $c a$ one month, suitable yellow block single crystals for X-ray analysis were produced.

S3. Refinement

All H atoms were initially located in a difference Fourier map, which were then constrained to an ideal geometry, and refined as riding atoms: $\mathrm{C}-\mathrm{H}=0.93\left(\mathrm{CH}_{\text {aromatic }}\right)$ and $\mathrm{N}-\mathrm{H}=0.86$, with $\operatorname{Uiso}(\mathrm{H})=1.2 U \mathrm{eq}(\mathrm{C})$ and $\operatorname{Uiso}(\mathrm{H})=1.5 U \mathrm{eq}$ (N).

Figure 1
Coordination environment of $\mathrm{Hg}^{\text {II }}$ in the title complex showing displacement ellipsoids for all non- H atoms drawn at the 30% probability level. [Symmetry code (A): 1-x, y, 3/2-z.].

Figure 2
View of the one-dimensional chain.

Figure 3
View of the two-dimensional layer via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (red dashed lines).

Figure 4
View of the three-dimensional network via $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (green dashed lines).

catena-Poly[[dichloridomercury(II)]- N^{\prime} - nicotinoylnicotinohydrazide]

Crystal data

$\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right]$

$$
F(000)=480
$$

$M_{r}=513.73$
Monoclinic, P2/c
Hall symbol: -P 2yc
$a=7.2514$ (4) \AA
$b=4.7113$ (3) \AA
$c=21.8591(11) \AA$
$\beta=103.394$ (2) ${ }^{\circ}$
$V=726.47$ (7) \AA^{3}
$Z=2$
$D_{\mathrm{x}}=2.349 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2648 reflections
$\theta=2.9-27.9^{\circ}$
$\mu=10.97 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
BLOCK, yellow
$0.30 \times 0.26 \times 0.22 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.137, T_{\text {max }}=0.196$

> 3510 measured reflections
> 1288 independent reflections
> 1244 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.018$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=1.9^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-5 \rightarrow 5$
> $l=-14 \rightarrow 26$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.038$
$S=1.09$
1288 reflections
96 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0224 P)^{2}+0.0147 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.52 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.57 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Hg 1	0.5000	$0.81805(12)$	$1.1749(2)$	0.7500
Cl1	$0.7884(3)$	$0.1092(4)$	$0.79628(5)$	$0.0524(2)$
O1	$0.4508(3)$	$0.7488(5)$	$0.98476(12)$	$0.0385(5)$
N1	$0.9166(4)$	$0.5412(5)$	$0.97954(13)$	$0.0348(6)$
N2	0.9048	0.7096	$0.0293(6)$	
H2A	$0.6042(4)$	$0.6598(6)$	$0.87486(15)$	0.035^{*}
C1	0.7211	0.7361	0.03730	$0.0305(6)$
H1	$0.2825(5)$	$0.6416(8)$	$0.83653(16)$	0.037^{*}
C2	0.1741	0.7054	0.8082	$0.0405(8)$
H2	$0.2644(5)$	$0.4401(7)$	$0.88032(18)$	0.049^{*}
C3	0.1454	0.3698	0.8815	$0.051^{*}(8)$
H3	$0.4239(4)$	$0.3429(7)$	$0.92245(15)$	$0.0345(7)$
C4	0.4146	0.2023	0.9514	0.041^{*}
H4	$0.5987(4)$	$0.4593(6)$	$0.92072(15)$	$0.0267(6)$
C5	$0.7733(4)$	$0.3541(6)$	$0.96446(14)$	$0.0264(6)$
C6				

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	$0.03059(11)$	$0.04571(12)$	$0.02898(11)$	0.000	$-0.00099(8)$	0.000
C11	$0.0347(4)$	$0.0712(6)$	$0.0475(5)$	$-0.0132(4)$	$0.0020(4)$	$-0.0076(5)$
O1	$0.0319(12)$	$0.0234(10)$	$0.0553(15)$	$0.0000(8)$	$0.0000(11)$	$0.0057(9)$
N1	$0.0289(13)$	$0.0411(14)$	$0.0303(14)$	$0.0040(11)$	$-0.0016(11)$	$-0.0001(12)$
N2	$0.0235(12)$	$0.0220(11)$	$0.0361(15)$	$-0.0008(9)$	$-0.0057(11)$	$0.0066(10)$
C1	$0.0271(15)$	$0.0304(14)$	$0.0316(16)$	$-0.0018(12)$	$0.0017(13)$	$-0.0014(13)$
C2	$0.0293(17)$	$0.0529(18)$	$0.0331(18)$	$0.0022(14)$	$-0.0053(15)$	$-0.0012(15)$
C3	$0.0234(17)$	$0.058(2)$	$0.042(2)$	$-0.0087(14)$	$0.0019(15)$	$-0.0062(16)$
C4	$0.0292(17)$	$0.0387(15)$	$0.0339(17)$	$-0.0052(13)$	$0.0041(14)$	$-0.0009(14)$
C5	$0.0254(15)$	$0.0255(13)$	$0.0279(16)$	$-0.0010(11)$	$0.0032(13)$	$-0.0054(12)$
C6	$0.0251(15)$	$0.0239(13)$	$0.0295(16)$	$0.0008(11)$	$0.0051(13)$	$-0.0018(12)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Hg} 1-\mathrm{Cl1}$	$2.3405(9)$	$\mathrm{C} 1-\mathrm{C} 5$	$1.385(5)$
$\mathrm{Hg} 1-\mathrm{Cl1}$			
	$2.3405(9)$	$\mathrm{C} 1-\mathrm{H} 1$	0.9300

