metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aquachlorido(3,5-dinitro-2-oxidobenzoato- $\kappa^2 O^1, O^2$)(1,10-phenanthroline- $\kappa^2 N, N'$)chromium(III)

Zhao-Hui Meng,^a* Hui Lian,^b Shu-Shen Zhang^a and Yu-Quan Feng^a

^aCollege of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China, and ^bDepartment of Anatomy, College of Basic Medical Science, Xinxiang Medical College, Xinxiang 453003, People's Republic of China

Correspondence e-mail: nysymzh@126.com

Received 1 March 2012; accepted 2 March 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.058; wR factor = 0.161; data-to-parameter ratio = 12.9.

In the title compound, $[Cr(C_7H_2N_2O_7)Cl(C_{12}H_8N_2)(H_2O)]$, the Cr^{III} atom displays a distorted octahedral coordination geometry, with the chelating phenantroline and 3,5-dinitrosalicylate ligands in *trans* positions. In the crystal, molecules are connected *via* O–H···O hydrogen bonds into a twodimensional framework parallel to (100). In addition, there are π - π stacking interactions between phenanthroline ligands along the *c* axis, with a mean interplanar distance of 3.456 (4) Å.

Related literature

For the structure of a similar Mn^{III} complex, see: Tan & Tang (1996). For $\pi -\pi$ stacking interactions in metal complexes, see: Janiak (2000).

Experimental

Crystal data $[Cr(C_7H_2N_2O_7)Cl(C_{12}H_8N_2)(H_2O)] \qquad M_r = 511.78$ Monoclinic, $P2_1/c$ a = 13.868 (7) Å b = 16.158 (8) Å c = 9.348 (5) Å $\beta = 105.947$ (9)° V = 2014.2 (17) Å³

Data collection

Bruker APEXII CCD	10867 measured reflections
diffractometer	3952 independent reflections
Absorption correction: multi-scan	2378 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1997)	$R_{\rm int} = 0.060$
$T_{\rm min} = 0.869, \ T_{\rm max} = 0.908$	

Z = 4

Mo $K\alpha$ radiation

 $0.19 \times 0.15 \times 0.13 \text{ mm}$

 $\mu = 0.76 \text{ mm}^{-1}$

T = 296 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	H atoms treated by a mixture of
$wR(F^2) = 0.161$	independent and constrained
S = 1.04	refinement
3952 reflections	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
306 parameters	$\Delta \rho_{\rm min} = -0.49 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1		
Selected	bond lengths	(Å).

Cr1-O3	1.906 (3)	Cr1-N1	2.056 (4)
Cr1-O1	1.926 (3)	Cr1-N2	2.065 (3)
Cr1-O8	2.017 (4)	Cr1-Cl1	2.2705 (17)

Table 2		
TT 1		

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdots A$	<i>D</i> -H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots A$
$08 - H1WB \cdots O6^{i}$ $08 - H1WA \cdots O2^{ii}$	0.83 (2) 0.81 (2)	1.94 (2) 1.81 (3)	2.759 (5) 2.581 (4)	168 (5) 160 (5)
	1 1 44			

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y, -z.

Data collection: *APEX2* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2465).

References

Bruker (1997). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2008). *APEX2*. Bruker AXS Inc., Madison, Wisconsin, USA. Janiak, C. (2000). *J. Chem. Soc. Dalton Trans.* pp. 3885–3896. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Tan, X. S. & Tang, W. X. (1996). Polyhedron, 15, 2087-2091.

supporting information

Acta Cryst. (2012). E68, m388 [https://doi.org/10.1107/S1600536812009324]

Aquachlorido(3,5-dinitro-2-oxidobenzoato- $\kappa^2 O^1, O^2$)(1,10-phenanthroline- $\kappa^2 N, N'$)chromium(III)

Zhao-Hui Meng, Hui Lian, Shu-Shen Zhang and Yu-Quan Feng

S1. Comment

Herein we report a mononuclear chromium(III) coordination compound $[Cr(C_{12}H_8N_2)(C_7H_2N_2O_7)Cl(H_2O)]$ (Fig. 1) obtained with the use of 3,5-dinitrosalicylic acid and 1,10-phenanthroline ligands. In the structure of title compound, the chromium atom is octahedrally coordinated by two N atoms from the phenanthroline ligand, two O atoms from the $(C_7H_2N_2O_7)^{2-}$ anion, one Cl ion and one water molecule. Bond lengths to the metal center are given in Table 1. The molecules are connected *via* O—H···O hydrogen bonds resulting in the formation of a two-dimensional supermolecular structure (Fig. 2). Moreover, there are $\pi - \pi$ stacking interactions between phenanthroline ligands along the *c* axis due to the fact that these aromatic groups of phenanthroline ligands are parallel with each other. Such $\pi - \pi$ stacking interactions between aromatic groups are rather popular in coordination compounds. Hydrogen bonds and $\pi - \pi$ stacking interactions play a crucial role in stability of the crystal structure.

