

metal-organic compounds

 $V = 6744.6 (5) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

11875 measured reflections

5921 independent reflections

4597 reflections with $I > 2\sigma(I)$

 $\mu = 5.60 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.056$

Z = 8

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[meso-5,10,15,20-Tetrakis(5-bromothiophen-2-yl)porphyrinato-κ⁴N,N',N"',N"']nickel(II)

R. Prasath,^a P. Bhavana,^a[‡] Seik Weng Ng^{c,b} and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa 403 726, India, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 16 March 2012; accepted 18 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.013 Å; disorder in main residue; R factor = 0.056; wR factor = 0.140; data-to-parameter ratio = 11.1

Ni^{II} The atom in the title porphyrin complex, $[Ni(C_{36}H_{16}Br_4N_4S_4)]$, is in a square-planar geometry defined by four pyrrole N atoms. There is considerable buckling in the porphyrin ring with the dihedral angles between the N₄ donor set and the pyrrole rings being in the range $17.0 (3)-18.8 (3)^{\circ}$. Each of the six-membered chelate rings is twisted about an Ni-N bond and the dihedral angles between diagonally opposite chelate rings are 13.08 (15) and 13.45 $(11)^\circ$; each pair of rings is orientated in opposite directions. The bromothienyl rings are twisted out of the plane of the central N₄ core with dihedral angles in the range 51.7 (2)-74.65 (19)°. Supramolecular chains along [001] are formed through $C-H\cdots Br$ interactions in the crystal packing. Three of the four bromothienyl units are disordered over two coplanar positions of opposite orientation with the major components being in 0.691 (3), 0.738 (3) and 0.929 (9) fractions.

Related literature

For general background and potential applications of thienyl porphyrins, see: Boyle et al. (2010); Chen et al. (2010); Paul-Roth et al. (2008); Rochford et al. (2008); Wallin et al. (2006); Friedlein et al. (2005); Bhyrappa & Bhavana (2001). For related structures, see: Ghazzali et al. (2008); Bhyrappa et al. (2006); Purushothaman et al. (2001).