$\mathrm{Hg} 1-\mathrm{N} 1^{\text {i }}$	2.475 (2)	C2-C3	1.376 (5)
Hg1-N1	2.475 (2)	C2-H2	0.9300
O1-C6	1.232 (3)	C3-C4	1.379 (5)
N1-C1	1.330 (4)	C3-H3	0.9300
N1-C2	1.338 (4)	C4-C5	1.390 (4)
N2-C6	1.344 (4)	C4-H4	0.9300
$\mathrm{N} 2-\mathrm{N} 2{ }^{\text {ii }}$	1.383 (5)	C5-C6	1.484 (4)
N2—H2A	0.8601		
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{Cl1}^{\text {i }}$	157.08 (6)	N1-C2-C3	122.1 (3)
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{N} 1^{\text {i }}$	98.41 (6)	N1-C2-H2	118.9
$\mathrm{Cl1}{ }^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{N} 1^{\mathrm{i}}$	95.81 (6)	C3-C2-H2	118.9
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{N} 1$	95.81 (6)	C2-C3-C4	119.6 (3)
$\mathrm{Cl1}{ }^{\text {i }}-\mathrm{Hg} 1-\mathrm{N} 1$	98.41 (6)	C2-C3-H3	120.2
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{N} 1$	102.92 (11)	C4-C3-H3	120.2
C1-N1-C2	118.3 (3)	C3-C4-C5	118.7 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Hg} 1$	117.28 (19)	C3-C4-H4	120.7
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Hg} 1$	124.2 (2)	C5-C4-H4	120.7
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{N} 2^{\text {ii }}$	119.0 (3)	C1-C5-C4	117.9 (3)
C6-N2-H2A	120.5	C1-C5-C6	122.1 (3)
$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120.5	C4-C5-C6	119.9 (3)
N1-C1-C5	123.3 (3)	O1-C6-N2	121.8 (3)
N1-C1-H1	118.3	O1-C6-C5	122.4 (3)
C5- $\mathrm{C} 1-\mathrm{H} 1$	118.3	N2-C6-C5	115.8 (2)
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 1$	-12.5 (2)	C2-C3-C4-C5	2.1 (5)
$\mathrm{Cl1}{ }^{\text {i }} \mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 1$	-174.5 (2)	N1-C1-C5-C4	1.1 (5)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 1$	87.6 (2)	N1-C1-C5-C6	177.0 (3)
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 2$	172.4 (2)	C3-C4-C5-C1	-2.5 (5)
$\mathrm{Cl1}{ }^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 2$	10.4 (3)	C3-C4-C5-C6	-178.5 (3)
$\mathrm{N} 1{ }^{\mathrm{i}}$ - $\mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 2$	-87.6 (3)	$\mathrm{N} 2 \mathrm{ii}-\mathrm{N} 2-\mathrm{C} 6-\mathrm{O} 1$	-2.0 (5)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$	0.8 (5)	N2ii-N2-C6-C5	179.5 (3)
$\mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$	-174.6 (2)	C1-C5-C6-O1	-147.0 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	-1.3 (5)	C4-C5-C6-O1	28.8 (4)
$\mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	173.8 (3)	C1-C5-C6-N2	31.5 (4)
N1-C2-C3-C4	-0.2 (5)	C4-C5-C6-N2	-152.7 (3)

Symmetry codes: (i) $-x+1, y,-z+3 / 2$; (ii) $-x+2,-y+1,-z+2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{Cl}^{\text {iii }}$	0.93	2.81	$3.558(4)$	138
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{O}^{\text {iv }}$	0.86	2.15	$2.844(3)$	137

Symmetry codes: (iii) $x-1, y-1, z$; (iv) $x, y+1, z$.

