

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,*N*-Dimethyl-4-[(*E*)-2-(3,6,7-tribromo-9-butyl-9H-carbazol-2-yl)ethenyl]aniline

Sushil Kumar,^a K. R. Justin Thomas,^a[‡] Seik Weng Ng^{b,c} and Edward R. T. Tiekink^{b*}

^aOrganic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 28 February 2012; accepted 15 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.032; wR factor = 0.092; data-to-parameter ratio = 17.1.

In the title molecule, C₂₆H₂₅Br₃N₂, a dihedral angle of $6.15 (10)^{\circ}$ is present between the carbazole and benzene ring systems with an E conformation about the C=C bond [1.335 (4) Å]. The butyl group is almost perpendicular to the carbazole plane $[C-N-C-C \text{ torsion angle} = -98.7 (3)^{\circ}]$. In the crystal, supramolecular double chains along $[\overline{7}, 18, \overline{16}]$ are formed via C-H···Br and π - π interactions [centroid(carbazole five-membered ring) ··· centroid(carbazole six-membered ring) distance = 3.6333(13) Å].

Related literature

For the use of carbazole derivatives in organic light-emitting diodes and photovoltaic devices, see: Thomas et al. (2001, 2004); Wu et al. (2005); Lee et al. (2012); Ooyama et al. (2011). For related structures, see: Pawluć et al. (2011); Zhang & Zhang (2011); Ramathilagam et al. (2011).

Experimental

Crystal data

$C_{26}H_{25}Br_3N_2$	$\gamma = 90.127 \ (3)^{\circ}$
$M_r = 605.21$	$V = 1161.62 (7) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
a = 9.7304 (3) Å	Cu Ka radiation
b = 11.3834 (4) Å	$\mu = 6.56 \text{ mm}^{-1}$
c = 11.8197 (4) Å	T = 100 K
$\alpha = 114.308 \ (3)^{\circ}$	$0.30 \times 0.30 \times 0.05 \text{ mm}$
$\beta = 101.957 \ (3)^{\circ}$	

‡ Additional correspondence author: krjt8fcy@iitr.ernet.in.

10766 measured reflections

 $R_{\rm int} = 0.021$

4827 independent reflections

4680 reflections with $I > 2\sigma(I)$

Data collection

Agilent SuperNova Dual
diffractometer with an Atlas
detector
Absorption correction: multi-scan
(CrysAlis PRO: Agilent, 2010)

 $T_{\min} = 0.244, T_{\max} = 0.735$

Refinement

D-

$R[F^2 > 2\sigma(F^2)] = 0.032$	282 parameters
$wR(F^2) = 0.092$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 1.18 \text{ e } \text{\AA}^{-3}$
4827 reflections	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C26-H26C\cdots Br1^{i}$	0.98	2.91	3.844 (3)	161

Symmetry code: (i) x + 1, y - 1, z + 1.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

KRJT thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for financial support [grant No. 01 (2111)/07/EMR-II)]. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/ HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2078).

References

- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Lee, W., Cho, N., Kwon, J., Ko, J. & Hong, J.-I. (2012). Chem. Asian J. 7, 343-350.
- Ooyama, Y., Nagno, T., Inou, S., Imae, I., Komaguchi, K., Ohshita, J. & Harima, Y. (2011). Chem. Eur. J. 17, 14837-14843.
- Pawluć, P., Franczyk, A., Walkowiak, J., Hreczycho, G., Kubicki, M. & Marciniec, B. (2011). Org. Lett. 13, 1976-1979.
- Ramathilagam, C., Venkatesan, N., Rajakumar, P., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o2796.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Chuan, C.-H. (2004). Chem. Mater. 16, 5437-5444
- Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Ko, C.-W. (2001). J. Am. Chem. Soc. 123, 9404-9411.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, F.-I., Shih, P.-I., Yuan, M.-C., Dixit, A. K., Shu, C.-F., Chung, Z.-M. & Diau E W-G (2005) *J. Mater. Chem.* **15** 4753–4760.
- Zhang, J.-Y. & Zhang, W.-Y. (2011). Acta Cryst. E67, 03307.

