Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,3-Bis(1-phenylethyl)imidazolidine-2thione

M. Naveed Umar, ${ }^{\text {a }}$ M. Nawaz Tahir, ${ }^{\text {b }}{ }^{\text {* }}$ Mohammad Shoaib, ${ }^{\text {c }}$ Akbar Ali ${ }^{\text {a }}$ and Imran Khan ${ }^{\text {d }}$
${ }^{\mathbf{a}}$ Department of Chemistry, University of Malakand, Pakistan, ${ }^{\mathbf{b}}$ University of Sargodha, Department of Physics, Sargodha, Pakistan, ${ }^{\text {c Department of Pharmacy, }}$ University of Malakand, Pakistan, and ${ }^{\text {d }}$ Department of Biotechnology, University of Malakand, Pakistan
Correspondence e-mail: dmntahir_uos@yahoo.com

Received 18 March 2012; accepted 21 March 2012

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.070 ; w R$ factor $=0.170 ;$ data-to-parameter ratio $=16.2$.

The complete molecule of the title compound, $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}$, is generated by crystallographic twofold symmetry with the $\mathrm{C}=\mathrm{S}$ group lying on the rotation axis. The imidazolidine ring adopts a flattened twist conformation. The dihedral angle between the asymmetric part of the imidazolidine-2-thione fragment and the benzene ring is $89.49(17)^{\circ}$.

Related literature

For a related structure, see: Umar et al. (2012).

Experimental

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}$
$M_{r}=310.45$
Tetragonal, $P 4_{3} 2_{1} 2$
$a=5.8692$ (5) \AA

$$
\begin{aligned}
& c=50.637(5) \AA \\
& V=1744.3(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

Mo $K \alpha$ radiation

$\mu=0.18 \mathrm{~mm}^{-1}$	$0.28 \times 0.24 \times 0.20 \mathrm{~mm}$
$T=296 \mathrm{~K}$	
Data collection	
Bruker Kappa APEXII CCD	18956 measured reflections
\quad diffractometer	1717 independent reflections
Absorption correction: multi-scan	1150 reflections with $I>2 \sigma(I)$
$\quad(S A D A B S ;$ Bruker, 2005)	$R_{\text {int }}=0.062$
$T_{\min }=0.957, T_{\max }=0.966$	
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.070$	$\Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3}$
$w R\left(F^{2}\right)=0.170$	$\Delta \rho_{\min }=-0.17 \mathrm{e} \AA^{-3}$
$S=1.11$	Absolute structure: Flack (1983),
1717 reflections	569 Friedel pairs
106 parameters	Flack parameter: $0.1(3)$
H atoms treated by a mixture of	

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.18$ e \AA^{-3}
Absolute structure: Flack (1983), 569 Friedel pairs Flack parameter: 0.1 (3)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors from Malakand University also gratefully acknowledge the financial support provided by the Higher Education Commission (HEC), Islamabad, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2471).

References

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Umar, M. N., Tahir, M. N., Shoaib, M., Ali, A. \& Ziauddin, (2012). Acta Cryst. E68, o743.

supporting information

Acta Cryst. (2012). E68, o1188 [https://doi.org/10.1107/S160053681201224X]

1,3-Bis(1-phenylethyl)imidazolidine-2-thione

M. Naveed Umar, M. Nawaz Tahir, Mohammad Shoaib, Akbar Ali and Imran Khan

S1. Comment

The title compound, Fig. 1, has been synthesized as a part of our ongoing project related to imidazolidinethione.
Recently we have reported the crystal structure of 1,3-bis(1-cyclohexylethyl)imidazolidine (Umar et al., 2012) that is related to the title compound.
The molecule has twofold rotation symmetry about the $\mathrm{C}=\mathrm{S}$ bond of imidazolidinethione fragment and therefore the asymmetric unit consists of half of the molecule. The asymmetric part of imidazolidinethione fragment $\mathrm{A}(\mathrm{S} 1 / \mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 2)$ and the benzene ring $\mathrm{B}(\mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 9 / \mathrm{C} 10)$ form the dihedral angle of $89.49(17)^{\circ}$.

S2. Experimental

(S)-1-Phenylethanamine (2.5 equiv.) and 1,2-dibromoethane (1 equiv.) were placed in a pressure vessel and heated at 393 K for 5 h , during which the reaction mixture solidified. The system was cooled to room temperature and $\mathrm{NaOH}(1 \mathrm{~N}, 20$ ml) and ethyl acetate $(20 \mathrm{ml})$ were added into the reaction mixture. After dissolving the reaction mixture, the crude product was extracted with ethyl acetate $(3 \times 25 \mathrm{ml})$. The combined organic layers were concentrated and subjected to column chromatography. The product obtained from column chromatography (1 equiv.) was added to toluene (0.4 M) in pressure vessel and thiocarbonyldiimidazol (1.1 equiv.) was added to it. This mixture was heated at about 373 K for 15 h . Again the extraction with ethyl acetate ($3 \times 25 \mathrm{ml}$) was carried out by using column chromatography to get the required product (yield: 80%). White prisms of of the title compound were obtained by recrystalization from methanol during 48 h (m.p. 416 K).

