

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(4-Sulfamoylphenyl)acetamide

Abdullah M. Asiri,^{a,b}‡ Hassan M. Faidallah,^a Tarig R. Sobahi,^a Seik Weng Ng^{c,a} and Edward R. T. Tiekink^c*

^aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, ^bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 12 March 2012; accepted 18 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.079; data-to-parameter ratio = 13.3.

In the title compound, $C_8H_{10}N_2O_3S$, the dihedral angle between the acetamide group and the benzene ring is $15.59 (12)^{\circ}$ and the amino group is close to being perpendicular to the benzene ring $[N-S-C_{ar}-C_{ar}]$ (ar = aromatic) torsion angle = $109.4 (2)^{\circ}$]. In the crystal, molecules are linked into supramolecular tubes parallel to [001] by amine-amide N-H···O interactions and these are connected into the three-dimensional architecture by amide-sulfonamide N-H···O hydrogen bonds. The crystal studied was a racemic twin.

Related literature

For background to the biological applications of related sulfonamides, see: Croitoru et al. (2004); Dogruer et al. (2010). For related structures, see: Asiri et al. (2011, 2012).

Experimental

Crystal data C₈H₁₀N₂O₃S $M_{\rm m} = 214.24$ Tetragonal, $P\overline{4}2_1c$ a = 15.2631 (4) Åc = 8.0571 (4) Å $V = 1877.00 (11) \text{ Å}^3$

Z = 8Mo $K\alpha$ radiation $\mu = 0.33 \text{ mm}^ T=100~{\rm K}$ 0.40 \times 0.05 \times 0.05 mm 3827 measured reflections