S2. Experimental

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. The title compound was synthesized from a mixture of CrCl₃.6H₂O (0.80 g, 3 mmol), 3,5-dinitrosalicylic acid (0.68 g, 3 mmol) and 1, 10-phenanthroline (0.60 g, 3 mmol), NaOH (0.08 g, 2 mmol) and ethanol (20 mL) by hydrothermal reaction. The mixture was stirred for half an hour, and then transferred into a Teflon-lined stainless steel autoclave (50 mL) and treated at 160 °C for 3 days. After the mixture was slowly cooled to room temperature, green block crystals suitable for X-ray structure determination were obtained.

S3. Refinement

The H atoms bonded to C were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$. The H atoms bonded to O atoms were located from Fourier difference maps and refined with distance restraints of O8—H1WA = 0.83 (2) Å, and O8—H1WB = 0.83 (2) Å.

Figure 1

View of the title molecule with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Crystal packing along the c axis. Hydrogen bonds are shown as dashed lines.

Aquachlorido (3,5-dinitro-2-oxidobenzoato- $\kappa^2 O^1, O^2$) (1,10- phenanthroline- $\kappa^2 N, N'$) chromium (III)

Crystal data

$[Cr(C_7H_2N_2O_7)Cl(C_{12}H_8N_2)(H_2O)]$	F(000) = 1036
$M_r = 511.78$	$D_{\rm x} = 1.688 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1361 reflections
a = 13.868 (7) Å	$\theta = 2.6 - 20.2^{\circ}$
b = 16.158 (8) Å	$\mu = 0.76 \text{ mm}^{-1}$
c = 9.348 (5) Å	T = 296 K
$\beta = 105.947 \ (9)^{\circ}$	Block, green
$V = 2014.2 (17) \text{ Å}^3$	$0.19 \times 0.15 \times 0.13 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1997) $T_{min} = 0.869, T_{max} = 0.908$ <i>Refinement</i>	10867 measured reflections 3952 independent reflections 2378 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -17 \rightarrow 14$ $k = -19 \rightarrow 18$ $l = -10 \rightarrow 11$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.161$ S = 1.04 3952 reflections 306 parameters 2 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0753P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.48 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.49 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cr1	0.71896 (5)	-0.01477 (4)	0.02803 (8)	0.0398 (2)
C1	0.8895 (3)	-0.0499 (3)	-0.1138 (5)	0.0486 (12)
H1A	0.8952	0.0071	-0.1228	0.058*
C2	0.9520 (3)	-0.1014 (3)	-0.1671 (5)	0.0549 (13)
H2A	0.9985	-0.0790	-0.2113	0.066*
C3	0.9445 (3)	-0.1854 (3)	-0.1540 (5)	0.0541 (13)
H3A	0.9861	-0.2203	-0.1892	0.065*
C4	0.8750 (3)	-0.2183 (3)	-0.0885 (5)	0.0466 (12)
C5	0.8148 (3)	-0.1623 (3)	-0.0363 (5)	0.0373 (10)
C6	0.8586 (4)	-0.3049 (3)	-0.0718 (5)	0.0538 (13)
H6A	0.8986	-0.3429	-0.1038	0.065*
C7	0.7875 (4)	-0.3331 (3)	-0.0115 (5)	0.0531 (13)
H7A	0.7769	-0.3898	-0.0076	0.064*
C8	0.7280 (4)	-0.2774 (3)	0.0467 (5)	0.0451 (12)