Experimental

Crystal data $[Ni(C_{36}H_{16}Br_4N_4S_4)]$ $M_r = 1011.12$

Orthorhombic, Aba2 a = 21.9367 (9) Å b = 19.0090 (9) Å c = 16.1742 (6) Å

Data collection

```
Agilent SuperNova Dual
  diffractometer with an Atlas
  detector
Absorption correction: multi-scan
  (CrysAlis PRO; Agilent, 2011)
  T_{\min} = 0.284, \ T_{\max} = 0.401
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ wR(F²) = 0.140 H-atom parameters constrained $\Delta \rho_{\rm max} = 0.89 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.77 \text{ e } \text{\AA}^{-3}$ S = 1.035921 reflections Absolute structure: Flack (1983), 535 parameters 1898 Friedel pairs Flack parameter: -0.026 (13) 214 restraints

Table 1

Selected bond lengths (Å).

Ni–N1 Ni–N2	1.930 (7) 1.939 (7)	Ni–N4	1.929 (7)
Ni-N1	1.930 (7)	Ni-N3	1.929 (7)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$C19-H19\cdots Br4^{i}$	0.95	2.89	3.728 (8)	148

Symmetry code: (i) x, y, z + 1.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006);

[‡] Additional correspondence author, e-mail: juliebhavana@gmail.com.

software used to prepare material for publication: *publCIF* (Westrip, 2010).

PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/ 2007). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5191).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Bhyrappa, P. & Bhavana, P. (2001). Chem. Phys. Lett. 349, 399–404.
Bhyrappa, P., Sankar, M., Varghese, B. & Bhavana, P. (2006). J. Chem. Sci. 118, 393–397.

- Boyle, N. M., Rochford, J. & Pryce, M. T. (2010). Coord. Chem. Rev. 254, 77–102.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Chen, W., Akhigbe, J., Brückner, C., Li, C. M. & Lei, Y. (2010). *J. Phys. Chem. C*, **114**, 8633–8638.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Friedlein, R., von Kieseritzky, F., Braun, S., Linde, C., Osikowicz, W., Hellberg, J. & Salaneck, W. R. (2005). Chem. Commun. pp. 1974–1976.
- Ghazzali, M., Abu-Youssef, M. A. M., Larsson, K., Hansson, Ö., Amer, A., Tamm, T. & Öhrström, L. (2008). *Inorg. Chem. Commun.* **11**, 1019–1022.
- Paul-Roth, C. O., Letessier, J., Juillard, S., Simonneaux, G., Roisnel, T. & Rault-Berthelot, J. (2008). J. Mol. Struct. 872, 105–112.
- Purushothaman, B., Varghese, B. & Bhyrappa, P. (2001). Acta Cryst. C57, 252– 253.
- Rochford, J., Botchway, S., McGarvey, J. J., Rooney, A. D. & Pryce, M. T. (2008). J. Phys. Chem. A, 112, 11611–11618.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Wallin, S., Hammarström, L., Blart, E. & Odobel, F. (2006). Photochem. Photobiol. Sci. 5, 828–834.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2012). E68, m471–m472 [https://doi.org/10.1107/S1600536812011671] [meso-5,10,15,20-Tetrakis(5-bromothiophen-2-yl)porphyrinato- $\kappa^4 N, N', N'', N'''$]nickel(II)

R. Prasath, P. Bhavana, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

Porphyrins with five-membered thienyl rings at the *meso* positions can extend the π -conjugation of the porphyrin core owing to its smaller size and this has led to many investigations on their physiochemical properties (Boyle *et al.*, 2010). They are of interest for their electron and energy transfer properties (Wallin *et al.*, 2006) and because they are capable of growing ultra-thin films (Friedlein *et al.*, 2005). *Meso* tetrathienylporphyrins show interesting electrochemical (Chen *et al.*, 2010), structural (Bhyrappa & Bhavana, 2001; Bhyrappa *et al.*, 2006; Paul-Roth *et al.*, 2008) and photophysical (Rochford *et al.*, 2008) properties. Herein, the synthesis and crystal structure of 5,10,15,20-tetrakis(5-bromothien-2yl)porphyrinato nickel(II), (I), is reported in continuation of earlier structural studies (Purushothaman *et al.*, 2001).