 $R_{\rm int} = 0.028$

1862 independent reflections 1698 reflections with $I > 2\sigma(I)$

Data collection

```
Agilent SuperNova Dual
  diffractometer with an Atlas
  detector
Absorption correction: multi-scan
  (CrysAlis PRO; Agilent, 2011)
  T_{\min} = 0.880, T_{\max} = 0.984
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of
$wR(F^2) = 0.079$	independent and constrained
S = 1.02	refinement
1862 reflections	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
140 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
3 restraints	Absolute structure: Flack (1983),
	625 Friedel pairs

Flack parameter: 0.48 (9)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} N1 - H1 \cdots O3^{i} \\ N1 - H2 \cdots O3^{ii} \\ N2 - H3 \cdots O1^{iii} \end{array}$	$\begin{array}{c} 0.88\ (1)\ 0.89\ (1)\ 0.88\ (1)\ 0.88\ (1) \end{array}$	2.08 (1) 2.04 (1) 2.34 (2)	2.935 (3) 2.929 (3) 3.156 (3)	163 (3) 178 (3) 155 (2)
Symmetry codes: $x + \frac{1}{2}, -y + \frac{3}{2}, -z + \frac{3}{2}.$	(i) $-y + \frac{3}{2}, -$	$-x + \frac{3}{2}, z + \frac{1}{2};$	(ii) $-x + 1, -x$	y + 2, z; (iii)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6682).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.

Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, 0762-0763.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Croitoru, M., Pintilie, L., Tanase, C., Caproiu, M. T. & Draghici, C. (2004). Rev.

Chem. (Bucharest), 55, 993-997. Dogruer, D. S., Urlu, S., Onkol, T., Ozcelik, B. & Sahin, M. F. (2010). Turk. J.

Chem. 34, 57-65.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

‡ Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

supporting information

Acta Cryst. (2012). E68, o1155 [https://doi.org/10.1107/S1600536812011701]

N-(4-Sulfamoylphenyl)acetamide

Abdullah M. Asiri, Hassan M. Faidallah, Tariq R. Sobahi, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

The crystal and molecular structure of *N*-(4-sulfamoylphenyl)acetamide (I) is reported herein in continuation of on-going structural studies of sulfonamide derivatives (Asiri *et al.*, 2011; Asiri *et al.*, 2012), of interest owing to their biological activity, for example, to selectively inhibit COX–2 (Croitoru *et al.*, 2004) and as they exhibit anti-microbial and anti-fungal activities (Dogruer *et al.* 2010).

In (I), Fig. 1. the amide residue is twisted out of the plane of the benzene ring to which it is attached as seen in the value of the C7—N2—C4—C3 torsion angle of -166.2 (2)°, and the amino group occupies a position perpendicular to the benzene ring with the N1—S1—C1—C2 torsion angle being 109.4 (2)°.

Each of the N—H hydrogen atoms forms a hydrogen bond to an oxygen atom with the amide-O3 atom being bifurcated, Table 1. The amino-H atoms bridge the amide-O atoms to generate supramolecular tubes along the c axis. These are connected into the three-dimensional architecture by amide-H···O(sulfonamide) hydrogen bonds, Fig. 2 and Table 1.

S2. Experimental