C9	0.7416 (3)	-0.1913 (2)	0.0324 (5)	0.0372 (10)
C10	0.6547 (4)	-0.3003 (3)	0.1147 (5)	0.0540 (14)
H10A	0.6413	-0.3562	0.1241	0.065*
C11	0.6019 (4)	-0.2423 (3)	0.1680 (5)	0.0504 (12)
H11A	0.5542	-0.2584	0.2156	0.060*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C12	0.6203 (3)	-0.1593 (3)	0.1502 (5)	0.0463 (11)
H12A	0.5840	-0.1201	0.1866	0.056*
C13	0.5958 (3)	0.1109 (3)	0.1121 (5)	0.0381 (10)
C14	0.6519 (3)	0.1771 (2)	0.0562 (4)	0.0350 (10)
C15	0.7266 (3)	0.1605 (2)	-0.0202 (5)	0.0346 (10)
C16	0.7719 (3)	0.2324 (3)	-0.0637 (5)	0.0372 (10)
C17	0.7469 (3)	0.3115 (3)	-0.0374 (5)	0.0403 (10)
H17A	0.7791	0.3564	-0.0662	0.048*
C18	0.6729 (3)	0.3229 (2)	0.0326 (5)	0.0413 (11)
C19	0.6267 (3)	0.2570 (3)	0.0788 (5)	0.0398 (10)
H19A	0.5772	0.2669	0.1265	0.048*
C11	0.83175 (9)	0.00500 (7)	0.25272 (14)	0.0564 (4)
N1	0.8216 (3)	-0.0795 (2)	-0.0502 (4)	0.0402 (9)
N2	0.6876 (3)	-0.1336 (2)	0.0834 (4)	0.0377 (8)
N3	0.8523 (3)	0.2233 (2)	-0.1369 (4)	0.0443 (9)
N4	0.6453 (3)	0.4060 (2)	0.0641 (5)	0.0579 (11)
01	0.6129 (2)	0.03496 (17)	0.0950 (3)	0.0468 (8)
O2	0.5312 (2)	0.13290 (17)	0.1731 (3)	0.0468 (8)
O3	0.7505 (2)	0.08735 (17)	-0.0508 (3)	0.0462 (8)
O4	0.8663 (3)	0.1591 (2)	-0.1910 (5)	0.0756 (12)
O5	0.9030 (3)	0.2830 (2)	-0.1388 (6)	0.0961 (16)
O6	0.5745 (3)	0.4138 (2)	0.1213 (4)	0.0697 (11)
O7	0.6920 (4)	0.4640 (2)	0.0366 (5)	0.0934 (16)
O8	0.6198 (2)	-0.0388 (2)	-0.1700 (4)	0.0450 (8)
H1WB	0.608 (3)	0.0037 (19)	-0.222 (4)	0.050 (15)*
H1WA	0.565 (2)	-0.059 (3)	-0.180 (5)	0.060 (17)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	0.0387 (4)	0.0349 (4)	0.0546 (5)	-0.0041 (3)	0.0277 (3)	-0.0005 (3)
C1	0.040 (3)	0.050 (3)	0.063 (3)	-0.007 (2)	0.027 (2)	-0.002 (2)
C2	0.039 (3)	0.074 (4)	0.061 (3)	-0.006(2)	0.029 (3)	-0.007 (3)
C3	0.039 (3)	0.070 (4)	0.057 (3)	0.010 (3)	0.020 (2)	-0.010 (3)
C4	0.036 (3)	0.056 (3)	0.047 (3)	0.006 (2)	0.010(2)	-0.007(2)
C5	0.034 (2)	0.042 (2)	0.036 (3)	-0.0025 (19)	0.0100 (19)	-0.0016 (19)
C6	0.055 (3)	0.045 (3)	0.058 (3)	0.011 (2)	0.010 (3)	-0.006(2)
C7	0.065 (3)	0.035 (3)	0.055 (3)	0.002 (2)	0.009 (3)	-0.003 (2)
C8	0.048 (3)	0.042 (3)	0.040 (3)	-0.004 (2)	0.003 (2)	0.004 (2)
C9	0.037 (3)	0.037 (2)	0.036 (2)	-0.0067 (19)	0.007 (2)	0.0013 (19)
C10	0.057 (3)	0.046 (3)	0.051 (3)	-0.018 (3)	0.003 (3)	0.013 (2)
C11	0.049 (3)	0.056 (3)	0.047 (3)	-0.016 (2)	0.015 (2)	0.012 (2)
C12	0.042 (3)	0.057 (3)	0.044 (3)	-0.009(2)	0.018 (2)	0.004 (2)
C13	0.035 (2)	0.042 (3)	0.041 (3)	-0.004 (2)	0.017 (2)	-0.001 (2)
C14	0.034 (2)	0.037 (2)	0.037 (3)	-0.0049 (19)	0.0147 (19)	-0.0028 (18)
C15	0.030 (2)	0.037 (2)	0.038 (3)	-0.0050 (19)	0.0117 (18)	0.0013 (18)
C16	0.035 (2)	0.041 (2)	0.040 (3)	-0.0064 (19)	0.018 (2)	-0.0002 (18)
C17	0.041 (3)	0.035 (2)	0.047 (3)	-0.005 (2)	0.015 (2)	0.0027 (19)

