Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 2-(4-Sulfamoylphenyl)hydrazin-1-ium chloride

### Abdullah M. Asiri,<sup>a,b</sup>‡ Hassan M. Faidallah,<sup>a</sup> Khalid A. Alamry,<sup>a</sup> Seik Weng Ng<sup>c,a</sup> and Edward R. T. Tiekink<sup>a</sup>\*

<sup>a</sup>Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, <sup>b</sup>The Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and <sup>c</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 12 March 2012; accepted 16 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.084; data-to-parameter ratio = 14.3.

The hydrazinium residue in the cation of the title salt,  $C_6H_{10}N_3O_2S^+ \cdot Cl^-$ , is twisted out of the plane of the benzene ring to which it is attached [N-N-C-C torsion angle = 25.9 (2)°] and the amino group is almost perpendicular to the benzene ring [N-S-C-C torsion angle = 88.71 (16)°]. In the crystal, the cations are linked by  $N-H \cdot \cdot \cdot O$  hydrogen bonds and  $\pi - \pi$  interactions [ring centroid distance = 3.7280 (11) Å], forming layers in the *bc* plane that are connected by  $N-H \cdot \cdot \cdot Cl$  hydrogen bonds.

### **Related literature**

For background to the biological applications of related sulfonamides, see: Croitoru *et al.* (2004); Dogruer *et al.* (2010). For related structures, see: Asiri *et al.* (2011, 2012).



### Experimental

Crystal data

 $\begin{array}{l} {\rm C_6H_{10}N_3O_2S^+ \cdot Cl^-} \\ M_r = 223.68 \\ {\rm Monoclinic, \ } P2_1/c \\ a = 10.2203 \ (8) \ {\rm \AA} \\ b = 9.8883 \ (7) \ {\rm \AA} \\ c = 9.1948 \ (8) \ {\rm \AA} \\ \beta = 107.647 \ (9)^\circ \end{array}$ 

| $V = 885.51 (12) \text{ Å}^3$     |   |
|-----------------------------------|---|
| Z = 4                             |   |
| Mo $K\alpha$ radiation            |   |
| $\mu = 0.64 \text{ mm}^{-1}$      |   |
| T = 100  K                        |   |
| $0.35 \times 0.30 \times 0.25$ mm | r |
|                                   |   |

‡ Additional correspondence author, e-mail: aasiri2@kau.edu.sa.





### Data collection

```
Agilent SuperNova Dual
diffractometer with an Atlas
detector
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
T_{\rm min} = 0.808, T_{\rm max} = 0.857
```

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ H at $wR(F^2) = 0.084$ inS = 1.03re2026 reflections $\Delta \rho_{\rm m}$ 142 parameters $\Delta \rho_{\rm m}$ 6 restraints

3570 measured reflections 2026 independent reflections 1767 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.024$ 

| H atoms treated by a mixture of                            |
|------------------------------------------------------------|
| independent and constrained                                |
| refinement                                                 |
| $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### **Table 1** Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                 | $D-\mathrm{H}$  | $H \cdot \cdot \cdot A$               | $D \cdots A$                  | $D - \mathbf{H} \cdot \cdot \cdot A$   |
|---------------------------------------------|-----------------|---------------------------------------|-------------------------------|----------------------------------------|
| N1-H1···Cl1                                 | 0.89(1)         | 2.28 (1)                              | 3.1319 (17)                   | 162 (2)                                |
| $N1 - H2 \cdot \cdot \cdot O2^{i}$          | 0.88 (2)        | 2.03 (2)                              | 2.835 (2)                     | 152 (2)                                |
| $N1 - H3 \cdot \cdot \cdot Cl1^{ii}$        | 0.88 (2)        | 2.46 (2)                              | 3.2136 (18)                   | 144 (2)                                |
| N1-H3···O1 <sup>iii</sup>                   | 0.88(2)         | 2.46 (2)                              | 3.083 (2)                     | 129 (2)                                |
| $N2-H4\cdots Cl1^{iv}$                      | 0.89 (2)        | 2.67 (2)                              | 3.3647 (16)                   | 137 (2)                                |
| $N3-H5\cdots Cl1^{v}$                       | 0.88(1)         | 2.42 (2)                              | 3.2656 (17)                   | 163 (2)                                |
| $N3-H6\cdots Cl1^{vi}$                      | 0.87 (1)        | 2.48 (2)                              | 3.2467 (17)                   | 147 (2)                                |
| Symmetry codes:                             | (i) $-x + 1, -$ | -y + 1, -z + 1;                       | (ii) $-x + 2, y +$            | $\frac{1}{2}, -z + \frac{3}{2};$ (iii) |
| $x + 1, -y + \frac{1}{2}, z + \frac{1}{2};$ | (iv) $x, -y$    | $y + \frac{1}{2}, z + \frac{1}{2};$ ( | v) $-x + 1, y + \frac{1}{2},$ | $-z + \frac{3}{2}$ ; (vi)              |

-x+1, -y, -z+1.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6680).