supporting information

Acta Cryst. (2012). E68, o1121 [https://doi.org/10.1107/S1600536812011336] *N,N-Dimethyl-4-[(E)-2-(3,6,7-tribromo-9-butyl-9H-carbazol-2-yl)ethenyl]aniline*

Sushil Kumar, K. R. Justin Thomas, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

Polysubstituted carbazole derivatives have been widely explored as functional materials for applications in organic lightemitting diodes (Thomas *et al.*, 2001; Thomas *et al.*, 2004; Wu *et al.*, 2005) and photovoltaic devices (Lee *et al.*, 2012; Ooyama *et al.*, 2011) due to their charge transporting and amorphous properties. Though the 3,6,9-trisubstituted (Thomas *et al.*, 2001; Thomas *et al.*, 2004) and 2,7,9-trisubstituted carbazole (Wu *et al.*, 2005; Lee *et al.*, 2012) compounds have been well documented in the literature, 2,3,6,7,9-pentasubstituted carbazole derivatives are relatively rare. Herein, the synthesis and crystal structure determination of the title compound, (I), are described. Several related structures are known (Pawluć *et al.*, 2011; Zhang & Zhang, 2011; Ramathilagam *et al.*, 2011).

In (I), the carbazole fused-ring system is planar with the r.m.s. deviation of the 13 fitted non-hydrogen atoms = 0.006 Å; the Br1, Br2 and Br3 atoms lie 0.058 (1), 0.062 (1) and 0.043 (1) Å out of this plane, respectively. The least-squares plane through the carbazole residue forms a dihedral angle of 6.15 (10)° with the benzene ring, indicating a small twist between the terminal ring systems. This twist is manifested in the value of the C15—C14—C17—C18 torsion angle of -11.2 (4)°. The butyl group is almost perpendicular to the carbazole plane with the C1—N1—C7—C8 torsion angle being -98.7 (3)°. Finally, the conformation about the C17=C18 bond [1.335 (4) Å] is *E*.

In the crystal packing, molecules are linked into linear supramolecular chains *via* C—H···Br interactions, Fig. 2 and Table 1. These are connected into double chains along [$\overline{7}$ 18 $\overline{16}$] *via* π – π interactions occurring between five- and six-membered rings of the carbazole residue [centroid(N1,C1,C6,C11,C16)···centroid(C1–C6)ⁱ = 3.6333 (13) Å, angle between rings = 0.50 (12)° for symmetry operation *i*: 1 - *x*, 1 - *y*, *-z*]. Chains assemble into layers, with no specific interactions between them. In turn, the layers stack along (2 0 $\overline{2}$), again without specific interactions between them, Fig. 2.

S2. Experimental

A mixture of 2,3,6,7-tetrabromo-9-butyl-9*H*-carbazole (0.25 g, 0.47 mmol), styrene (0.29 g, 1.96 mmol), tetrabutylammonium bromide (0.32 g, 0.98 mmol), sodium acetate (1.6 g, 19.6 mmol), $Pd(OAc)_2$ (4 mg) and dimethylformamide (5 ml) was heated at 383 K for 48 h. Subsequently, it was cooled, then poured into water and extracted using ethyl acetate. On removal of solvent, a residue was obtained which on purification by column chromatography on silica gel gave an orange crystalline solid. Yield: 0.12 g, 42%. *M*.pt: 414 K. Crystals were grown from a solution of the title compound dissolved in dichloromethane/hexanes mixture (1:9 v/v).