supporting information

C18	0.045 (3)	0.034 (2)	0.047 (3)	-0.004(2)	0.016 (2)	-0.003(2)
C19	0.033 (2)	0.050 (3)	0.039 (3)	-0.001 (2)	0.015 (2)	-0.006 (2)
C11	0.0573 (8)	0.0561 (7)	0.0591 (8)	-0.0148 (6)	0.0218 (6)	-0.0049 (6)
N1	0.036 (2)	0.042 (2)	0.047 (2)	-0.0067 (16)	0.0185 (18)	-0.0006 (16)
N2	0.035 (2)	0.040 (2)	0.042 (2)	-0.0020 (16)	0.0181 (17)	0.0044 (16)
N3	0.040 (2)	0.047 (2)	0.052 (3)	-0.0023 (19)	0.0230 (19)	0.0071 (19)
N4	0.075 (3)	0.040 (2)	0.065 (3)	-0.001 (2)	0.030 (3)	-0.007(2)
01	0.0442 (18)	0.0342 (17)	0.076 (2)	-0.0014 (14)	0.0400 (17)	0.0005 (15)
O2	0.0453 (19)	0.0435 (17)	0.064 (2)	-0.0039 (14)	0.0364 (17)	-0.0067 (15)
03	0.0492 (19)	0.0367 (17)	0.066 (2)	-0.0037 (14)	0.0385 (17)	-0.0027 (14)
O4	0.088 (3)	0.056 (2)	0.113 (3)	-0.011 (2)	0.078 (3)	-0.013 (2)
O5	0.090 (3)	0.052 (2)	0.182 (5)	-0.014 (2)	0.096 (3)	0.006 (3)
O6	0.070 (3)	0.050(2)	0.103 (3)	-0.0038 (18)	0.048 (2)	-0.0191 (19)
O7	0.136 (4)	0.0358 (19)	0.144 (4)	-0.017 (2)	0.098 (3)	-0.008(2)
08	0.040 (2)	0.0435 (19)	0.058 (2)	-0.0070 (16)	0.0245 (17)	0.0070 (16)

Geometric parameters (Å, °)

Cr1—O3	1.906 (3)	C10—H10A	0.9300
Cr1—O1	1.926 (3)	C11—C12	1.383 (6)
Cr1—O8	2.017 (4)	C11—H11A	0.9300
Cr1—N1	2.056 (4)	C12—N2	1.325 (5)
Cr1—N2	2.065 (3)	C12—H12A	0.9300
Cr1—Cl1	2.2705 (17)	C13—O2	1.239 (5)
C1—N1	1.332 (5)	C13—O1	1.268 (5)
C1—C2	1.389 (6)	C13—C14	1.498 (6)
C1—H1A	0.9300	C14—C19	1.369 (5)
C2—C3	1.370 (7)	C14—C15	1.437 (6)
C2—H2A	0.9300	C15—O3	1.281 (5)
C3—C4	1.382 (7)	C15—C16	1.431 (5)
С3—НЗА	0.9300	C16—C17	1.364 (6)
C4—C5	1.406 (6)	C16—N3	1.467 (5)
C4—C6	1.434 (6)	C17—C18	1.372 (6)
C5—N1	1.350 (5)	С17—Н17А	0.9300
С5—С9	1.422 (6)	C18—C19	1.372 (6)
C6—C7	1.343 (7)	C18—N4	1.448 (5)
С6—Н6А	0.9300	C19—H19A	0.9300
С7—С8	1.425 (7)	N3—O4	1.193 (4)
С7—Н7А	0.9300	N3—O5	1.197 (5)
C8—C10	1.389 (7)	N4—O7	1.207 (5)
C8—C9	1.415 (6)	N4—O6	1.247 (5)
C9—N2	1.363 (5)	O8—H1WB	0.832 (19)
C10—C11	1.364 (7)	O8—H1WA	0.810 (19)
O3—Cr1—O1	92.39 (12)	C10-C11-C12	119.1 (5)
O3—Cr1—O8	89.04 (14)	C10-C11-H11A	120.4
O1—Cr1—O8	89.40 (14)	C12—C11—H11A	120.4
O3—Cr1—N1	92.74 (13)	N2-C12-C11	122.6 (5)

