

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Chloro-4-methylquinolin-2(1H)-one

Mohamed G. Kassem,^a Hazem A. Ghabbour,^a Hatem A. Abdel-Aziz,^a Hoong-Kun Fun^b*‡ and Chin Wei Ooi^b

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 5 March 2012; accepted 6 March 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.105; data-to-parameter ratio = 11.9.

The title compound, $C_{10}H_8$ ClNO, is almost planar (r.m.s. deviation for the 13 non-H atoms = 0.023 Å). In the crystal, inversion dimers linked by pairs of N-H···O hydrogen bonds generate $R_2^2(8)$ rings. Weak aromatic π - π stacking interactions [centroid–centroid distance = 3.7622(12) Å] also occur.

Related literature

For the biological activity of quinoline, see: Michael et al. (1996). For the synthesis, see: Hodgkinson & Staskun (1969). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Vasuki et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

C10H8CINO $M_r = 193.62$ Monoclinic, $P2_1/c$ a = 3.9361 (2) Å b = 12.9239 (6) Å c = 17.1019 (7) Å $\beta = 100.197 \ (4)^{\circ}$

```
V = 856.23 (7) Å<sup>3</sup>
Z = 4
Cu K\alpha radiation
\mu = 3.56 \text{ mm}^{-1}
T = 296 \text{ K}
0.92 \times 0.10 \times 0.10 \ \text{mm}
```