¹H NMR (500 MHz, CDCl₃) *δ*: 8.20 (s, 1 H), 8.17 (s, 1 H), 7.63 (s, 1H), 7.58 (s, 1 H), 7.51 (d, J = 9.0 Hz, 2 H), 7.43 (d, J = 16 Hz, 1 H), 7.05 (d, J = 16 Hz, 1 H), 6.74 (d, J = 9 Hz, 2 H), 4.24 (t, J = 7.5 Hz, 2 H), 3.02 (s, 6 H), 1.86–1.83 (m, 2 H), 1.42–1.37 (m, 2 H), 0.97 (t, J = 7.5 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) *δ*: 150.4, 140.7, 140.5, 136.2, 131.4, 128.1, 127.8, 127.4, 125.4, 124.6, 124.4, 124.0, 122.7, 121.6, 121.4, 115.0, 114.0, 113.5, 112.5, 112.4, 105.8, 100.0, 43.2, 40.5, 30.9, 20.6, 13.9.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, $U_{iso}(H) = 1.2$ to $1.5U_{eq}(C)$] and were included in the refinement in the riding model approximation. The maximum and minimum residual electron density peaks of 1.18 and 0.81 e Å⁻³, respectively, were located 0.86 Å and 0.44 Å from the H2 and Br1 atoms, respectively.

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

A view of the linear supramolecular chain in (I). The C—H···Br and π - π interactions are shown as orange and purple dashed lines, respectively.

Figure 3

A view in projection down the *b* axis of the stacking of layers, formed by non-interacting supramolecular chains, in (I). The C—H···Br and π - π interactions are shown as orange and purple dashed lines, respectively.

N,N-Dimethyl-4-[(E)-2-(3,6,7-tribromo-9-butyl-9H- carbazol-2-yl)ethenyl]aniline

Crystal data	
$C_{26}H_{25}Br_{3}N_{2}$ $M_{r} = 605.21$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 9.7304 (3) Å b = 11.3834 (4) Å c = 11.8197 (4) Å a = 114.308 (3)° $\beta = 101.957$ (3)° $\gamma = 90.127$ (3)° W = 1161.62 (7) Å 3	Z = 2 F(000) = 600 $D_x = 1.730 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 7879 reflections $\theta = 4.2-76.4^{\circ}$ $\mu = 6.56 \text{ mm}^{-1}$ T = 100 K Plate, orange $0.30 \times 0.30 \times 0.05 \text{ mm}$
Data collection	
Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2010)	$T_{\min} = 0.244, T_{\max} = 0.735$ 10766 measured reflections 4827 independent reflections 4680 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$ $\theta_{\text{max}} = 76.6^{\circ}, \theta_{\text{min}} = 4.2^{\circ}$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -14 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares mainx. Tun	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.092$	neighbouring sites
S = 1.07	H-atom parameters constrained
4827 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0613P)^2 + 0.89P]$
282 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.18 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.29708 (3)	0.83996 (3)	0.02986 (2)	0.02733 (9)
Br2	0.56802 (3)	0.78783 (3)	-0.11524 (2)	0.02739 (9)
Br3	1.11706 (3)	0.35337 (3)	0.20455 (3)	0.02790 (9)
N1	0.5643 (2)	0.5740 (2)	0.27349 (19)	0.0222 (4)
N2	1.1308 (3)	0.0298 (3)	0.7703 (2)	0.0333 (5)
C1	0.5457 (2)	0.6291 (2)	0.1869 (2)	0.0209 (4)
C2	0.4366 (3)	0.6979 (2)	0.1578 (2)	0.0228 (5)
H2	0.3598	0.7132	0.1986	0.027*
C3	0.4443 (3)	0.7433 (2)	0.0664 (2)	0.0226 (5)
C4	0.5569 (3)	0.7208 (2)	0.0055 (2)	0.0227 (5)
C5	0.6653 (3)	0.6523 (2)	0.0351 (2)	0.0232 (5)
Н5	0.7418	0.6373	-0.0061	0.028*
C6	0.6601 (2)	0.6056 (2)	0.1262 (2)	0.0205 (4)
C7	0.4735 (2)	0.5794 (2)	0.3587 (2)	0.0236 (5)
H7A	0.4651	0.4940	0.3615	0.028*
H7B	0.3780	0.5967	0.3240	0.028*
C8	0.5283 (3)	0.6836 (2)	0.4944 (2)	0.0263 (5)
H8A	0.4684	0.6752	0.5494	0.032*
H8B	0.6253	0.6681	0.5274	0.032*
С9	0.5301 (3)	0.8209 (3)	0.5043 (2)	0.0295 (5)
H9A	0.4321	0.8398	0.4793	0.035*
H9B	0.5833	0.8280	0.4441	0.035*
C10	0.5972 (3)	0.9205 (3)	0.6384 (3)	0.0357 (6)
H10A	0.5967	1.0074	0.6403	0.054*
H10B	0.6947	0.9029	0.6632	0.054*

