Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(adamantan-1-aminium) carbonate

Monika Nowakowska, Caryn Gamble and Demetrius C. Levendis*

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa
Correspondence e-mail: demetrius.levendis@wits.ac.za

Received 8 March 2012; accepted 19 March 2012

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.042 ; w R$ factor $=0.107$; data-to-parameter ratio $=14.0$.

In the title compound, $2 \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}^{+} \cdot \mathrm{CO}_{3}{ }^{2-}$, the adamantan-1aminium cation forms three $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to three carbonate ions, resulting in a layer parallel to (001) with the adamantane groups located on its surface so that adjacent layers form only $\mathrm{C}-\mathrm{H} \cdots \mathrm{H}-\mathrm{C}$ contacts. The carbonate anions occupy special positions of 32 symmetry, whereas the adamantan-1-aminium cations occupy special positions of 3 symmetry.

Related literature

For related structures, see: de Vries et al. (2011); Mullica et al. (1999); He \& Wen (2006); Liu et al. (2009); Zhao et al. (2003). For applications of adamantane-ammonium salts in virology, see: Hoffmann (1973); Dolin et al. (1982); Bright et al. (2005); Betakova (2007). For applications of amines for the capture of CO_{2} from the atmosphere, see: Yang et al. (2008).

Experimental

Crystal data

```
\(2 \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}^{+} \cdot \mathrm{CO}_{3}{ }^{2-}\)
\(M_{r}=364.52\)
Trigonal, \(P \overline{3} c 1\)
\(a=6.4340\) (6) \(\AA\)
\(c=25.474\) (2) Å
\(V=913.25(14) \AA^{3}\)
```

Data collection
Bruker APEXII CCD
629 independent reflections
diffractometer
3187 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.107$
$S=1.08$
629 reflections
45 parameters

493 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.062$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.999(16)$	$1.778(15)$	$2.764(1)$	$168.7(18)$

Symmetry code: (i) $-y+1, x-y+1, z$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINTPlus (Bruker, 2005); data reduction: SAINT-Plus and XPREP (Bruker 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The University of the Witwatersrand and the Molecular Sciences Institute are acknowledged for providing the infrastructure required for this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2467).

References

Betakova, T. (2007). Curr. Pharm. Des. 13, 3231-3235
Bright, R. A., Medina, M. J., Xu, X. Y., Gilda, P. O., Wallis, T. R., Davis, X. H. M., Povinelli, L., Cox, N. J. \& Klimov, A. I. (2005). Lancet, 366, 11751181.

Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolin, R., Reichman, R. C., Madore, H. P., Maynard, R., Lindon, P. M. \& Weber-Jones, J. (1982). N. Engl. J. Med. 307, 580-584.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
He, Y.-H. \& Wen, Y.-H. (2006). Acta Cryst. E62, o1312-o1313.
Hoffmann, C. E. (1973). Selective Inhibitors of Viral Functions, edited by W. A. Carter, p. 199. Cleveland, USA: CRC Press.
Liu, J.-F., Xian, H.-D., Li, H.-Q. \& Zhao, G.-L. (2009). Z. Kristallogr. 224, 69 70.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Mullica, D. F., Scott, T. G., Farmer, J. M. \& Kautz, J. A. (1999). J. Chem. Crystallogr. 29, 845-848.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Vries, E. J. C. de, Gamble, C. \& Nowakowska, M. (2011). Acta Cryst. E67, o1339.
Yang, H., Xu, Z., Fan, M., Gupta, R., Bland, A. E. \& Wright, I. J. (2008). Environ. Sci. 20, 14-27.
Zhao, G.-L., Feng, Y.-L., Hu, X.-C. \& Kong, L.-K. (2003). Chin. J. Struct. Chem. 22, 321.

supporting information

Acta Cryst. (2012). E68, o1159 [https://doi.org/10.1107/S1600536812011828]