### References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, 02424.

Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, 0762–0763.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Croitoru, M., Pintilie, L., Tanase, C., Caproiu, M. T. & Draghici, C. (2004). Rev. Chem. (Bucharest), 55, 993–997.

Dogruer, D. S., Urlu, S., Onkol, T., Ozcelik, B. & Sahin, M. F. (2010). Turk. J. Chem. 34, 57–65.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

Acta Cryst. (2012). E68, o1140 [https://doi.org/10.1107/S1600536812011452]

## 2-(4-Sulfamoylphenyl)hydrazin-1-ium chloride

# Abdullah M. Asiri, Hassan M. Faidallah, Khalid A. Alamry, Seik Weng Ng and Edward R. T. Tiekink

## S1. Comment

Sulphonamides related to the title salt, 2-(4-sulfamoylphenyl)hydrazinium chloride (I), are known to possess pharmacological properties. For example, *N*-substituted pyrazolyl-benzensulfonamides are known to selectively inhibit COX–2 (Croitoru *et al.*, 2004) and other derivatives were reported to exhibit anti-microbial and anti-fungal activities (Dogruer *et al.* 2010). The crystal and molecular structure of 2-(4-sulfamoylphenyl)hydrazinium chloride (I) is reported herein, as a continuation of structural studies of these systems (Asiri *et al.*, 2011; Asiri *et al.*, 2012).

The crystallographic asymmetric unit of (I) comprises a hydrazinium cation charge balanced by a chloride, Fig. 1. The hydrazinium residue is twisted out of the plane of the benzene ring to which it is attached as seen in the value of the N1—N2—C4—C3 torsion angle of 25.9 (2)°. The amino group occupies a position perpendicular to the benzene ring with the N3—S1—C1—C2 torsion angle being 88.71 (16)°; the ammonium and amino groups are orientated to opposite sides of the benzene ring.

The cations are linked by N—H···O hydrogen bonds, Table 1, and  $\pi$ — $\pi$  interactions [ring centroid distance = 3.7280 (11) Å for symmetry operation: 1 - *x*, 1 - *y*, 1 - *z*] to form layers in the *bc* plane. The cations are connected to the chloride anions by N—H···Cl hydrogen bonds, Table 1, leading to a three-dimensional architecture.

## **S2. Experimental**

Diazotization of sulfonamide with NaNO<sub>2</sub>/HCl followed by reduction with sodium sulfite afforded the title salt which was crystallized from ethanol as irregular light-brown chunks. Yield: 72%. *M*.pt. 488–490 K.

### **S3. Refinement**

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 Å,  $U_{iso}(H) = 1.2U_{eq}(C)$ ] and were included in the refinement in the riding model approximation. The N—H atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å; their  $U_{iso}$  values were refined.







### Figure 2

A view in projection down the *c* axis of the unit-cell contents of (I). The N—H···O, N—H···Cl and  $\pi$ — $\pi$  interactions are shown as orange, blue and purple dashed lines, respectively.

F(000) = 464 $D_{\rm x} = 1.678 \text{ Mg m}^{-3}$ 

 $\theta = 2.3 - 27.5^{\circ}$ 

 $\mu = 0.64 \text{ mm}^{-1}$ T = 100 K

Irregular, light-brown  $0.35 \times 0.30 \times 0.25$  mm

Mo *Ka* radiation,  $\lambda = 0.71073$  Å

Cell parameters from 2194 reflections

2-(4-Sulfamoylphenyl)hydrazin-1-ium chloride

### Crystal data

C<sub>6</sub>H<sub>10</sub>N<sub>3</sub>O<sub>2</sub>S<sup>+</sup>·Cl<sup>-</sup>  $M_r = 223.68$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 10.2203 (8) Å b = 9.8883 (7) Å c = 9.1948 (8) Å  $\beta = 107.647$  (9)° V = 885.51 (12) Å<sup>3</sup> Z = 4