2-Acetyl chloride (0.784 g, 25 mmol) in pyridine (5 ml) was slowly added to a solution of sulfanilamide (2.00 g, 11 mmol) in pyridine (20 ml) and the reaction mixture was stirred at 258 K for 4 h under anhydrous conditions. After warming the solution to room temperature, the pyridine was removed *in vacuo* and the resulting white solid dissolved in ethyl acetate. The organic extract was washed with 3 *M* hydrochloric acid (30 ml) then with saturated sodium bicarbonate solution (30 ml) and finally with brine. Drying over magnesium sulfate and evaporation yielded a white solid which was recrystallized from ethanol to give the title compound as colourless prisms. Yield: 74%. *M*.pt: 491–492 K.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions $[C-H = 0.95 \text{ to } 0.98 \text{ Å}, U_{iso}(H) = 1.2 \text{ to } 1.5U_{eq}(C)]$ and were included in the refinement in the riding model approximation. The N—H atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88 ± 0.01 Å; their U_{iso} values were refined. Owing to poor agreement, the (7 7 0) reflection was omitted from the final cycles of refinement. The Flack (Flack, 1983) parameter was calculated from 625 Friedel pairs. The refined value, *i.e.* 0.48 (9). indicates that the crystal examined was a racemic twin.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Figure 2

A view in projection down the c axis of the unit-cell contents of (I). The N—H···O hydrogen bonds are shown as orange dashed lines.

N-(4-Sulfamoylphenyl)acetamide

Crystal data

 $C_8H_{10}N_2O_3S$ $M_r = 214.24$ Tetragonal, $P\overline{4}2_1c$ Hall symbol: P -4 2n a = 15.2631 (4) Å c = 8.0571 (4) Å V = 1877.00 (11) Å³ Z = 8F(000) = 896

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector	$T_{\min} = 0.880, T_{\max} = 0.984$ 3827 measured reflections
Radiation source: SuperNova (Mo) X-ray	1862 independent reflections
Source	1698 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.028$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\max} = 27.6^\circ, \ \theta_{\min} = 2.7^\circ$
ω scan	$h = -12 \rightarrow 19$
Absorption correction: multi-scan	$k = -18 \rightarrow 10$
(CrysAlis PRO; Agilent, 2011)	$l = -10 \rightarrow 6$
Refinement	

 $D_{\rm x} = 1.516 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.7 - 27.5^{\circ}$

 $\mu = 0.33 \text{ mm}^{-1}$

Prism, colourless

 $0.40 \times 0.05 \times 0.05$ mm

T = 100 K

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 2081 reflections

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.079$ S = 1.021862 reflections 140 parameters 3 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0379P)^2 + 0.7254P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.25$ e Å⁻³ $\Delta\rho_{min} = -0.27$ e Å⁻³ Absolute structure: Flack (1983), 625 Friedel pairs Absolute structure parameter: 0.48 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.42050 (3)	0.72593 (3)	0.79689 (8)	0.01459 (14)	
01	0.38712 (11)	0.72467 (12)	0.6291 (2)	0.0220 (4)	
O2	0.43783 (11)	0.64415 (10)	0.8775 (2)	0.0212 (4)	
03	0.71401 (10)	1.06596 (10)	0.73297 (19)	0.0184 (4)	
N1	0.34929 (12)	0.77773 (13)	0.9064 (3)	0.0165 (4)	
H1	0.364 (2)	0.783 (2)	1.0119 (16)	0.038 (9)*	
H2	0.329 (2)	0.8243 (14)	0.853 (4)	0.053 (11)*	
N2	0.75181 (12)	0.92922 (13)	0.8186 (2)	0.0165 (4)	
Н3	0.7976 (12)	0.8991 (16)	0.852 (3)	0.025 (8)*	
C1	0.51900 (14)	0.78616 (14)	0.7979 (3)	0.0153 (4)	
C2	0.59105 (15)	0.75505 (15)	0.8838 (3)	0.0163 (5)	
H2A	0.5884	0.7002	0.9394	0.020*	

C3	0 66665 (15)	0 80408 (14)	0.8881(3)	0.0164(5)	
0.5	0.00005 (15)	0.80408 (14)	0.8881 (3)	0.0104 (3)	
H3A	0.7165	0.7826	0.9459	0.020*	
C4	0.67072 (14)	0.88484 (15)	0.8086 (3)	0.0155 (5)	