Bis(adamantan-1-aminium) carbonate

Monika Nowakowska, Caryn Gamble and Demetrius C. Levendis

S1. Comment

It has been reported that 1-aminoadamantane hydrochloride (marketed as Symmetrel) is effective in the prevention and treatment of the influenza (A) virus (Hoffmann, 1973; Dolin et al., 1982; Bright et al., 2005). However recent studies suggest that the virus is becoming increasingly resistant to this anti-influenza drug (Betakova, 2007).
In an attempt to crystallize pure 1-aminoadamantane from ethanol we obtained instead adamantan-1-aminium carbonate, illustrated in Fig. 1, suggesting that the amine had captured atmospheric CO_{2}. We report the structure here. It is known that organic amines can trap CO_{2} as the ammonium carbonate salt and this property is being explored as a way to capture carbon dioxide from the atmosphere (Yang et al., 2008).
Each carbonate ion of the title compound forms hydrogen bonds to six adamantane-ammonium ions, as shown in Fig. 2, forming a two-dimensional layer of adamantan-1-aminium carbonates parallel to (001). The hydrophobic adamantane layers interact with the neighbouring layers of adamantane-ammonium molecules via $\mathrm{C}-\mathrm{H} \cdots \mathrm{H}-\mathrm{C}$ contacts (see Fig. 3). It is noted here that the structure of adamantan-1-aminium bicarbonate (Liu et al., 2009) reported in the literature is isomorphous to adamantan-1-aminium nitrate (Zhao et al., 2003). The former structure has unusually short $\mathrm{H} \cdots \mathrm{H}$ intermolecular contacts between $\mathrm{NH}_{3}{ }^{+}$group H atom and bicarbonate H atom of $1.50 \AA$ In addition the geometry of the hydrogen carbonate ion is very similar to that of the nitrate ion. A re-investigation of these structures is warranted.

S2. Experimental

Crystals were grown by slow evaporation of an ethanol solution of the title compound, 0.500 g in 10 ml of ethanol, and afforded colourless plates after three days under ambient conditions. Crystals decompose, with an emission of gas bubbles (presumably CO_{2}), at $423-428 \mathrm{~K}$.

S3. Refinement

The N -bound H atom was placed according to the observed electron density and was allowed to refine freely. The remaining H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with $\mathrm{C}-\mathrm{H}$ bond lengths of 1.00 (methine) and $0.99 \AA\left(\right.$ methylene $\left.\mathrm{CH}_{2}\right)$ and with $U_{\text {iso }}(\mathrm{H})=1.2$ times $U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. The atoms C 2 f to C 4 f are generated by the symmetry $(1-y, x-y, z) ; \mathrm{C} 2 \mathrm{~g}$ to C 4 g by $(1-x+y, 1-x, z)$; O1a by $(-y, x-y, z)$ and O 2 b by $(-x+y,-x, z)$.

Figure 2
Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonded (dashed lines) layers along [001] showing only the $\mathrm{C}-\mathrm{NH}_{3}$ and CO_{3} groups for clarity.

Figure 3
A view down the b axis of the unit cell of the title compound showing the hydrogen bonded layers. Notice that the carbonate ions occupy sites with 32 symmetry whereas cations occupy the sites of 3 symmetry.

Bis(adamantan-1-aminium) carbonate

Crystal data

$2 \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}^{+} \cdot \mathrm{CO}_{3}{ }^{2-}$
$M_{r}=364.52$
Trigonal, $P \overline{3} c 1$
Hall symbol: -P 3 2"c
$a=6.4340$ (6) \AA
$c=25.474(2) \AA$
$V=913.25(14) \AA^{3}$
$Z=2$
$F(000)=400$

Data collection

Bruker APEXII CCD
diffractometer
Graphite monochromator φ and ω scans
3187 measured reflections
629 independent reflections

$$
D_{\mathrm{x}}=1.326 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$
Cell parameters from 819 reflections
$\theta=3.2-25.8^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Prism, colourless
$0.30 \times 0.22 \times 0.08 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.107$
$S=1.08$
629 reflections
45 parameters
0 restraints