The Ni^{II} atom in (I), Fig. 1, is in a square-planar geometry defined by four pyrrole-N atoms, Table 1. The coordination geometry resembles that observed in the analogous Zn^{II} complex (Ghazzali *et al.*, 2008). However, in contrast to the literature structure in which the porphyrin molecule (excluding the bromothienyl residues) is essentially planar, there is considerable buckling in (I). This is quantified by the dihedral angles between the N₄ donor set and the N1–N4-pyrrole rings of 18.8 (3), 18.0 (3), 17.0 (3) and 17.8 (2)°, respectively. This is further quantified in the parameters associated with the six-membered chelate rings. There is a measure of buckling in each of these about an Ni—N bond: NiN1N2 ring [r.m.s. deviation for the six atoms = 0.134 Å with maximum deviations from the least-squares plane = 0.145 (7) Å for the N1 atom and -0.121 (1) Å for the Ni atom], NiN1N4 ring [r.m.s. = 0.124 Å; 0.131 (7) Å (N4) and -0.114 (1) Å (Ni)], NiN2N3 ring [r.m.s. = 0.141 Å; -0.146 (7) Å (N2) and 0.130 (1) Å (Ni)] and NiN3N4 ring [r.m.s. = 0.127 Å; 0.131 (7) Å (N3) and -0.120 (1) Å (Ni)]. The dihedral angles between diagonally opposite six-membered rings are 13.08 (15)° (NiN1N2/NiN3N4) and 13.45 (11)° (NiN2N2/NiN1N4) but each pair is orientated in opposite directions. Each of the bromothienyl rings is twisted out of the plane of the central N₄ core with the dihedral angles between this and the S1–S4 thienyl rings (major components of the disorder only) being 59.2 (3), 51.7 (2), 71.5 (2) and 74.65 (19)°, respectively.

In the crystal packing, supramolecular chains along [001] are formed through C—H…Br interactions involving the bromide atom of the only non-disordered bromothienyl ring, Fig. 2 and Table 1.

S2. Experimental

5,10,15,20-Tetrakis[(5-bromo-2-thiophenyl)porphyrin was synthesized as reported in the literature (Friedlein *et al.*, 2005). To 5,10,15,20-Tetrakis[(5-bromo-2-thiophenyl)porphyrin (95 mg, 0.1 mmol) dissolved in dimethylformamide (20 ml), a solution of nickel(II) acetate tetrahydrate (124 mg, 0.5 mmol) in dimethylformamide (5 ml) was added and the resulting solution refluxed for 4 h. After cooling, the solution was diluted with chloroform (100 ml) and washed with water (3×100 ml). The organic layer was dried over anhydrous Na₂SO₄. The solvent was removed by distillation and the product was purified by column chromatography using 3:2 chloroform and hexanes as the eluent. Recrystallization was by slow evaporation of a chloroform solution of (I) which yielded purple crystals. Yield: 90%.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$] and were included in the refinement in the riding model approximation.

Three of the four bromothienyl units are disordered over two positions, the major components being in 0.691 (3), 0.738 (3) and 0.929 (9) fractions. Pairs of 1,2-related distances were restrained to within 0.01 Å and pairs of the1,3-related ones to within 0.02 Å of each other. The U_{ij} parameters of the primed carbon atoms were set to those of the unprimed ones; the U_{ij} parameters of the bromine and sulfur atoms were not tied but the U_{ij} parameters were restrained to be nearly isotropic. For the major components, the atoms were restrained to lie on a plane. Pairs of C_{porphyrin}–C_{thiophene} distances were also restrained to within 0.01 Å of each other.

Figure 1

The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. Only the major components of the disorder are shown.

Figure 2

A view of the supramolecular chain along [001] in (I). The C-H···Br interactions are shown as orange dashed lines.

[meso-5,10,15,20-Tetrakis(5-bromothiophen-2-yl)porphyrinato- $\kappa^4 N, N', N'', N'''$]nickel(II)

F(000) = 3936

 $\theta = 2.3 - 27.5^{\circ}$

 $\mu = 5.60 \text{ mm}^{-1}$ T = 100 K

Prism, purple

 $0.30 \times 0.25 \times 0.20$ mm

 $D_{\rm x} = 1.992 \text{ Mg m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 3139 reflections

Crystal data

 $\begin{bmatrix} Ni(C_{36}H_{16}Br_4N_4S_4) \end{bmatrix} \\ M_r = 1011.12 \\ Orthorhombic, Aba2 \\ Hall symbol: A 2 -2ac \\ a = 21.9367 (9) Å \\ b = 19.0090 (9) Å \\ c = 16.1742 (6) Å \\ V = 6744.6 (5) Å^3 \\ Z = 8 \end{bmatrix}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector	$T_{\min} = 0.284, T_{\max} = 0.401$ 11875 measured reflections
Radiation source: SuperNova (Mo) X-ray Source	5921 independent reflections 4597 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.056$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
ωscan	$h = -28 \rightarrow 20$
Absorption correction: multi-scan	$k = -24 \rightarrow 19$
(CrysAlis PRO; Agilent, 2011)	$l = -15 \rightarrow 20$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.140$	$w = 1/[\sigma^2(F_0^2) + (0.0739P)^2]$