S3. Refinement

The H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=\mathrm{x} U_{\text {eq }}(\mathrm{C})$, where $\mathrm{x}=$ 1.5 for methyl and $x=1.2$ for all other H -atoms.

Figure 1
View of the title molecule with displacement ellipsoids drawn at the 50% probability level. H atoms are shown by small circles of arbitrary radii.

1,3-Bis(1-phenylethyl)imidazolidine-2-thione

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}$
$M_{r}=310.45$
Tetragonal, $P 4_{3} 2_{1} 2$
Hall symbol: P 4nw 2abw
$a=5.8692$ (5) Å
$c=50.637$ (5) \AA
$V=1744.3(3) \AA^{3}$
$Z=4$
$F(000)=664$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 7.80 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min }=0.957, T_{\max }=0.966$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.070$
$w R\left(F^{2}\right)=0.170$
$S=1.11$
1717 reflections
106 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
$D_{\mathrm{x}}=1.182 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1150 reflections
$\theta=3.2-26.0^{\circ}$
$\mu=0.18 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, white
$0.28 \times 0.24 \times 0.20 \mathrm{~mm}$

18956 measured reflections
1717 independent reflections
1150 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-3 \rightarrow 7$
$k=-7 \rightarrow 7$
$l=-62 \rightarrow 62$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0459 P)^{2}+1.2139 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.18$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.011 (3)
Absolute structure: Flack (1983), 569 Friedel pairs
Absolute structure parameter: 0.1 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} / U_{\mathrm{eq}}$
S1	$1.12952(18)$	$1.12952(18)$	0.0000	$0.0805(6)$
N1	$0.8146(6)$	$0.8492(6)$	$0.02136(5)$	$0.0692(10)$
C1	$0.9276(6)$	$0.9276(6)$	0.0000	$0.0598(14)$
C2	$0.6343(8)$	$0.6919(7)$	$0.01411(7)$	$0.0723(12)$
H2A	0.4858	0.7636	0.0154	0.087^{*}
H2B	0.6367	0.5571	0.0252	0.087^{*}
C3	$0.8267(8)$	$0.9498(8)$	$0.04762(8)$	$0.0687(12)$
H3	$0.962(7)$	$1.038(7)$	$0.0469(8)$	0.082^{*}
C4	$0.6154(10)$	$1.0894(8)$	$0.05338(9)$	$0.1018(18)$
H4A	0.5884	1.1932	0.0391	0.153^{*}
H4B	0.6372	1.1738	0.0694	0.153^{*}
H4C	0.4868	0.9897	0.0553	0.153^{*}
C5	$0.8783(7)$	$0.7647(7)$	$0.06798(7)$	$0.0579(10)$
C6	$1.0569(8)$	$0.6131(9)$	$0.06414(9)$	$0.0843(14)$
H6	1.1454	0.6219	0.0489	0.101^{*}
C7	$1.1034(9)$	$0.4468(9)$	$0.08326(11)$	$0.0963(17)$
H7	1.2213	0.3437	0.0805	0.116^{*}
C8	$0.9810(11)$	$0.4343(9)$	$0.10538(10)$	$0.1002(19)$
H8	1.0161	0.3253	0.1181	0.120^{*}
C9	$0.8049(10)$	$0.5808(9)$	$0.10942(9)$	$0.0949(17)$
H9	0.7157	0.5700	0.1246	0.114^{*}
C10	$0.7614(8)$	$0.7429(8)$	$0.09100(7)$	$0.0764(12)$
H10	0.6442	0.8456	0.0943	0.092^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0776(8)$	$0.0776(8)$	$0.0861(11)$	$-0.0227(10)$	$-0.0077(7)$	$0.0077(7)$
N 1	$0.085(3)$	$0.070(2)$	$0.0521(17)$	$-0.0229(18)$	$-0.0062(16)$	$0.0039(17)$
C1	$0.062(2)$	$0.062(2)$	$0.056(3)$	$-0.002(3)$	$-0.007(2)$	$0.007(2)$
C2	$0.084(3)$	$0.073(3)$	$0.060(2)$	$-0.024(2)$	$-0.003(2)$	$0.0031(19)$
C3	$0.080(3)$	$0.063(3)$	$0.063(2)$	$-0.005(2)$	$-0.007(2)$	$-0.006(2)$
C4	$0.138(5)$	$0.081(4)$	$0.086(3)$	$0.046(4)$	$-0.015(3)$	$-0.008(3)$
C5	$0.057(2)$	$0.063(2)$	$0.053(2)$	$0.001(2)$	$-0.005(2)$	$-0.0054(18)$
C6	$0.070(3)$	$0.108(4)$	$0.074(3)$	$0.012(3)$	$0.003(2)$	$-0.006(3)$
C7	$0.089(4)$	$0.090(4)$	$0.110(4)$	$0.037(3)$	$-0.024(3)$	$-0.012(3)$