### Data collection

| Agilent SuperNova Dual                               | Absorption correction: multi-scan            |
|------------------------------------------------------|----------------------------------------------|
| diffractometer with an Atlas detector                | (CrysAlis PRO; Agilent, 2011)                |
| Radiation source: SuperNova (Mo) X-ray               | $T_{\rm min} = 0.808, \ T_{\rm max} = 0.857$ |
| Source                                               | 3570 measured reflections                    |
| Mirror monochromator                                 | 2026 independent reflections                 |
| Detector resolution: 10.4041 pixels mm <sup>-1</sup> | 1767 reflections with $I > 2\sigma(I)$       |
| $\omega$ scan                                        | $R_{ m int}=0.024$                           |
|                                                      |                                              |

| $k = -12 \rightarrow 12$                                   |
|------------------------------------------------------------|
| $l = -9 \rightarrow 11$                                    |
|                                                            |
| Secondary atom site location: difference Fourier           |
| map                                                        |
| Hydrogen site location: inferred from                      |
| neighbouring sites                                         |
| H atoms treated by a mixture of independent                |
| and constrained refinement                                 |
| $w = 1/[\sigma^2(F_o^2) + (0.0404P)^2 + 0.3504P]$          |
| where $P = (F_o^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| $\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$ |
|                                                            |

| Fractional atomic coordinates and isot | tropic or equivalent | isotropic displacement | parameters (Ų) |
|----------------------------------------|----------------------|------------------------|----------------|
|----------------------------------------|----------------------|------------------------|----------------|

|            | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------------|--------------|--------------|--------------|-----------------------------|--|
| Cl1        | 0.86073 (5)  | -0.03338 (4) | 0.61107 (5)  | 0.01345 (14)                |  |
| <b>S</b> 1 | 0.21204 (4)  | 0.40936 (4)  | 0.48750 (5)  | 0.00899 (13)                |  |
| 01         | 0.17687 (13) | 0.36536 (13) | 0.33148 (14) | 0.0118 (3)                  |  |
| N3         | 0.13229 (16) | 0.31234 (16) | 0.57265 (18) | 0.0114 (3)                  |  |
| N1         | 0.89021 (16) | 0.26661 (17) | 0.72569 (19) | 0.0124 (3)                  |  |
| N2         | 0.80635 (16) | 0.32732 (16) | 0.80730 (17) | 0.0119 (3)                  |  |
| O2         | 0.18027 (13) | 0.54566 (12) | 0.51886 (15) | 0.0129 (3)                  |  |
| C1         | 0.38970 (18) | 0.38531 (18) | 0.5743 (2)   | 0.0095 (4)                  |  |
| C2         | 0.46066 (19) | 0.28593 (18) | 0.5230 (2)   | 0.0112 (4)                  |  |
| H2A        | 0.4148       | 0.2318       | 0.4374       | 0.013*                      |  |
| C3         | 0.59980 (19) | 0.26604 (18) | 0.5979 (2)   | 0.0108 (4)                  |  |
| H3A        | 0.6489       | 0.1979       | 0.5635       | 0.013*                      |  |
| C4         | 0.66731 (18) | 0.34606 (18) | 0.7235 (2)   | 0.0094 (4)                  |  |
| C5         | 0.59489 (19) | 0.44578 (18) | 0.7736 (2)   | 0.0119 (4)                  |  |
| H5A        | 0.6405       | 0.5005       | 0.8588       | 0.014*                      |  |
| C6         | 0.45657 (19) | 0.46530 (18) | 0.6994 (2)   | 0.0118 (4)                  |  |
| H6A        | 0.4073       | 0.5333       | 0.7338       | 0.014*                      |  |
| H1         | 0.874 (2)    | 0.1789 (11)  | 0.710 (3)    | 0.021 (6)*                  |  |
| H2         | 0.879 (2)    | 0.302 (2)    | 0.6347 (16)  | 0.027 (7)*                  |  |
| H3         | 0.9755 (12)  | 0.284 (2)    | 0.779 (2)    | 0.030 (7)*                  |  |
| H4         | 0.842 (2)    | 0.4043 (16)  | 0.851 (3)    | 0.032 (7)*                  |  |
| H5         | 0.145 (3)    | 0.339 (2)    | 0.6667 (14)  | 0.029 (7)*                  |  |
| H6         | 0.148 (2)    | 0.2263 (11)  | 0.564 (3)    | 0.024 (6)*                  |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$     | $U^{13}$     | $U^{23}$     |  |
|-----|------------|------------|------------|--------------|--------------|--------------|--|
| Cl1 | 0.0161 (2) | 0.0110 (2) | 0.0118 (2) | 0.00202 (17) | 0.00197 (18) | 0.00096 (16) |  |
| S1  | 0.0077 (2) | 0.0090 (2) | 0.0098 (2) | 0.00040 (16) | 0.00203 (17) | 0.00041 (16) |  |
| O1  | 0.0122 (6) | 0.0137 (6) | 0.0087 (6) | -0.0005(5)   | 0.0018 (5)   | 0.0004 (5)   |  |
| N3  | 0.0117 (8) | 0.0114 (8) | 0.0114 (8) | -0.0016 (6)  | 0.0041 (6)   | -0.0003 (6)  |  |