 $wR(F^2) = 0.140$ $w = 1/[\sigma^2(F_o^2) + (0.0739P)^2]$ s = 1.03 $where P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.89 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.77 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map $A = 0.89 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.77 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1898 Friedel pairs
Absolute structure parameter: -0.026 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni	0.93376 (5)	0.79186 (5)	0.49494 (13)	0.0265 (2)	
Br4	0.98930 (5)	0.89722 (6)	-0.04302 (12)	0.0462 (3)	
Br1	1.22918 (9)	1.10301 (11)	0.62570 (19)	0.0835 (8)	0.691 (3)
Br2	0.76615 (7)	0.75530 (8)	1.00080 (15)	0.0555 (5)	0.738 (3)
Br3	0.69378 (6)	0.41916 (10)	0.36601 (18)	0.0477 (7)	0.929 (9)
S1	1.11481 (18)	1.0234 (2)	0.5607 (3)	0.0418 (10)	0.691 (3)
S2	0.80473 (15)	0.76565 (19)	0.8152 (2)	0.0337 (8)	0.738 (3)
S3	0.75144 (18)	0.56085 (19)	0.4230 (3)	0.0451 (10)	0.929 (9)
C1	1.1833 (6)	1.0204 (12)	0.6128 (7)	0.039 (2)	0.691 (3)
C2	1.1970 (7)	0.9570 (8)	0.6395 (7)	0.049 (3)	0.691 (3)
H2	1.2332	0.9466	0.6695	0.059*	0.691 (3)
C3	1.1542 (8)	0.9075 (10)	0.6201 (9)	0.044 (5)	0.691 (3)

H3	1.1575	0.8593	0.6349	0.053*	0.691 (3)
C4	1.1060 (4)	0.9349 (6)	0.5769 (5)	0.028 (3)	0.691 (3)
C5	0.8274 (9)	0.7573 (2)	0.9198 (8)	0.038 (2)	0.738 (3)
C6	0.8860 (6)	0.7533 (4)	0.9284 (7)	0.037 (3)	0.738 (3)
H6	0.9054	0.7486	0.9807	0.044*	0.738 (3)
C7	0.9190 (7)	0.7566 (5)	0.8522 (10)	0.033 (4)	0.738 (3)
H7	0.9621	0.7544	0.8481	0.040*	0.738 (3)
C8	0.8812 (4)	0.7633 (3)	0.7866 (6)	0.023 (2)	0.738 (3)
С9	0.7624 (4)	0.4779 (5)	0.3806 (3)	0.037 (2)	0.929 (9)
C10	0.8204 (4)	0.4649 (5)	0.3627 (5)	0.042 (3)	0.929 (9)
H10	0.8344	0.4221	0.3392	0.050*	0.929 (9)
C11	0.8583 (4)	0.5212 (5)	0.3821 (5)	0.042 (3)	0.929 (9)
H11	0.9010	0.5201	0.3728	0.050*	0.929 (9)
C12	0.8295 (4)	0.5778 (5)	0.4154 (4)	0.034 (3)	0.929 (9)
Br1′	1.26243 (13)	1.04721 (18)	0.6642 (2)	0.0448 (11)	0.309 (3)
Br2'	0.8321 (2)	0.7373 (3)	1.0322 (3)	0.0637 (16)	0.262 (3)
Br3′	0.6913 (13)	0.4343 (17)	0.329 (3)	0.082 (10)	0.071 (9)
S1′	1.1596 (4)	0.9388 (5)	0.6245 (6)	0.034 (2)	0.309 (3)
S2′	0.8946 (5)	0.7495 (7)	0.8595 (7)	0.038 (3)	0.262 (3)
S3′	0.746 (2)	0.5740 (17)	0.395 (3)	0.034 (13)	0.071 (9)
C1′	1.1861 (11)	1.0237 (15)	0.618 (2)	0.039 (2)	0.309
C2′	1.1515 (11)	1.0620 (12)	0.5691 (18)	0.049 (3)	0.309
H2′	1.1606	1.1095	0.5556	0.059*	0.309 (3)
C3′	1.1012 (15)	1.0277 (15)	0.539 (3)	0.044 (5)	0.309
H3′	1.0719	1.0496	0.5047	0.053*	0.309 (3)
C4′	1.0968 (9)	0.9583 (9)	0.5643 (18)	0.028 (3)	0.309
C5′	0.8271 (14)	0.7572 (19)	0.9185 (10)	0.038 (2)	0.262
C6′	0.7797 (8)	0.7699 (18)	0.8732 (11)	0.037 (3)	0.262
H6′	0.7396	0.7735	0.8951	0.044*	0.262 (3)
C7′	0.7930 (11)	0.778 (2)	0.7870 (13)	0.033 (4)	0.262
H7′	0.7632	0.7872	0.7458	0.040*	0.262 (3)
C8′	0.8534 (7)	0.7712 (17)	0.7713 (8)	0.023 (2)	0.262
C9′	0.756 (2)	0.484 (2)	0.380 (6)	0.037 (2)	0.071
C10′	0.813 (3)	0.463 (3)	0.392 (9)	0.042 (3)	0.071
H10B	0.8255	0.4154	0.3891	0.050*	0.071 (9)
C11′	0.851 (2)	0.519 (4)	0.409 (9)	0.042 (3)	0.071
H11B	0.8946	0.5152	0.4084	0.050*	0.071 (9)
C12′	0.822 (3)	0.5800 (19)	0.428 (8)	0.034 (3)	0.071
S4	0.97840 (12)	0.83684 (15)	0.13430 (18)	0.0472 (6)	
N1	0.9641 (3)	0.8293 (4)	0.5979 (4)	0.0302 (16)	
N2	0.8858 (3)	0.7234 (4)	0.5555 (4)	0.0321 (17)	
N3	0.9020 (3)	0.7566 (4)	0.3917 (4)	0.0285 (16)	
N4	0.9833 (3)	0.8581 (4)	0.4344 (4)	0.0281 (15)	
C13	0.9590 (4)	0.8994 (6)	0.0664 (5)	0.037 (2)	
C14	0.9252 (5)	0.9510 (7)	0.0986 (6)	0.057 (3)	
H14	0.9119	0.9914	0.0691	0.068*	
C15	0.9120 (5)	0.9373 (6)	0.1823 (6)	0.047 (3)	
H15	0.8877	0.9677	0.2153	0.056*	

C16	0.9369 (4)	0.8766 (5)	0.2120 (5)	0.033 (2)
C17	1.0119 (4)	0.8756 (5)	0.6093 (5)	0.031 (2)
C18	1.0132 (4)	0.8999 (5)	0.6927 (5)	0.038 (2)
H18	1.0416	0.9318	0.7163	0.045*
C19	0.9660 (4)	0.8683 (5)	0.7312 (5)	0.036 (2)
H19	0.9538	0.8756	0.7869	0.043*
C20	0.9382 (4)	0.8227 (5)	0.6744 (5)	0.034 (2)
C21	0.8944 (4)	0.7714 (5)	0.6948 (6)	0.040 (2)
C22	0.8749 (4)	0.7213 (5)	0.6384 (5)	0.037 (2)
C23	0.8442 (5)	0.6573 (5)	0.6606 (6)	0.046 (2)
H23	0.8306	0.6439	0.7142	0.055*
C24	0.8385 (5)	0.6202 (5)	0.5907 (6)	0.046 (3)
H24	0.8218	0.5742	0.5859	0.055*
C25	0.8622 (4)	0.6618 (4)	0.5242 (5)	0.0327 (19)
C26	0.8555 (4)	0.6462 (5)	0.4399 (6)	0.034 (2)
C27	0.8693 (4)	0.6955 (5)	0.3789 (6)	0.034 (2)
C28	0.8496 (4)	0.6909 (5)	0.2965 (5)	0.036 (2)
H28	0.8275	0.6531	0.2722	0.043*
C29	0.8681 (4)	0.7508 (5)	0.2581 (6)	0.037 (2)
H29	0.8594	0.7641	0.2027	0.045*
C30	0.9027 (3)	0.7897 (4)	0.3163 (5)	0.0237 (17)