H10C	0.5434	0.9155	0.6980	0.054*
C11	0.7525 (3)	0.5336 (2)	0.1799 (2)	0.0213 (4)
C12	0.8799 (3)	0.4835 (2)	0.1613 (2)	0.0223 (5)
H12	0.9246	0.4940	0.1014	0.027*
C13	0.9406 (2)	0.4177 (2)	0.2322 (2)	0.0217 (4)
C14	0.8789 (2)	0.3989 (2)	0.3234 (2)	0.0207 (4)
C15	0.7510 (3)	0.4504 (2)	0.3406 (2)	0.0216 (4)
H15	0.7059	0.4402	0.4004	0.026*
C16	0.6895 (2)	0.5168 (2)	0.2704 (2)	0.0207 (4)
C17	0.9466 (2)	0.3259 (2)	0.3949 (2)	0.0211 (4)
H17	1.0239	0.2799	0.3683	0.025*
C18	0.9070 (3)	0.3201 (2)	0.4942 (2)	0.0238 (5)
H18	0.8316	0.3687	0.5218	0.029*
C19	0.9685 (3)	0.2460 (2)	0.5642 (2)	0.0222 (5)
C20	0.9072 (3)	0.2399 (3)	0.6593 (2)	0.0258 (5)
H20	0.8267	0.2851	0.6769	0.031*
C21	0.9600 (3)	0.1702 (3)	0.7288 (3)	0.0274 (5)
H21	0.9152	0.1683	0.7923	0.033*
C22	1.0787 (3)	0.1029 (2)	0.7058 (2)	0.0245 (5)
C23	1.1426 (3)	0.1108 (2)	0.6119 (2)	0.0253 (5)
H23	1.2248	0.0679	0.5958	0.030*
C24	1.0881 (3)	0.1797 (2)	0.5433 (2)	0.0243 (5)
H24	1.1331	0.1822	0.4801	0.029*
C25	1.2647 (3)	-0.0235 (3)	0.7574 (3)	0.0300 (5)
H25A	1.3375	0.0461	0.7772	0.045*
H25B	1.2562	-0.0885	0.6698	0.045*
H25C	1.2909	-0.0641	0.8166	0.045*
C26	1.0606 (3)	0.0186 (3)	0.8627 (3)	0.0328 (6)
H26A	0.9602	-0.0093	0.8233	0.049*
H26B	1.0708	0.1029	0.9360	0.049*
H26C	1.1033	-0.0453	0.8912	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02941 (16)	0.02848 (15)	0.02854 (15)	0.00817 (11)	0.00398 (11)	0.01757 (11)
Br2	0.03297 (16)	0.03048 (15)	0.02791 (15)	0.00781 (11)	0.00784 (11)	0.02082 (12)
Br3	0.02538 (15)	0.03522 (16)	0.03272 (16)	0.01107 (11)	0.01128 (11)	0.02151 (12)
N1	0.0211 (9)	0.0276 (10)	0.0239 (9)	0.0051 (8)	0.0045 (8)	0.0172 (8)
N2	0.0314 (12)	0.0441 (13)	0.0403 (13)	0.0144 (10)	0.0105 (10)	0.0322 (11)
C1	0.0224 (11)	0.0212 (10)	0.0206 (10)	0.0004 (9)	0.0019 (8)	0.0117 (9)
C2	0.0244 (11)	0.0240 (11)	0.0226 (11)	0.0030 (9)	0.0040 (9)	0.0130 (9)
C3	0.0235 (11)	0.0209 (10)	0.0229 (11)	0.0036 (9)	0.0010 (9)	0.0109 (9)
C4	0.0295 (12)	0.0206 (10)	0.0194 (10)	0.0024 (9)	0.0017 (9)	0.0117 (9)
C5	0.0274 (12)	0.0224 (11)	0.0224 (11)	0.0022 (9)	0.0060 (9)	0.0119 (9)
C6	0.0229 (11)	0.0194 (10)	0.0196 (10)	0.0016 (8)	0.0024 (8)	0.0097 (9)
C7	0.0200 (11)	0.0291 (12)	0.0287 (12)	0.0031 (9)	0.0068 (9)	0.0184 (10)
C8	0.0274 (12)	0.0322 (13)	0.0270 (12)	0.0070 (10)	0.0095 (9)	0.0184 (10)