C8	$0.140(5)$	$0.084(4)$	$0.077(3)$	$0.021(4)$	$-0.034(3)$	$-0.002(3)$
C9	$0.123(5)$	$0.097(4)$	$0.065(3)$	$0.006(4)$	$0.003(3)$	$0.006(3)$
C10	$0.092(3)$	$0.079(3)$	$0.058(2)$	$0.017(2)$	$0.004(2)$	$-0.001(2)$

Geometric parameters (A, ${ }^{\circ}$)

S1-C1	1.676 (5)	C4-H4C	0.9600
N1-C1	1.350 (4)	C5-C10	1.359 (5)
N1-C2	1.451 (5)	C5-C6	1.388 (6)
N1-C3	1.456 (5)	C6-C7	1.402 (7)
$\mathrm{C} 1-\mathrm{N} 1^{\text {i }}$	1.350 (4)	C6-H6	0.9300
C2-C2 ${ }^{\text {i }}$	1.507 (7)	C7-C8	1.333 (7)
C2-H2A	0.9700	C7-H7	0.9300
C2-H2B	0.9700	C8-C9	1.360 (7)
C3-C4	1.515 (6)	C8-H8	0.9300
C3-C5	1.528 (6)	C9-C10	1.357 (6)
C3-H3	0.95 (4)	C9-H9	0.9300
C4-H4A	0.9600	C10-H10	0.9300
C4-H4B	0.9600		
C1-N1-C2	111.9 (3)	C3-C4-H4C	109.5
C1-N1-C3	124.7 (3)	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
C2-N1-C3	121.6 (3)	H4B-C4-H4C	109.5
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 1$	107.9 (4)	C10-C5-C6	116.2 (4)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{S} 1$	126.1 (2)	C10-C5-C3	123.1 (4)
N1-C1-S1	126.1 (2)	C6-C5-C3	120.7 (4)
N1-C2-C2 ${ }^{\text {i }}$	102.7 (2)	C5-C6-C7	119.8 (4)
N1-C2-H2A	111.2	C5-C6-H6	120.1
$\mathrm{C} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	111.2	C7-C6-H6	120.1
N1-C2-H2B	111.2	C8-C7-C6	120.9 (5)
$\mathrm{C} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	111.2	C8-C7-H7	119.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.1	C6-C7-H7	119.5
N1-C3-C4	110.8 (4)	C7-C8-C9	120.1 (5)
N1-C3-C5	109.7 (3)	C7-C8-H8	120.0
C4-C3-C5	114.6 (4)	C9-C8-H8	120.0
N1-C3-H3	103 (2)	C10-C9-C8	118.9 (5)
C4-C3-H3	113 (3)	C10-C9-H9	120.6
C5-C3-H3	104 (3)	C8-C9-H9	120.6
C3-C4-H4A	109.5	C9-C10-C5	124.1 (5)
C3-C4-H4B	109.5	C9-C10-H10	117.9
H4A-C4-H4B	109.5	C5-C10-H10	117.9
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 1^{1}$	-6.1 (2)	C4-C3-C5-C10	-7.4 (6)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 1^{1}$	-171.0 (5)	N1-C3-C5-C6	49.8 (5)
C2-N1-C1-S1	173.9 (2)	C4-C3-C5-C6	175.2 (4)
C3-N1-C1-S1	9.0 (5)	C10-C5-C6-C7	1.4 (7)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 2^{\text {i }}$	14.8 (5)	C3-C5-C6-C7	179.1 (4)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 2^{\text {i }}$	-179.8 (4)	C5-C6-C7-C8	-1.2 (8)

supporting information

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$102.8(5)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$1.5(8)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$-60.7(5)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-2.0(8)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 5$	$-129.6(4)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$2.4(8)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 5$	$66.9(5)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$-2.1(7)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 5-\mathrm{C} 10$	$-132.8(4)$	$\mathrm{C} 3-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$-179.7(4)$

Symmetry code: (i) $y, x,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{~S} 1$	$0.95(4)$	$2.63(4)$	$3.176(4)$	$117(3)$