C31	0.9381 (4)	0.8475 (5)	0.2967 (5)	0.0278 (18)
C32	0.9796 (4)	0.8749 (4)	0.3524 (5)	0.0318 (19)
C33	1.0303 (4)	0.9195 (5)	0.3295 (5)	0.033 (2)
H33	1.0377	0.9390	0.2763	0.040*
C34	1.0651 (4)	0.9283 (5)	0.3968 (6)	0.036 (2)
H34	1.1030	0.9522	0.3997	0.044*
C35	1.0337 (3)	0.8946 (4)	0.4634 (5)	0.0285 (18)
C36	1.0484 (4)	0.9021 (5)	0.5462 (5)	0.035 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni	0.0393 (5)	0.0181 (5)	0.0220 (4)	-0.0025 (4)	0.0002 (5)	-0.0026 (5)
Br4	0.0635 (6)	0.0480 (7)	0.0269 (4)	-0.0073 (5)	0.0044 (5)	0.0000 (5)
Br1	0.0654 (12)	0.0559 (13)	0.1291 (19)	-0.0263 (9)	-0.0319 (12)	-0.0049 (13)
Br2	0.0674 (10)	0.0571 (10)	0.0418 (8)	-0.0203 (7)	0.0249 (8)	-0.0030 (7)
Br3	0.0402 (6)	0.0393 (8)	0.0637 (14)	-0.0117 (5)	0.0056 (7)	-0.0212 (8)
S1	0.044 (2)	0.0252 (19)	0.057 (3)	-0.0061 (15)	-0.0136 (17)	-0.0011 (17)
S2	0.0391 (16)	0.033 (2)	0.0289 (16)	-0.0082 (14)	0.0072 (14)	-0.0059 (15)
S3	0.0436 (16)	0.0361 (17)	0.056 (2)	-0.0079 (14)	0.0078 (18)	-0.0208 (17)
C1	0.043 (4)	0.034 (5)	0.040 (5)	-0.011 (4)	-0.009 (4)	-0.003 (4)
C2	0.042 (6)	0.054 (8)	0.050 (7)	-0.008 (6)	-0.001 (6)	0.008 (6)
C3	0.051 (7)	0.040 (8)	0.042 (7)	-0.002 (7)	-0.008 (6)	0.005 (7)
C4	0.038 (5)	0.030 (7)	0.017 (5)	0.002 (5)	-0.006 (4)	0.000 (5)
C5	0.050 (5)	0.023 (5)	0.041 (5)	-0.009 (4)	0.018 (4)	0.006 (4)
C6	0.055 (6)	0.026 (6)	0.029 (5)	-0.003 (5)	0.004 (5)	0.006 (4)
C7	0.040 (7)	0.028 (6)	0.032 (7)	-0.001 (6)	0.005 (6)	-0.007 (5)

C8	0.035 (6)	0.010 (4)	0.025 (5)	-0.001 (5)	0.004 (5)	0.000 (4)
C9	0.037 (4)	0.031 (5)	0.043 (5)	-0.007(4)	0.004 (4)	-0.012 (4)
C10	0.042 (5)	0.029 (5)	0.055 (7)	0.000 (4)	0.001 (5)	-0.013 (5)
C11	0.041 (5)	0.034 (5)	0.050(7)	-0.008 (4)	0.002 (4)	-0.008(5)
C12	0.047 (5)	0.028 (5)	0.025 (5)	-0.005 (4)	0.006 (4)	-0.009 (4)
Br1′	0.0336 (16)	0.045 (2)	0.056 (2)	-0.0027 (13)	-0.0114 (13)	-0.0138 (16)
Br2'	0.098 (4)	0.062 (3)	0.031 (2)	0.010 (3)	0.006 (2)	0.0104 (19)
Br3′	0.087 (12)	0.078 (12)	0.081 (13)	0.008 (8)	0.010 (9)	-0.002(9)
S1′	0.040 (4)	0.023 (4)	0.038 (4)	-0.004(4)	-0.009(3)	0.013 (4)
S2′	0.040 (6)	0.046 (6)	0.028 (5)	0.009 (4)	-0.010(5)	0.005 (4)
S3′	0.039 (15)	0.036 (15)	0.027 (15)	0.000 (9)	0.006 (9)	-0.003 (9)
C1′	0.043 (4)	0.034 (5)	0.040 (5)	-0.011(4)	-0.009(4)	-0.003(4)
C2′	0.042 (6)	0.054 (8)	0.050(7)	-0.008(6)	-0.001(6)	0.008 (6)
C3′	0.051(7)	0.040 (8)	0.042(7)	-0.002(7)	-0.008(6)	0.005(7)
C4'	0.038(5)	0.030(7)	0.017(5)	0.002(5)	-0.006(4)	0.000(5)
C5′	0.050(5)	0.023(7)	0.011(5)	-0.002(3)	0.018 (4)	0.000(2)
C6'	0.055(6)	0.026 (6)	0.029(5)	-0.003(5)	0.010(1)	0.000(1)
C7'	0.055(0)	0.020(0)	0.022(3)	-0.001(6)	0.004 (5)	-0.000(4)
C8'	0.040(7)	0.028(0) 0.010(4)	0.032(7)	-0.001(0)	0.003(0)	0.007(3)
	0.035(0) 0.037(4)	0.010(4)	0.023(3)	-0.007(3)	0.004(3)	-0.012(4)
C10′	0.037(4) 0.042(5)	0.031(5)	0.045(3)	0.007(4)	0.004(4)	-0.012(4)
C10	0.042(5)	0.027(5)	0.050(7)	-0.008(4)	0.001(3)	-0.008(5)
C12'	0.041(3)	0.034(3)	0.030(7)	-0.005(4)	0.002(4)	-0.008(3)
C12 S4	0.047(3)	0.028(3)	0.023(3)	0.005(4)	0.000(4)	0.009(4)
54 N1	0.0733(10)	0.0387(13)	0.0293(12)	-0.003(3)	0.0103(12)	-0.0020(11)
INI NO	0.049(4)	0.022(4)	0.020(3)	-0.003(3)	0.005(3)	-0.002(3)
INZ	0.043(4)	0.019(4)	0.032(4)	-0.003(3)	0.003(3)	-0.008(3)
IN S NIA	0.030(4)	0.023(4)	0.027(4)	-0.003(3)	0.005(3)	-0.007(3)
N4 C12	0.032(3)	0.022(4)	0.030(4)	0.000(3)	0.003(3)	-0.002(3)
C13	0.045(5)	0.054(7)	0.012(4)	-0.008(3)	-0.001(4)	-0.003(4)
C14	0.067(7)	0.064 (8)	0.040 (6)	0.026 (6)	0.007 (5)	0.011 (5)
	0.064 (6)	0.045 (6)	0.030(5)	0.030 (5)	0.019 (5)	0.008 (5)
C16	0.040 (4)	0.029 (5)	0.029 (4)	0.000 (4)	0.009 (4)	-0.006 (4)
CI7	0.034 (4)	0.025 (5)	0.035 (5)	-0.005 (4)	-0.011 (4)	0.002 (4)
CI8	0.050 (5)	0.042 (6)	0.021 (4)	-0.002(4)	-0.013(4)	-0.010(4)
C19	0.063 (6)	0.024 (5)	0.021 (4)	-0.004 (4)	0.010 (4)	-0.009 (4)
C20	0.050 (5)	0.023 (5)	0.029 (4)	0.006 (4)	0.002 (4)	-0.007 (4)
C21	0.056 (6)	0.031 (6)	0.032 (5)	-0.007 (5)	0.010 (5)	-0.003 (4)
C22	0.055 (5)	0.022 (5)	0.033 (5)	-0.003 (4)	0.016 (4)	0.002 (4)
C23	0.077 (7)	0.027 (5)	0.033 (5)	-0.013 (5)	0.008 (5)	-0.001 (4)
C24	0.074 (7)	0.021 (5)	0.042 (5)	-0.020(5)	0.008 (5)	0.000 (4)
C25	0.044 (4)	0.017 (4)	0.037 (5)	-0.001 (4)	0.008 (4)	-0.004(4)
C26	0.038 (4)	0.023 (5)	0.041 (5)	-0.004(4)	0.008 (4)	-0.006 (4)
C27	0.041 (4)	0.021 (5)	0.038 (5)	0.002 (4)	0.007 (4)	-0.006 (4)