supporting information

C9	0.0344 (13)	0.0315 (13)	0.0281 (12)	0.0033 (10)	0.0084 (10)	0.0172 (11)
C10	0.0428 (16)	0.0347 (14)	0.0303 (13)	0.0040 (12)	0.0104 (12)	0.0133 (11)
C11	0.0242 (11)	0.0199 (10)	0.0212 (11)	0.0006 (9)	0.0022 (9)	0.0116 (9)
C12	0.0254 (12)	0.0231 (11)	0.0211 (11)	0.0018 (9)	0.0051 (9)	0.0120 (9)
C13	0.0193 (11)	0.0225 (10)	0.0238 (11)	0.0021 (8)	0.0035 (9)	0.0109 (9)
C14	0.0198 (11)	0.0218 (11)	0.0216 (11)	0.0014 (8)	0.0024 (8)	0.0112 (9)
C15	0.0238 (11)	0.0227 (11)	0.0230 (11)	0.0029 (9)	0.0037 (9)	0.0150 (9)
C16	0.0203 (11)	0.0217 (10)	0.0215 (11)	0.0023 (8)	0.0020 (8)	0.0118 (9)
C17	0.0206 (10)	0.0193 (10)	0.0239 (11)	0.0013 (8)	0.0018 (8)	0.0112 (9)
C18	0.0230 (11)	0.0240 (11)	0.0262 (11)	0.0056 (9)	0.0028 (9)	0.0137 (9)
C19	0.0214 (11)	0.0235 (11)	0.0240 (11)	0.0017 (9)	0.0023 (9)	0.0136 (9)
C20	0.0220 (11)	0.0318 (12)	0.0301 (12)	0.0086 (9)	0.0080 (9)	0.0183 (10)
C21	0.0257 (12)	0.0344 (13)	0.0292 (12)	0.0037 (10)	0.0069 (10)	0.0200 (11)
C22	0.0234 (11)	0.0261 (11)	0.0285 (12)	0.0036 (9)	0.0021 (9)	0.0177 (10)
C23	0.0228 (11)	0.0272 (12)	0.0303 (12)	0.0061 (9)	0.0061 (9)	0.0164 (10)
C24	0.0238 (11)	0.0262 (12)	0.0274 (12)	0.0045 (9)	0.0055 (9)	0.0160 (10)
C25	0.0283 (13)	0.0314 (13)	0.0345 (13)	0.0084 (10)	0.0028 (10)	0.0200 (11)
C26	0.0347 (14)	0.0421 (15)	0.0350 (14)	0.0110 (12)	0.0093 (11)	0.0286 (12)

Geometric parameters (Å, °)