5522 measured reflections

 $R_{\rm int} = 0.040$

1434 independent reflections

1178 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII CCD

```
diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2009)
  T_{\rm min} = 0.138, T_{\rm max} = 0.720
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	120 parameters
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
1434 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^i$	0.93	1.91	2.816 (2)	166
Symmetry code: (i)	-x + 2, -y + 1,	-z + 1.		

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Government and USM for the award of the post of research assistant under the Research University Grant (1001/PFIZIK/811151). The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6671).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hodgkinson, A. J. & Staskun, B. (1969). J. Org. Chem. 34, 1709-1713.
- Michael, J. P., De Koning, C. B. & Stanbury, T. V. (1996). Tetrahedron Lett. 37, 9403-9406.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vasuki, G., Parthasarathi, V., Ramamurthi, K., Jaisankar, P. & Varghese, B. (2001). Acta Cryst. E57, o234-o235.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

supporting information

Acta Cryst. (2012). E68, o1043 [https://doi.org/10.1107/S1600536812009889]

3-Chloro-4-methylquinolin-2(1H)-one

Mohamed G. Kassem, Hazem A. Ghabbour, Hatem A. Abdel-Aziz, Hoong-Kun Fun and Chin Wei Ooi

S1. Comment

For the previous reports of the chemistry and the biological activity of quinolines, see Michael et al. (1996).

In the title compound (Fig. 1), the quinoline ring (N1/C1–C9) is essentially planar with a maximum deviation of 0.012 (2) Å at atom C1. The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges are comparable to the related structure (Vasuki *et al.*, 2001).

In the crystal structure (Fig. 2), the adjacent molecules are linked *via* pair of N1—H1…O1 (Table 1) hydrogen bonds, forming dimers with an R_2^2 (8) ring motif (Bernstein *et al.*, 1995). The crystal structure is further stabilized by weak π — π interactions between the benzene ring (*Cg*1; C4–C9) and quinoline ring (*Cg*2; N1/C1–C9). [*Cg*1…*Cg*2 = 3.7622 (12) Å; 1+x, y, z].

S2. Experimental

This compound was prepared according to the reported method (Hodgkinson & Staskun, 1969). Colorless needles of the title compound were grown from a mixed solution of EtOH/DMF (V/V = 2/1) by slow evaporation at room temperature.

S3. Refinement

Atom H1 was located from the difference map and was fixed at their found positions with $U_{iso}(H) = 1.2 U_{eq}(N)$ [N–H = 0.9256 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$ (C—H = 0.93 and 0.96 Å). A rotating group model was applied to the methyl group.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Figure 2

The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

3-Chloro-4-methylquinolin-2(1H)-one

Crystal data
C ₁₀ H ₈ ClNO
$M_r = 193.62$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 3.9361 (2) Å
b = 12.9239(6) Å

c = 17.1019 (7) Å $\beta = 100.197 (4)^{\circ}$ $V = 856.23 (7) \text{ Å}^{3}$ Z = 4 F(000) = 400 $D_x = 1.502 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 615 reflections $\theta = 4.3-63.6^{\circ}$ $\mu = 3.56 \text{ mm}^{-1}$ T = 296 KNeedle, colourless $0.92 \times 0.10 \times 0.10 \text{ mm}$ Data collection

Bruker APEXII CCD diffractometer	5522 measured reflections 1434 independent reflections
Radiation source: fine-focus sealed tube	1178 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.040$
φ and ω scans	$\theta_{\rm max} = 64.9^{\circ}, \ \theta_{\rm min} = 4.3^{\circ}$
Absorption correction: multi-scan	$h = -4 \rightarrow 3$
(SADABS; Bruker, 2009)	$k = -15 \rightarrow 14$
$T_{\min} = 0.138, T_{\max} = 0.720$	$l = -20 \rightarrow 17$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.105$	$w = 1/[\sigma^2(F_o^2) + (0.0755P)^2]$
S = 1.00	where $P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3$
1434 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