C28	0.049 (5)	0.028 (5)	0.030 (5)	-0.008 (4)	-0.001 (4)	-0.004 (4)
C29	0.044 (5)	0.037 (6)	0.031 (4)	0.001 (4)	-0.004 (4)	0.002 (4)
C30	0.027 (4)	0.023 (5)	0.022 (4)	0.008 (3)	-0.002 (3)	-0.004 (3)
C31	0.038 (4)	0.025 (5)	0.020 (4)	0.004 (4)	0.003 (4)	0.004 (3)
C32	0.045 (5)	0.019 (5)	0.032 (5)	0.000 (4)	0.004 (4)	-0.001 (4)

C33	0.043 (5)	0.033 (5)	0.024 (4)	-0.003 (4)	0.002 (4)	0.002 (4)	
C34	0.041 (5)	0.028 (5)	0.040 (5)	-0.005 (4)	0.005 (4)	-0.002 (4)	
C35	0.032 (4)	0.027 (5)	0.026 (4)	0.001 (3)	-0.009 (4)	-0.001 (4)	
C36	0.040 (5)	0.038 (6)	0.028 (4)	-0.003 (4)	-0.005 (4)	0.002 (4)	

Geometric parameters (Å, °)

Ni—N1	1.930 (7)	C8′—C21	1.530 (15)
Ni—N2	1.939 (7)	C9′—C10′	1.331 (15)
Ni—N3	1.929 (7)	C10′—C11′	1.392 (16)
Ni—N4	1.929 (7)	C10′—H10B	0.9500
Br4—C13	1.891 (8)	C11′—C12′	1.360 (16)
Br1—C1	1.877 (14)	C11′—H11B	0.9500
Br2—C5	1.878 (12)	C12′—C26	1.472 (15)
Br3—C9	1.889 (8)	S4—C13	1.674 (10)
S1—C4	1.712 (12)	S4—C16	1.726 (9)
S1—C1	1.724 (18)	N1—C20	1.368 (11)
S2—C8	1.741 (10)	N1—C17	1.379 (11)
S2—C5	1.770 (16)	N2—C22	1.363 (11)
S3—C9	1.736 (10)	N2—C25	1.376 (10)
S3—C12	1.746 (10)	N3—C30	1.372 (10)
C1—C2	1.32 (3)	N3—C27	1.380 (11)
C2—C3	1.37 (2)	N4—C32	1.367 (11)
С2—Н2	0.9500	N4—C35	1.386 (10)
C3—C4	1.37 (2)	C13—C14	1.334 (14)
С3—Н3	0.9500	C14—C15	1.409 (13)
C4—C36	1.493 (13)	C14—H14	0.9500
C5—C6	1.30 (2)	C15—C16	1.364 (13)
C6—C7	1.43 (2)	C15—H15	0.9500
С6—Н6	0.9500	C16—C31	1.477 (12)
С7—С8	1.35 (2)	C17—C36	1.394 (12)
С7—Н7	0.9500	C17—C18	1.425 (12)
C8—C21	1.521 (13)	C18—C19	1.350 (13)
C9—C10	1.328 (12)	C18—H18	0.9500
C10—C11	1.390 (13)	C19—C20	1.402 (12)
C10—H10	0.9500	C19—H19	0.9500
C11—C12	1.359 (13)	C20—C21	1.408 (13)
C11—H11	0.9500	C21—C22	1.386 (13)
C12—C26	1.476 (12)	C22—C23	1.438 (13)
Br1′—C1′	1.890 (16)	C23—C24	1.339 (13)
Br2'—C5'	1.879 (14)	C23—H23	0.9500
Br3'—C9'	1.888 (13)	C24—C25	1.432 (12)
S1'—C1'	1.72 (2)	C24—H24	0.9500
S1'—C4'	1.727 (14)	C25—C26	1.404 (12)
S2'—C8'	1.738 (13)	C26—C27	1.393 (13)
S2′—C5′	1.769 (19)	C27—C28	1.405 (12)
S3′—C9′	1.738 (14)	C28—C29	1.358 (12)
S3'—C12'	1.747 (14)	C28—H28	0.9500

C1′—C2′	1.31 (3)	C29—C30	1.419 (11)
C2'—C3'	1.37 (2)	С29—Н29	0.9500
C2'—H2'	0.9500	C30—C31	1.382 (12)
C3'—C4'	1.38 (2)	C31—C32	1.383 (12)
C3'—H3'	0.9500	C32—C33	1.448 (12)
C4′—C36	1.532 (14)	C33—C34	1.339 (12)
C5'—C6'	1.29 (3)	С33—Н33	0.9500
C6'—C7'	1.43 (2)	C34—C35	1.430 (12)
С6'—Н6'	0.9500	C34—H34	0.9500
C7'—C8'	1 36 (2)	$C_{35} - C_{36}$	1 386 (12)
C7'—H7'	0.9500		1.500 (12)
C, II,	0.9200		
N3—Ni—N4	89.5 (3)	C22—N2—C25	105.8 (7)
N3—Ni—N1	178.4 (3)	C22—N2—Ni	127.6 (6)
N4—Ni—N1	90.1 (3)	C25—N2—Ni	126.1 (5)
N3—Ni—N2	90.4 (3)	C30—N3—C27	104.9 (7)
N4—Ni—N2	178.4 (3)	C30—N3—Ni	127.3 (5)
N1—Ni—N2	90.0 (3)	C_{27} N3 Ni	127.6 (6)
C4 - S1 - C1	89 5 (8)	$C_{32} - N_{4} - C_{35}$	127.0(0) 1049(7)
$C_8 = S_2 = C_5$	88.9(7)	C32—N4—Ni	127.7(6)
$C_{9} = S_{3} = C_{12}$	90.2(4)	C35—N4—Ni	127.7(0)
C_{2} C_{1} S_{1}	113.0(11)	C14-C13-S4	127.2(3) 1140(7)
$C_2 = C_1 = Br_1$	127 4 (13)	C14 - C13 - Br4	125.2(8)
S1 - C1 - Br1	119.6 (15)	S4-C13-Br4	120.6 (6)
$C_1 = C_2 = C_3$	113.0(15)	$C_{13} = C_{14} = C_{15}$	120.0(0)
$C_1 = C_2 = C_3$	123.3	$C_{13} = C_{14} = C_{13}$	124.6
$C_1 = C_2 = H_2$	123.3	$C_{15} = C_{14} = H_{14}$	124.0
$C_2 = C_2 = C_4$	123.3 112.7(15)	$C_{15} - C_{14} - 1114$	124.0
$C_2 = C_3 = C_4$	112.7 (15)	C16 C15 U15	114.4 (9)
$C_2 = C_3 = H_3$	123.0	С14 С15 Ц15	122.8
$C_4 = C_3 = H_3$	125.0	С14—С13—Н13	122.8
C_{3} C_{4} C_{3}	131.0 (12)	C15 - C16 - C31	130.6 (8)
$C_3 = C_4 = S_1$	111.3(10) 117.0(9)	C15 - C16 - S4	108.9 (7)
$C_{30} - C_{4} - S_{1}$	117.0 (8)	$C_{31} - C_{10} - S_{4}$	120.1(7)
$C_{6} - C_{5} - S_{2}$	112.8 (9)	NI = C17 = C18	124.7 (8)
C6C5Br2	129.3 (12)	NI = CI / = CI8	110.4 (7)
S2—C5—Br2	117.9 (12)	$C_{30} = C_{17} = C_{18}$	124.3 (8)
C5-C6-C7	113.9 (12)		106.1 (8)
С5—С6—Н6	123.0	C19—C18—H18	127.0
С/—С6—Н6	123.0	C17—C18—H18	127.0
C8—C/—C6	111.8 (13)	C18—C19—C20	107.8 (7)
С8—С7—Н7	124.1	С18—С19—Н19	126.1
С6—С7—Н7	124.1	C20—C19—H19	126.1
C/C8C21	131.3 (10)	N1—C20—C19	110.8 (8)
C7—C8—S2	112.6 (9)	N1—C20—C21	124.0 (8)
C21—C8—S2	116.2 (7)	C19—C20—C21	124.9 (8)
C10—C9—S3	112.8 (7)	C22—C21—C20	122.2 (8)
C10—C9—Br3	128.8 (8)	C22—C21—C8	120.9 (8)
S3—C9—Br3	118.4 (5)	C20—C21—C8	115.4 (8)

C9—C10—C11	112.4 (9)	C22—C21—C8′	110.4 (14)
С9—С10—Н10	123.8	C20—C21—C8′	126.3 (15)
C11—C10—H10	123.8	N2-C22-C21	125.0 (8)