Br1—C3	1.895 (2)	C11—C12	1.386 (3)
Br2—C4	1.895 (2)	C11—C16	1.413 (3)
Br3—C13	1.906 (2)	C12—C13	1.388 (3)
N1-C16	1.382 (3)	C12—H12	0.9500
N1-C1	1.388 (3)	C13—C14	1.423 (3)
N1—C7	1.455 (3)	C14—C15	1.394 (3)
N2-C22	1.378 (3)	C14—C17	1.479 (3)
N2-C26	1.447 (3)	C15—C16	1.389 (3)
N2-C25	1.448 (3)	C15—H15	0.9500
C1—C2	1.390 (3)	C17—C18	1.335 (4)
C1—C6	1.415 (3)	C17—H17	0.9500
C2—C3	1.390 (3)	C18—C19	1.458 (3)
С2—Н2	0.9500	C18—H18	0.9500
C3—C4	1.401 (4)	C19—C24	1.398 (3)
C4—C5	1.385 (3)	C19—C20	1.401 (3)
C5—C6	1.393 (3)	C20—C21	1.390 (4)
С5—Н5	0.9500	C20—H20	0.9500
C6—C11	1.442 (3)	C21—C22	1.399 (4)
С7—С8	1.530 (4)	C21—H21	0.9500
C7—H7A	0.9900	C22—C23	1.412 (3)
С7—Н7В	0.9900	C23—C24	1.379 (3)
C8—C9	1.518 (4)	С23—Н23	0.9500
C8—H8A	0.9900	C24—H24	0.9500
C8—H8B	0.9900	C25—H25A	0.9800
C9—C10	1.520 (4)	C25—H25B	0.9800
С9—Н9А	0.9900	C25—H25C	0.9800
С9—Н9В	0.9900	C26—H26A	0.9800

supporting information

C10—H10A	0 9800	C26—H26B	0 9800
C10—H10B	0.9800	C26—H26C	0.9800
C10 - H10C	0.9800		0.0000
	0.9000		
C16—N1—C1	108.3(2)	C11—C12—C13	118.5(2)
C16 - N1 - C7	124.7(2)	$C_{11} - C_{12} - H_{12}$	120.7
C1 - N1 - C7	1269(2)	C13 - C12 - H12	120.7
C_{22} N2 C_{26}	120.9(2)	C_{12} C_{12} C_{13} C_{14}	120.7 123.4(2)
$C_{22} = N_2 = C_{20}$	120.0(2) 120.1(2)	C12 - C13 - C14	125.4(2)
C_{22} N2 C25	120.1(2)	$C_{12} - C_{13} - D_{13}$	110.04(18)
C_{20} C_{10} C_{23} C_{23}	119.3(2)	C14 - C13 - B13	117.95 (18)
$C_2 = C_1 = N_1$	129.2(2)	C15 - C14 - C13	117.0(2)
$C_2 = C_1 = C_6$	121.6 (2)	C15 - C14 - C17	121.7 (2)
NI - CI - C6	109.1 (2)	C13 - C14 - C17	121.3 (2)
C1—C2—C3	117.4 (2)	C14—C15—C16	120.1 (2)
C1—C2—H2	121.3	C14—C15—H15	119.9
C3—C2—H2	121.3	С16—С15—Н15	119.9
C2—C3—C4	121.7 (2)	N1—C16—C15	128.7 (2)
C2—C3—Br1	117.04 (19)	N1—C16—C11	109.5 (2)
C4—C3—Br1	121.27 (18)	C15—C16—C11	121.8 (2)
C5—C4—C3	120.7 (2)	C18—C17—C14	124.7 (2)
C5—C4—Br2	118.33 (19)	C18—C17—H17	117.7
C3—C4—Br2	120.98 (18)	C14—C17—H17	117.7
C4—C5—C6	118.8 (2)	C17—C18—C19	126.1 (2)
С4—С5—Н5	120.6	C17—C18—H18	117.0
С6—С5—Н5	120.6	C19—C18—H18	117.0
C5—C6—C1	119.8 (2)	C24—C19—C20	116.7 (2)
C5—C6—C11	133 5 (2)	C_{24} C 19 C 18	123.8(2)
C1 - C6 - C11	106.6 (2)	C_{20} C_{19} C_{18}	1195(2)
N1-C7-C8	1129(2)	C_{21} C_{20} C_{19} C_{19}	1223(2)
N1-C7-H7A	109.0	$C_{21} = C_{20} = H_{20}$	118.8
$C_8 C_7 H_{7\Lambda}$	109.0	$C_{10} = C_{20} = H_{20}$	118.8
N1 C7 H7P	109.0	$C_{19} = C_{20} = C_{120}$	110.0
NI = C / = II / B	109.0	$C_{20} = C_{21} = C_{22}$	120.4 (2)
	109.0	$C_{20} = C_{21} = H_{21}$	119.8
$\Pi/A - C / - \Pi/B$	107.8	V22-C21-H21	119.8
C_{2}	114.0 (2)	N2-C22-C21	121.7(2)
C_{2} C_{3} H_{8A}	108.8	$N_2 = C_{22} = C_{23}$	120.8 (2)
C/-C8-H8A	108.8	C21—C22—C23	117.5 (2)
C9—C8—H8B	108.8	C24—C23—C22	121.3 (2)
С7—С8—Н8В	108.8	C24—C23—H23	119.4
H8A—C8—H8B	107.7	С22—С23—Н23	119.4
C8—C9—C10	112.2 (2)	C23—C24—C19	121.7 (2)
С8—С9—Н9А	109.2	C23—C24—H24	119.1
С10—С9—Н9А	109.2	C19—C24—H24	119.1
С8—С9—Н9В	109.2	N2—C25—H25A	109.5
С10—С9—Н9В	109.2	N2—C25—H25B	109.5
Н9А—С9—Н9В	107.9	H25A—C25—H25B	109.5
C9—C10—H10A	109.5	N2—C25—H25C	109.5
C9—C10—H10B	109.5	H25A—C25—H25C	109.5