C5	0.59846 (15)	0.91651 (16)	0.7215 (4)	0.0227 (5)	
Н5	0.6011	0.9714	0.6662	0.027*	
C6	0.52250 (16)	0.86653 (15)	0.7170 (4)	0.0226 (5)	
H6	0.4727	0.8873	0.6583	0.027*	
C7	0.77054 (15)	1.01386 (14)	0.7821 (3)	0.0158 (4)	
C8	0.86506 (15)	1.03931 (15)	0.8005 (3)	0.0196 (5)	
H8A	0.8689	1.1001	0.8392	0.029*	
H8B	0.8946	1.0339	0.6930	0.029*	
H8C	0.8934	1.0006	0.8813	0.029*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0124 (3)	0.0141 (3)	0.0172 (2)	-0.0010 (2)	0.0011 (2)	-0.0006 (3)
01	0.0201 (8)	0.0260 (9)	0.0199 (8)	-0.0028 (8)	-0.0005 (7)	-0.0042 (8)
02	0.0197 (9)	0.0116 (8)	0.0323 (9)	-0.0012 (7)	0.0006 (8)	0.0017 (7)
03	0.0197 (8)	0.0153 (8)	0.0202 (8)	0.0024 (6)	0.0016 (7)	0.0017 (7)
N1	0.0122 (9)	0.0199 (10)	0.0176 (9)	0.0014 (8)	0.0033 (9)	0.0026 (9)
N2	0.0103 (9)	0.0147 (9)	0.0247 (10)	0.0011 (7)	0.0004 (8)	0.0038 (9)
C1	0.0129 (10)	0.0167 (10)	0.0163 (9)	-0.0010 (9)	0.0012 (10)	-0.0009 (11)
C2	0.0174 (11)	0.0119 (10)	0.0197 (11)	0.0028 (9)	0.0001 (10)	0.0017 (9)
C3	0.0138 (11)	0.0140 (11)	0.0215 (11)	0.0039 (9)	-0.0002 (10)	0.0041 (10)
C4	0.0119 (10)	0.0148 (10)	0.0197 (11)	0.0010 (8)	0.0020 (10)	-0.0012 (10)
C5	0.0167 (11)	0.0188 (11)	0.0326 (13)	-0.0003 (9)	-0.0011 (11)	0.0109 (12)
C6	0.0147 (11)	0.0237 (12)	0.0296 (12)	0.0015 (10)	-0.0034 (12)	0.0107 (12)
C7	0.0180 (11)	0.0145 (10)	0.0150 (10)	0.0012 (9)	0.0035 (10)	-0.0010 (10)
C8	0.0188 (11)	0.0186 (11)	0.0214 (11)	-0.0034 (9)	0.0003 (11)	0.0012 (11)

Geometric parameters (Å, °)

<u>81—02</u>	1.4316 (17)	C2—C3	1.376 (3)	
S1—01	1.4446 (17)	C2—H2A	0.9500	
S1—N1	1.608 (2)	C3—C4	1.391 (3)	
S1—C1	1.762 (2)	С3—НЗА	0.9500	
O3—C7	1.238 (3)	C4—C5	1.394 (3)	
N1—H1	0.880 (10)	C5—C6	1.388 (3)	
N1—H2	0.885 (10)	С5—Н5	0.9500	
N2—C7	1.355 (3)	С6—Н6	0.9500	
N2—C4	1.413 (3)	C7—C8	1.501 (3)	
N2—H3	0.878 (10)	C8—H8A	0.9800	
C1—C2	1.384 (3)	C8—H8B	0.9800	
C1—C6	1.390 (3)	C8—H8C	0.9800	
02—\$1—01	118.55 (11)	С4—С3—НЗА	119.7	
O2—S1—N1	107.74 (11)	C3—C4—C5	120.3 (2)	

O1—S1—N1	106.36 (10)	C3—C4—N2	115.9 (2)
O2—S1—C1	107.16 (10)	C5-C4-N2	123.8 (2)
01—S1—C1	108.19 (11)	C6—C5—C4	118.9 (2)
N1—S1—C1	108.52 (11)	С6—С5—Н5	120.5
S1—N1—H1	114 (2)	C4—C5—H5	120.5
S1—N1—H2	111 (2)	C5—C6—C1	120.3 (2)
H1—N1—H2	119 (3)	С5—С6—Н6	119.9
C7—N2—C4	128.99 (19)	C1—C6—H6	119.9
C7—N2—H3	113.4 (18)	O3—C7—N2	122.3 (2)
C4—N2—H3	117.6 (18)	O3—C7—C8	122.33 (19)
C2—C1—C6	120.5 (2)	N2—C7—C8	115.34 (19)
C2—C1—S1	120.10 (17)	C7—C8—H8A	109.5
C6—C1—S1	119.40 (18)	C7—C8—H8B	109.5
C3—C2—C1	119.5 (2)	H8A—C8—H8B	109.5
C3—C2—H2A	120.2	C7—C8—H8C	109.5
C1—C2—H2A	120.2	H8A—C8—H8C	109.5
C2—C3—C4	120.5 (2)	H8B—C8—H8C	109.5
С2—С3—НЗА	119.7		
O2—S1—C1—C2	-6.7 (2)	C2—C3—C4—N2	-179.1 (2)
O1—S1—C1—C2	-135.60 (19)	C7—N2—C4—C3	-166.2 (2)
N1—S1—C1—C2	109.4 (2)	C7—N2—C4—C5	15.6 (4)
O2—S1—C1—C6	175.7 (2)	C3—C4—C5—C6	0.5 (4)
O1—S1—C1—C6	46.8 (2)	N2-C4-C5-C6	178.6 (2)
N1—S1—C1—C6	-68.2 (2)	C4C5C1	-0.1 (4)
C6—C1—C2—C3	-0.3 (4)	C2-C1-C6-C5	0.0 (4)
S1—C1—C2—C3	-177.88 (19)	S1—C1—C6—C5	177.6 (2)
C1—C2—C3—C4	0.7 (3)	C4—N2—C7—O3	0.5 (4)
C2—C3—C4—C5	-0.8 (4)	C4—N2—C7—C8	-177.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H··· A
N1—H1…O3 ⁱ	0.88 (1)	2.08 (1)	2.935 (3)	163 (3)
N1—H2···O3 ⁱⁱ	0.89(1)	2.04 (1)	2.929 (3)	178 (3)
N2—H3···O1 ⁱⁱⁱ	0.88 (1)	2.34 (2)	3.156 (3)	155 (2)

Symmetry codes: (i) -y+3/2, -x+3/2, z+1/2; (ii) -x+1, -y+2, z; (iii) x+1/2, -y+3/2, -z+3/2.