120 parameters	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta ho_{\min} = -0.21 \text{ e} \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0031 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	7.	Uico*/Uea	
C11	1 04066 (14)	0 51266 (4)	0 76645 (3)	0.0516(2)	
01	1.0673 (4)	0.46152(12)	0.60239(9)	0.0560(4)	
N1	0.7804 (4)	0.60196 (13)	0.54512 (9)	0.0422 (4)	
H1	0.7928	0.5780	0.4947	0.051*	
C1	0.9152 (5)	0.54435 (15)	0.60939 (12)	0.0414 (4)	
C2	0.8689 (5)	0.58782 (15)	0.68546 (11)	0.0386 (4)	
C3	0.7149 (4)	0.68001 (14)	0.69302 (11)	0.0371 (4)	
C4	0.5836 (5)	0.73765 (14)	0.62192 (11)	0.0368 (4)	
C5	0.4234 (5)	0.83478 (16)	0.62245 (12)	0.0446 (5)	
H5A	0.3935	0.8637	0.6706	0.054*	
C6	0.3104 (6)	0.88763 (17)	0.55307 (14)	0.0529 (6)	
H6A	0.2094	0.9525	0.5546	0.064*	
C7	0.3468 (6)	0.84441 (18)	0.48054 (14)	0.0552 (6)	
H7A	0.2690	0.8804	0.4337	0.066*	
C8	0.4965 (5)	0.74913 (17)	0.47760 (12)	0.0477 (5)	

supporting information

H8A	0.5166	0.7198	0.4290	0.057*	
C9	0.6184 (5)	0.69643 (15)	0.54803 (11)	0.0385 (4)	
C10	0.6782 (6)	0.72335 (16)	0.77284 (11)	0.0468 (5)	
H10A	0.7537	0.6728	0.8133	0.070*	
H10B	0.4407	0.7403	0.7728	0.070*	
H10C	0.8168	0.7846	0.7833	0.070*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0660 (4)	0.0475 (3)	0.0416 (3)	0.0056 (2)	0.0105 (2)	0.0074 (2)
01	0.0806 (11)	0.0439 (9)	0.0462 (9)	0.0171 (8)	0.0183 (7)	-0.0027 (7)
N1	0.0548 (10)	0.0398 (9)	0.0339 (9)	0.0011 (7)	0.0134 (7)	-0.0035 (7)
C1	0.0486 (11)	0.0363 (10)	0.0412 (10)	-0.0011 (8)	0.0129 (8)	-0.0036 (8)
C2	0.0443 (10)	0.0376 (10)	0.0351 (10)	-0.0038 (7)	0.0104 (7)	0.0000 (8)
C3	0.0386 (10)	0.0392 (10)	0.0349 (10)	-0.0065 (7)	0.0105 (7)	-0.0042 (8)
C4	0.0369 (10)	0.0363 (10)	0.0382 (10)	-0.0046 (7)	0.0090 (7)	-0.0041 (8)
C5	0.0451 (11)	0.0415 (11)	0.0474 (12)	-0.0002 (8)	0.0086 (8)	-0.0062 (9)
C6	0.0528 (12)	0.0430 (11)	0.0610 (14)	0.0065 (9)	0.0046 (10)	0.0014 (10)
C7	0.0574 (13)	0.0547 (14)	0.0506 (13)	0.0009 (10)	0.0014 (10)	0.0121 (10)
C8	0.0559 (12)	0.0498 (12)	0.0374 (11)	-0.0005 (9)	0.0084 (8)	0.0017 (9)
C9	0.0395 (10)	0.0389 (10)	0.0380 (10)	-0.0045 (7)	0.0096 (7)	-0.0026 (8)
C10	0.0551 (12)	0.0491 (12)	0.0380 (10)	0.0024 (9)	0.0128 (8)	-0.0080 (9)

Geometric parameters (Å, °)

Cl1—C2	1.728 (2)	C5—C6	1.373 (3)
01—C1	1.243 (3)	С5—Н5А	0.9300
N1-C1	1.355 (3)	C6—C7	1.391 (3)
N1—C9	1.382 (3)	С6—Н6А	0.9300
N1—H1	0.9256	C7—C8	1.370 (3)
C1—C2	1.458 (3)	C7—H7A	0.9300
C2—C3	1.353 (3)	C8—C9	1.393 (3)
C3—C4	1.442 (3)	C8—H8A	0.9300
C3—C10	1.506 (2)	C10—H10A	0.9600
C4—C9	1.400 (3)	C10—H10B	0.9600
C4—C5	1.406 (3)	C10—H10C	0.9600
C1 N1 C0	124.05 (17)	C5 C6 C7	120.2 (2)
CI = NI = UI	124.93 (17)	C_{5}	120.2 (2)
CI = NI = HI	119.0	C3 - C0 - H0A	119.9
C9—NI—HI	115.4	С/—Сб—НбА	119.9
01—C1—N1	121.42 (18)	C8—C7—C6	120.4 (2)
O1—C1—C2	123.80 (19)	С8—С7—Н7А	119.8
N1-C1-C2	114.78 (17)	С6—С7—Н7А	119.8
C3—C2—C1	123.60 (18)	C7—C8—C9	119.5 (2)
C3—C2—Cl1	122.45 (15)	C7—C8—H8A	120.3
C1—C2—Cl1	113.93 (15)	C9—C8—H8A	120.3
C2—C3—C4	118.30 (17)	N1—C9—C8	119.43 (18)

C2—C3—C10	122.04 (18)	N1—C9—C4	119.21 (18)
C4—C3—C10	119.65 (17)	C8—C9—C4	121.37 (19)
C9—C4—C5	117.48 (18)	C3—C10—H10A	109.5
C9—C4—C3	119.13 (18)	C3—C10—H10B	109.5
C5—C4—C3	123.38 (18)	H10A-C10-H10B	109.5
C6—C5—C4	121.0 (2)	C3—C10—H10C	109.5
С6—С5—Н5А	119.5	H10A-C10-H10C	109.5
C4—C5—H5A	119.5	H10B-C10-H10C	109.5
C9—N1—C1—O1	-177.64 (19)	C9—C4—C5—C6	-0.9 (3)
C9—N1—C1—C2	1.9 (3)	C3—C4—C5—C6	178.36 (19)
O1—C1—C2—C3	177.3 (2)	C4—C5—C6—C7	1.4 (3)
N1—C1—C2—C3	-2.2 (3)	C5—C6—C7—C8	-0.3 (3)
O1-C1-C2-Cl1	-0.8 (3)	C6—C7—C8—C9	-1.2 (3)
N1-C1-C2-Cl1	179.65 (14)	C1—N1—C9—C8	178.74 (18)
C1—C2—C3—C4	1.2 (3)	C1—N1—C9—C4	-0.6 (3)
Cl1—C2—C3—C4	179.19 (13)	C7—C8—C9—N1	-177.72 (19)
C1—C2—C3—C10	-178.76 (18)	C7—C8—C9—C4	1.6 (3)
Cl1—C2—C3—C10	-0.7 (3)	C5-C4-C9-N1	178.79 (17)
C2—C3—C4—C9	0.2 (3)	C3—C4—C9—N1	-0.5 (3)
C10—C3—C4—C9	-179.84 (16)	C5—C4—C9—C8	-0.5 (3)
C2—C3—C4—C5	-179.06 (18)	C3—C4—C9—C8	-179.88 (17)
C10—C3—C4—C5	0.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N1—H1···O1 ⁱ	0.93	1.91	2.816 (2)	166

Symmetry code: (i) -x+2, -y+1, -z+1.