O1—Cr1—N1	173.41 (13)	N2—C12—H12A	118.7
O8—Cr1—N1	86.54 (14)	C11—C12—H12A	118.7
O3—Cr1—N2	171.05 (13)	O2—C13—O1	121.3 (4)
O1—Cr1—N2	94.24 (13)	O2—C13—C14	117.8 (4)
O8—Cr1—N2	85.03 (14)	O1—C13—C14	120.9 (4)
N1—Cr1—N2	80.24 (14)	C19—C14—C15	120.1 (4)
O3—Cr1—Cl1	93.60 (11)	C19—C14—C13	116.2 (4)
O1—Cr1—Cl1	91.96 (11)	C15—C14—C13	123.7 (4)
O8—Cr1—Cl1	176.97 (11)	O3—C15—C16	121.7 (4)
N1—Cr1—Cl1	91.85 (11)	O3—C15—C14	123.3 (4)
N2—Cr1—Cl1	92.18 (10)	C16—C15—C14	115.0 (4)
N1—C1—C2	122.1 (5)	C17—C16—C15	123.8 (4)
N1—C1—H1A	118.9	C17—C16—N3	116.2 (4)
C2—C1—H1A	118.9	C15—C16—N3	120.0 (4)
C3—C2—C1	119.5 (5)	C16—C17—C18	118.2 (4)
C3—C2—H2A	120.3	С16—С17—Н17А	120.9
C1—C2—H2A	120.3	С18—С17—Н17А	120.9
C2—C3—C4	120.0 (4)	C19—C18—C17	121.3 (4)
С2—С3—НЗА	120.0	C19—C18—N4	118.9 (4)
C4—C3—H3A	120.0	C17—C18—N4	119.8 (4)
C3—C4—C5	117.3 (4)	C14—C19—C18	121.5 (4)
C3—C4—C6	125.1 (5)	C14—C19—H19A	119.2
C5—C4—C6	117.6 (4)	C18—C19—H19A	119.2
N1—C5—C4	122.7 (4)	C1—N1—C5	118.3 (4)
N1—C5—C9	116.6 (4)	C1—N1—Cr1	128.3 (3)
C4—C5—C9	120.7 (4)	C5—N1—Cr1	113.4 (3)
C7—C6—C4	122.2 (5)	C12—N2—C9	118.4 (4)
С7—С6—Н6А	118.9	C12—N2—Cr1	129.4 (3)
C4—C6—H6A	118.9	C9—N2—Cr1	112.0 (3)
C6—C7—C8	121.1 (4)	O4—N3—O5	121.9 (4)
С6—С7—Н7А	119.5	O4—N3—C16	121.2 (4)
С8—С7—Н7А	119.5	O5—N3—C16	116.9 (4)
C10—C8—C9	116.0 (4)	O7—N4—O6	122.9 (4)
C10—C8—C7	125.4 (4)	O7—N4—C18	119.3 (4)
C9—C8—C7	118.5 (4)	O6—N4—C18	117.7 (4)
N2—C9—C8	122.7 (4)	C13—O1—Cr1	129.1 (3)
N2—C9—C5	117.5 (4)	C15—O3—Cr1	127.7 (3)
C8—C9—C5	119.8 (4)	Cr1—O8—H1WB	111 (3)
C11—C10—C8	121.2 (4)	Cr1—O8—H1WA	125 (3)
C11—C10—H10A	119.4	H1WB—O8—H1WA	103 (5)
C8—C10—H10A	119.4		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
O8—H1WB···O6 ⁱ	0.83 (2)	1.94 (2)	2.759 (5)	168 (5)

			supporting informatio		
O8—H1 <i>WA</i> ···O2 ⁱⁱ	0.81 (2)	1.81 (3)	2.581 (4)	160 (5)	

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x+1, -y, -z.