# supporting information

| N1 | 0.0074 (8) | 0.0142 (8) | 0.0154 (8) | 0.0007 (6)  | 0.0030(7)  | -0.0008 (7) |
|----|------------|------------|------------|-------------|------------|-------------|
| N2 | 0.0094 (7) | 0.0115 (7) | 0.0133 (8) | 0.0004 (6)  | 0.0014 (6) | -0.0020 (6) |
| O2 | 0.0119 (6) | 0.0097 (6) | 0.0163 (7) | 0.0020 (5)  | 0.0029 (5) | 0.0001 (5)  |
| C1 | 0.0077 (8) | 0.0104 (8) | 0.0105 (9) | -0.0006 (7) | 0.0028 (7) | 0.0019 (7)  |
| C2 | 0.0110 (8) | 0.0108 (8) | 0.0112 (9) | -0.0022 (7) | 0.0025 (7) | -0.0017 (7) |
| C3 | 0.0105 (8) | 0.0094 (8) | 0.0135 (9) | 0.0011 (7)  | 0.0052 (7) | 0.0002 (7)  |
| C4 | 0.0077 (8) | 0.0096 (8) | 0.0104 (8) | 0.0002 (7)  | 0.0020 (7) | 0.0043 (7)  |
| C5 | 0.0136 (9) | 0.0104 (8) | 0.0106 (9) | -0.0011 (7) | 0.0020 (7) | -0.0020(7)  |
| C6 | 0.0122 (9) | 0.0111 (9) | 0.0125 (9) | 0.0009 (7)  | 0.0044 (7) | -0.0008 (7) |
|    |            |            |            |             |            |             |

Geometric parameters (Å, °)