493 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=1.6^{\circ}$
$h=-8 \rightarrow 5$
$k=-2 \rightarrow 8$
$l=-31 \rightarrow 31$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

supporting information

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0587 P)^{2}+0.010 P\right]\)
    where \(P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
C1	0.6667	0.3333	$0.16486(9)$	$0.0236(6)$
C2	$0.9213(2)$	$0.5034(2)$	$0.14518(6)$	$0.0278(4)$
H2A	1.032	0.4505	0.1584	0.033^{*}
H2B	0.977	0.6678	0.1583	0.033^{*}
C3	$0.9215(2)$	$0.5033(3)$	$0.08498(6)$	$0.0309(4)$
H3	1.0877	0.614	0.0719	0.037^{*}
C4	$0.8365(3)$	$0.2482(3)$	$0.06502(6)$	$0.0346(4)$
H4A	0.838	0.2474	0.0262	0.042^{*}
H4B	0.9464	0.1932	0.0777	0.042^{*}
C5	0	0	0.25	$0.0219(7)$
N1	0.6667	0.3333	$0.22372(8)$	$0.0278(5)$
O1	0	$0.1993(2)$	0.25	$0.0343(4)$
H1	$0.732(4)$	$0.502(3)$	$0.2358(7)$	$0.060(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0198(8)$	$0.0198(8)$	$0.0312(12)$	$0.0099(4)$	0	0
C2	$0.0195(8)$	$0.0205(7)$	$0.0415(9)$	$0.0087(6)$	$-0.0018(6)$	$-0.0014(6)$
C3	$0.0217(8)$	$0.0262(8)$	$0.0404(9)$	$0.0085(6)$	$0.0061(6)$	$0.0039(6)$
C4	$0.0317(9)$	$0.0350(9)$	$0.0397(8)$	$0.0185(8)$	$0.0055(6)$	$-0.0016(7)$
C5	$0.0214(10)$	$0.0214(10)$	$0.0228(15)$	$0.0107(5)$	0	0
N1	$0.0253(7)$	$0.0253(7)$	$0.0328(11)$	$0.0127(3)$	0	0
O1	$0.0299(8)$	$0.0221(6)$	$0.0536(10)$	$0.0149(4)$	$-0.0091(7)$	$-0.0045(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{N} 1$	$1.500(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.534(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.5295(14)$	$\mathrm{C} 3-\mathrm{H} 3$	1
$\mathrm{C} 2-\mathrm{C} 3$	$1.5335(19)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.99
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.99	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.99
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.99	$\mathrm{C} 5-\mathrm{O} 1$	$1.2820(13)$

C3-C4 ${ }^{\text {i }}$	1.532 (2)	N1-H1	0.999 (16)
N1-C1-C2	109.13 (9)	C2-C3-C4	109.40 (12)
$\mathrm{C} 2 \mathrm{ii}-\mathrm{C} 1-\mathrm{C} 2$	109.81 (9)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	109.18 (12)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.8	$\mathrm{C} 3{ }^{\text {ii }}-\mathrm{C} 4-\mathrm{C} 3$	109.57 (13)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.8	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.8
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.8	C3-C4-H4B	109.8
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.8	H4A-C4-H4B	108.2
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.3	$\mathrm{O} 1 \mathrm{iii}-\mathrm{C} 5-\mathrm{O} 1$	120
C4- $4^{\text {i }} 3-\mathrm{C} 2$	109.29 (11)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	107.9 (11)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 4$	109.58 (14)		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	179.92 (8)	C1-C2-C3-C4	-59.84 (12)
$\mathrm{C} 2 \mathrm{ii}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	60.34 (13)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\text {ii }}$	-59.76 (18)
$\mathrm{C} 2 \mathrm{C}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-60.50 (13)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\text {ii }}$	60.04 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4^{\text {i }}$	60.13 (13)		

Symmetry codes: (i) $-y+1, x-y, z$; (ii) $-x+y+1,-x+1, z$; (iii) $-y, x-y, z$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\text {iv }}$	$0.999(16)$	$1.778(15)$	$2.7644(11)$	$168.7(18)$

Symmetry code: (iv) $-y+1, x-y+1, z$.