C12—C11—C10	114.9 (9)	N2-C22-C23	110.6 (8)
C12—C11—H11	122.6	C21—C22—C23	124.2 (8)
C10-C11-H11	122.6	C24—C23—C22	106.2 (8)
C11—C12—C26	128.7 (9)	С24—С23—Н23	126.9
C11—C12—S3	109.7 (7)	С22—С23—Н23	126.9
C26—C12—S3	121.6 (7)	C23—C24—C25	108.0 (8)
C1'—S1'—C4'	91.9 (10)	C23—C24—H24	126.0
C8'—S2'—C5'	89.3 (9)	С25—С24—Н24	126.0
C9'—S3'—C12'	89.7 (8)	N2—C25—C26	125.1 (8)
C2'—C1'—S1'	111.3 (12)	N2—C25—C24	109.3 (7)
C2'—C1'—Br1'	128.2 (17)	C26—C25—C24	125.1 (8)
S1'—C1'—Br1'	119.8 (19)	C27—C26—C25	121.6 (8)
C1'—C2'—C3'	114.3 (17)	C27—C26—C12′	126 (5)
C1'—C2'—H2'	122.9	C_{25} — C_{26} — $C_{12'}$	111 (5)
C3' - C2' - H2'	122.9	C_{27} C_{26} C_{12}	119 1 (8)
C2'-C3'-C4'	114.2 (18)	C_{25} C_{26} C_{12}	119.2 (8)
$C_{2}'-C_{3}'-H_{3}'$	122.9	N3—C27—C26	124.9 (8)
C4' - C3' - H3'	122.9	N3-C27-C28	110.8 (8)
C3'-C4'-C36	131.1 (15)	C_{26} C_{27} C_{28}	124.2 (8)
C3'-C4'-S1'	108.2(12)	C_{29} C_{28} C_{27}	106.8 (8)
C36—C4′—S1′	120.7 (11)	C29—C28—H28	126.6
C6'—C5'—\$2'	112.5 (11)	C27—C28—H28	126.6
C6'—C5'—Br2'	129.7 (16)	C_{28} C_{29} C_{30}	107.1 (8)
S2'-C5'-Br2'	117.5 (16)	C28—C29—H29	126.5
C5'—C6'—C7'	114.0 (15)	C30—C29—H29	126.5
C5'—C6'—H6'	123.0	N3—C30—C31	125.1 (7)
C7'—C6'—H6'	123.0	N3-C30-C29	110.2(7)
C8'—C7'—C6'	111.8 (16)	C_{31} $-C_{30}$ $-C_{29}$	124.3 (7)
C8'—C7'—H7'	124.1	C_{30} — C_{31} — C_{32}	121.3(7)
C6'—C7'—H7'	124.1	C_{30} $-C_{31}$ $-C_{16}$	120.1(8)
C7' - C8' - C21	136.5 (14)	C_{32} — C_{31} — C_{16}	118.4 (7)
C7' - C8' - S2'	112.2 (12)	N4—C32—C31	125.7(7)
C21—C8'—S2'	111.1 (9)	N4—C32—C33	109.9 (7)
C10'-C9'-S3'	112.8 (11)	C31—C32—C33	124.0 (8)
C10'-C9'-Br3'	128.0 (19)	C_{34} C_{33} C_{32}	107.6 (8)
S3'-C9'-Br3'	117.8 (15)	С34—С33—Н33	126.2
C9′—C10′—C11′	111.9 (15)	С32—С33—Н33	126.2
C9'—C10'—H10B	124.0	C33—C34—C35	106.4 (8)
C11'-C10'-H10B	124.0	С33—С34—Н34	126.8
C12'—C11'—C10'	113.9 (18)	С35—С34—Н34	126.8
C12'—C11'—H11B	123.0	C36—C35—N4	124.4 (8)
C10′—C11′—H11B	123.0	C36—C35—C34	124.7 (8)
C11′—C12′—C26	121 (6)	N4—C35—C34	110.8 (7)
C11'—C12'—S3'	109.3 (15)	C35—C36—C17	122.4 (8)
C26—C12′—S3′	125 (3)	C35—C36—C4	124.3 (8)

C13—S4—C16	91.9 (5)	C17—C36—C4	113.2 (7)
C20—N1—C17	104.6 (7)	C35—C36—C4′	114.8 (13)
C20—N1—Ni	127.1 (6)	C17—C36—C4′	120.7 (14)
C17—N1—Ni	127.8 (6)		
C4—S1—C1—C2	-0.1 (2)	C7'—C8'—C21—C8	-175 (7)
C4—S1—C1—Br1	179.96 (12)	S2'—C8'—C21—C8	-1.4 (14)
S1—C1—C2—C3	0.2 (3)	C25—N2—C22—C21	176.0 (9)
Br1—C1—C2—C3	-179.9 (2)	Ni—N2—C22—C21	3.6 (14)
C1—C2—C3—C4	-0.2(5)	C25—N2—C22—C23	0.2 (11)
$C_2 - C_3 - C_4 - C_{36}$	-177.2(7)	Ni—N2—C22—C23	-172.2(7)
$C_2 - C_3 - C_4 - S_1$	0.1 (4)	C_{20} C_{21} C_{22} N_{2}	-13.2(16)
C1 = S1 = C4 = C3	0.0(3)	C8-C21-C22-N2	-1785(9)
C1 = S1 = C4 = C36	177.7(6)	C8' - C21 - C22 - N2	1556(11)
C8 = S2 = C5 = C6	-0.1(2)	C_{20} C_{21} C_{22} C_{23}	162.0(11)
$C_{8} = S_{2} = C_{5} = Br^{2}$	179.95(11)	$C_{20} = C_{21} = C_{22} = C_{23}$	-3.2(15)
$S_{2}^{2} = C_{2}^{2} = C_{2}^{2} = C_{1}^{2}$	01(3)	C8' - C21 - C22 - C23	-29.2(15)
$S_2 = C_3 = C_0 = C_7$	-170.00(18)	$N_{2} = C_{21} = C_{22} = C_{23}$	29.2(13)
B12 - C5 - C6 - C7 - C8	1/9.99(10)	$N_2 = C_{22} = C_{23} = C_{24}$	-173.0(12)
$C_{5} = C_{0} = C_{7} = C_{8}$	0.0(4)	$C_{21} = C_{22} = C_{23} = C_{24}$	173.9(10)
$C_{0} - C_{1} - C_{0} - C_{21}$	1/7.3(7)	$C_{22} = C_{23} = C_{24} = C_{23}$	-3.2(12)
$C_{0} = C_{1} = C_{0} = C_{1}$	-0.1(4)	$V_{22} = N_2 = V_{23} = V_{23}$	170.4 (9)
$C_{5} = C_{8} = C_{7}$	0.1(3)	N1 - N2 - C25 - C26	-17.0(13)
C5—S2—C8—C21	-1/.9(5)	$C_{22} = N_2 = C_{25} = C_{24}$	-2.2 (10)
C12—S3—C9—C10	0.1(2)	$N_1 - N_2 - C_{25} - C_{24}$	170.4 (7)
C12—S3—C9—Br3	180.00 (12)	C23—C24—C25—N2	3.5 (12)
S3—C9—C10—C11	-0.2 (3)	C23—C24—C25—C26	-169.1 (10)
Br3—C9—C10—C11	179.91 (18)	N2—C25—C26—C27	-4.2 (14)
C9—C10—C11—C12	0.2 (4)	C24—C25—C26—C27	167.4 (9)
C10—C11—C12—C26	-177.6 (6)	N2—C25—C26—C12′	-173 (3)
C10-C11-C12-S3	-0.2(4)	C24—C25—C26—C12′	-1 (3)
C9—S3—C12—C11	0.1 (3)	N2-C25-C26-C12	180.0 (8)
C9—S3—C12—C26	177.7 (6)	C24—C25—C26—C12	-8.5 (14)
C4'—S1'—C1'—C2'	-4 (3)	C11'—C12'—C26—C27	91 (8)
C4'—S1'—C1'—Br1'	-175.1 (19)	S3'—C12'—C26—C27	-63 (11)
S1'—C1'—C2'—C3'	4 (4)	C11'—C12'—C26—C25	-101 (9)
Br1'-C1'-C2'-C3'	174 (3)	S3'—C12'—C26—C25	105 (8)
C1'—C2'—C3'—C4'	-2 (6)	C11'-C12'-C26-C12	41 (14)
C2'—C3'—C4'—C36	179 (3)	S3'—C12'—C26—C12	-113 (22)
C2'—C3'—C4'—S1'	-1 (5)	C11—C12—C26—C27	77.1 (10)
C1'—S1'—C4'—C3'	3 (3)	S3—C12—C26—C27	-100.1 (8)