| S1—02                   | 1.4358 (13)            | N2—H4                   | 0.887 (10)   |
|-------------------------|------------------------|-------------------------|--------------|
| S1—01                   | 1.4366 (13)            | C1—C2                   | 1.386 (3)    |
| S1—N3                   | 1.6076 (16)            | C1—C6                   | 1.392 (3)    |
| S1—C1                   | 1.7640 (18)            | C2—C3                   | 1.393 (3)    |
| N3—H5                   | 0.876 (10)             | C2—H2A                  | 0.9500       |
| N3—H6                   | 0.873 (10)             | C3—C4                   | 1.397 (3)    |
| N1—N2                   | 1.431 (2)              | С3—НЗА                  | 0.9500       |
| N1—H1                   | 0.886 (10)             | C4—C5                   | 1.392 (3)    |
| N1—H2                   | 0.883 (10)             | C5—C6                   | 1.384 (3)    |
| N1—H3                   | 0.877 (10)             | C5—H5A                  | 0.9500       |
| N2—C4                   | 1.408 (2)              | С6—Н6А                  | 0.9500       |
| 02 51 01                | 110 70 (0)             | $C_{1}$ $C_{1}$ $C_{4}$ | 120 40 (16)  |
| 02-51-01                | 118./8(8)<br>106.47(8) | $C_2 = C_1 = C_0$       | 120.49 (16)  |
| 02-51-N3                | 100.47(8)              | $C_2 = C_1 = S_1$       | 120.90 (14)  |
| OI = SI = NS            | 107.17(8)              | $C_0 - C_1 - S_1$       | 118.32 (14)  |
| 02 = S1 = C1            | 107.40 (8)             | C1 = C2 = C3            | 119.31 (10)  |
|                         | 108.83 (8)             | C1 = C2 = H2A           | 120.2        |
| $N_3 = S_1 = C_1$       | 107.00(8)              | $C_3 = C_2 = H_2 A$     | 120.2        |
| SI—N3—H5                | 110.8 (16)             | $C_2 = C_3 = C_4$       | 120.19 (17)  |
| SI-N3-H6                | 113.8 (16)             | $C_2 = C_3 = H_3 A$     | 119.9        |
| $H_{2} = N_{3} = H_{0}$ | 114(2)                 | C4—C3—H3A               | 119.9        |
| N2—N1—H1                | 112.5 (15)             | $C_{5} - C_{4} - C_{3}$ | 119.70 (16)  |
| N2—N1—H2                | 113.9 (15)             | $C_{2}$ $C_{4}$ $N_{2}$ | 117.49 (16)  |
| HI—NI—H2                | 106 (2)                | C3—C4—N2                | 122.76 (16)  |
| N2—N1—H3                | 106.2 (16)             | C6—C5—C4                | 120.12 (17)  |
| H1—N1—H3                | 113 (2)                | C6—C5—H5A               | 119.9        |
| H2—N1—H3                | 106 (2)                | C4—C5—H5A               | 119.9        |
| C4—N2—N1                | 115.70 (14)            | C5—C6—C1                | 120.00 (17)  |
| C4—N2—H4                | 110.0 (16)             | С5—С6—Н6А               | 120.0        |
| N1—N2—H4                | 111.8 (17)             | С1—С6—Н6А               | 120.0        |
| O2—S1—C1—C2             | -156.96 (14)           | C2—C3—C4—C5             | 0.0 (3)      |
| 01—S1—C1—C2             | -27.13 (17)            | C2-C3-C4-N2             | 177.52 (17)  |
| N3—S1—C1—C2             | 88.71 (16)             | N1—N2—C4—C5             | -156.52 (16) |
| O2—S1—C1—C6             | 25.25 (17)             | N1—N2—C4—C3             | 25.9 (2)     |
| 01—S1—C1—C6             | 155.08 (14)            | C3—C4—C5—C6             | 0.1 (3)      |
|                         |                        |                         |              |

# supporting information

| N3—S1—C1—C6 | -89.07 (16)  | N2—C4—C5—C6 | -177.47 (17) |
|-------------|--------------|-------------|--------------|
| C6—C1—C2—C3 | 0.3 (3)      | C4—C5—C6—C1 | -0.1 (3)     |
| S1—C1—C2—C3 | -177.48 (14) | C2-C1-C6-C5 | -0.1 (3)     |
| C1—C2—C3—C4 | -0.2 (3)     | S1—C1—C6—C5 | 177.71 (14)  |

Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i>    | D—H      | H…A      | D···A       | D—H…A   |
|----------------------------|----------|----------|-------------|---------|
| N1—H1···Cl1                | 0.89(1)  | 2.28 (1) | 3.1319 (17) | 162 (2) |
| N1—H2···O2 <sup>i</sup>    | 0.88 (2) | 2.03 (2) | 2.835 (2)   | 152 (2) |
| N1—H3···Cl1 <sup>ii</sup>  | 0.88 (2) | 2.46 (2) | 3.2136 (18) | 144 (2) |
| N1—H3···O1 <sup>iii</sup>  | 0.88 (2) | 2.46 (2) | 3.083 (2)   | 129 (2) |
| N2—H4····Cl1 <sup>iv</sup> | 0.89 (2) | 2.67 (2) | 3.3647 (16) | 137 (2) |
| N3—H5···Cl1 <sup>v</sup>   | 0.88 (1) | 2.42 (2) | 3.2656 (17) | 163 (2) |
| N3—H6…Cl1 <sup>vi</sup>    | 0.87 (1) | 2.48 (2) | 3.2467 (17) | 147 (2) |

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+2, *y*+1/2, -*z*+3/2; (iii) *x*+1, -*y*+1/2, *z*+1/2; (iv) *x*, -*y*+1/2, *z*+1/2; (v) -*x*+1, *y*+1/2, -*z*+3/2; (vi) -*x*+1, -*y*, -*z*+1.