C1'—S1'—C4'—C36	-178 (2)	C11—C12—C26—C25	-107.0(8)
C8′—S2′—C5′—C6′	4 (3)	S3-C12-C26-C25	75.8 (9)
C8'—S2'—C5'—Br2'	178 (2)	C11—C12—C26—C12′	-148 (16)
S2'—C5'—C6'—C7'	-3 (5)	S3—C12—C26—C12′	35 (16)
Br2'—C5'—C6'—C7'	-176 (3)	C30—N3—C27—C26	-178.1 (8)
C5'—C6'—C7'—C8'	-1 (5)	Ni—N3—C27—C26	-2.8 (12)
C6'—C7'—C8'—C21	177 (3)	C30—N3—C27—C28	-0.4 (9)
C6'—C7'—C8'—S2'	4 (4)	Ni—N3—C27—C28	174.9 (6)
	~ /		\ /

C5'—S2'—C8'—C7'	-4 (3)	C25—C26—C27—N3	14.4 (13)
C5'—S2'—C8'—C21	-179 (2)	C12'—C26—C27—N3	-179 (4)
C12'—S3'—C9'—C10'	-5 (9)	C12-C26-C27-N3	-169.7 (8)
C12'—S3'—C9'—Br3'	-173 (7)	C25—C26—C27—C28	-163.0 (9)
S3'—C9'—C10'—C11'	-4 (12)	C12′—C26—C27—C28	4 (4)
Br3'-C9'-C10'-C11'	163 (10)	C12—C26—C27—C28	12.9 (13)
C9′—C10′—C11′—C12′	13 (13)	N3—C27—C28—C29	-2.2(10)
C10′—C11′—C12′—C26	-174 (12)	C26—C27—C28—C29	175.5 (8)
C10'—C11'—C12'—S3'	-17 (10)	C27—C28—C29—C30	3.8 (10)
C9'—S3'—C12'—C11'	12 (8)	C27—N3—C30—C31	-169.6(8)
C9'—S3'—C12'—C26	168 (10)	Ni—N3—C30—C31	15.1 (11)
N4 - Ni - N1 - C20	160 5 (8)	C_{27} N3 C_{30} C29	2.8 (9)
$N_2 N_1 N_1 C_20$	-211(8)	Ni N3 C30 C29	-1725(6)
N4 Ni N1 C17	-10.7(7)	C_{28} C_{29} C_{30} N3	-43(10)
$N_2 N_1 N_1 C_{17}$	167.7(8)	$C_{20} = C_{20} = C_{30} = C_{31}$	168 2 (8)
$N_2 = N_1 = N_1 = C_1 / C_2 $	-167.9(8)	$N_{3} = C_{30} = C_{31} = C_{32}$	38(13)
$N_{1} = N_{1} = N_{2} = C_{22}$	107.9 (0)	103 - 030 - 031 - 032	-167.6(8)
NI - NI - N2 - C22	10.0(0)	$C_{29} = C_{30} = C_{31} = C_{32}$	-107.0(8)
$N_3 - N_1 - N_2 - C_{23}$	21.1(8)	N_{3} $-C_{30}$ $-C_{31}$ $-C_{16}$	1/7.3(7)
NI - NI - N2 - C23	-160.4(8)	$C_{29} = C_{30} = C_{31} = C_{16}$	0.0 (12)
N4 - N1 - N3 - C30	-19.3(7)	C15 - C16 - C31 - C30	107.8 (12)
N2-N1-N3-C30	162.3 (7)	S4—C16—C31—C30	-79.6 (10)
N4—N1—N3—C27	166.5 (7)	C15—C16—C31—C32	-78.4 (13)
N2—Ni—N3—C27	-12.0 (7)	S4—C16—C31—C32	94.2 (9)
N3—Ni—N4—C32	11.8 (7)	C35—N4—C32—C31	176.1 (8)
N1—Ni—N4—C32	-166.7 (7)	Ni—N4—C32—C31	0.9 (12)
N3—Ni—N4—C35	-162.4 (7)	C35—N4—C32—C33	3.1 (9)
N1—Ni—N4—C35	19.2 (7)	Ni—N4—C32—C33	-172.1 (6)
C16—S4—C13—C14	2.9 (9)	C30-C31-C32-N4	-12.0 (13)
C16—S4—C13—Br4	178.3 (6)	C16—C31—C32—N4	174.3 (8)
S4—C13—C14—C15	-2.8 (13)	C30—C31—C32—C33	160.1 (8)
Br4—C13—C14—C15	-178.1 (8)	C16—C31—C32—C33	-13.6 (13)
C13—C14—C15—C16	1.2 (15)	N4—C32—C33—C34	1.2 (10)
C14—C15—C16—C31	174.1 (10)	C31—C32—C33—C34	-171.9 (8)
C14—C15—C16—S4	0.8 (13)	C32—C33—C34—C35	-4.9 (10)
C13—S4—C16—C15	-2.0(8)	C32—N4—C35—C36	168.8 (9)
C13—S4—C16—C31	-176.1 (7)	Ni—N4—C35—C36	-16.0(12)
$C_{20} - N_{1} - C_{17} - C_{36}$	-174.7(9)	C32—N4—C35—C34	-6.2 (9)
Ni—N1—C17—C36	-2.0(13)	Ni—N4—C35—C34	169.0 (6)
C_{20} N1 $-C_{17}$ $-C_{18}$	-2.8(10)	C_{33} — C_{34} — C_{35} — C_{36}	-167.9(9)
N_{i} N1 C17 C18	169.9 (6)	C_{33} C_{34} C_{35} N_{4}	71(10)
N1 - C17 - C18 - C19	-0.2(11)	N4-C35-C36-C17	-2.7(15)
C_{36} C_{17} C_{18} C_{19}	171.8(0)	C_{34} C_{35} C_{36} C_{17}	171.6(9)
C_{17} C_{18} C_{10} C_{20}	30(11)	N4-C35-C36-C4	173 3 (8)
$C_{17} = C_{10} = C_{17} = C_{20}$	<i>J</i> .0 (11) <i>A</i> 8 (10)	C_{34} C_{35} C_{36} C_{4}	-122(15)
17 - 101 - 20 - 219	-1680(6)	C_{3+} C_{3} C_{3} C_{3} C_{4}	12.3(13) -166.2(12)
$\frac{1}{10} - \frac{1}{10} $	-168.6(0)	104 - 035 - 030 - 04	-100.3(12)
1 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 -	-100.0(9)	C_{34} C_{33} C_{30} C_{4}	0.U (10)
NI = NI = C20 = C21	18.0 (13)	N1 - U1 - U30 - U33	11.9 (15)
U18-U19-U20-NI	-5.1 (11)	13 - 17 - 130 - 133	-138.9 (9)

C18—C19—C20—C21	168.3 (9)	N1—C17—C36—C4	-164.5 (9)
N1-C20-C21-C22	1.9 (15)	C18—C17—C36—C4	24.7 (13)
C19—C20—C21—C22	-170.6 (9)	N1—C17—C36—C4′	174.5 (11)
N1-C20-C21-C8	167.9 (8)	C18—C17—C36—C4′	3.7 (16)
C19—C20—C21—C8	-4.6 (14)	C3—C4—C36—C35	-114.9 (10)
N1—C20—C21—C8′	-165.1 (11)	S1—C4—C36—C35	68.0 (11)
C19—C20—C21—C8′	22.4 (17)	C3—C4—C36—C17	61.5 (10)
C7—C8—C21—C22	117.9 (9)	S1-C4-C36-C17	-115.6 (8)
S2—C8—C21—C22	-64.5 (10)	C3—C4—C36—C4′	178 (4)
C7—C8—C21—C20	-48.3 (11)	S1—C4—C36—C4′	1 (4)
S2-C8-C21-C20	129.3 (7)	C3'—C4'—C36—C35	50 (4)
C7—C8—C21—C8′	-170 (3)	S1'-C4'-C36-C35	-129.4 (18)
S2—C8—C21—C8′	7 (3)	C3'—C4'—C36—C17	-114 (4)
C7'—C8'—C21—C22	-56 (5)	S1'-C4'-C36-C17	67 (2)
S2'—C8'—C21—C22	118.1 (17)	C3'—C4'—C36—C4	173 (7)
C7'—C8'—C21—C20	113 (4)	S1'-C4'-C36-C4	-6(2)
S2'—C8'—C21—C20	-74 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	D····A	<i>D</i> —H··· <i>A</i>
C19—H19····Br4 ⁱ	0.95	2.89	3.728 (8)	148

Symmetry code: (i) x, y, z+1.