H10A—C10—H10B	109.5	H25B—C25—H25C	109.5
C9-C10-H10C	109.5	N2—C26—H26A	109.5
H10A—C10—H10C	109.5	N2—C26—H26B	109.5
H10B-C10-H10C	109.5	H26A—C26—H26B	109.5
C12—C11—C16	119.2 (2)	N2—C26—H26C	109.5
C12—C11—C6	134.4 (2)	H26A—C26—H26C	109.5
C16—C11—C6	106.4 (2)	H26B—C26—H26C	109.5
C16—N1—C1—C2	-179.3 (2)	C12-C13-C14-C17	178.9 (2)
C7—N1—C1—C2	-2.2 (4)	Br3—C13—C14—C17	-2.1 (3)
C16—N1—C1—C6	0.7 (3)	C13—C14—C15—C16	-0.1 (3)
C7—N1—C1—C6	177.8 (2)	C17—C14—C15—C16	-179.1 (2)
N1—C1—C2—C3	179.8 (2)	C1—N1—C16—C15	180.0 (2)
C6—C1—C2—C3	-0.2 (4)	C7—N1—C16—C15	2.7 (4)
C1—C2—C3—C4	0.2 (4)	C1—N1—C16—C11	-0.6 (3)
C1—C2—C3—Br1	-178.73 (17)	C7—N1—C16—C11	-177.9 (2)
C2—C3—C4—C5	-0.2 (4)	C14—C15—C16—N1	179.8 (2)
Br1—C3—C4—C5	178.67 (18)	C14—C15—C16—C11	0.4 (4)
C2—C3—C4—Br2	-178.20 (19)	C12-C11-C16-N1	180.0 (2)
Br1—C3—C4—Br2	0.6 (3)	C6—C11—C16—N1	0.4 (3)
C3—C4—C5—C6	0.2 (4)	C12—C11—C16—C15	-0.6 (3)
Br2—C4—C5—C6	178.27 (18)	C6—C11—C16—C15	179.8 (2)
C4—C5—C6—C1	-0.2 (4)	C15—C14—C17—C18	-11.2 (4)
C4—C5—C6—C11	-179.3 (2)	C13-C14-C17-C18	169.8 (2)
C2-C1-C6-C5	0.2 (4)	C14—C17—C18—C19	178.0 (2)
N1-C1-C6-C5	-179.8 (2)	C17-C18-C19-C24	6.3 (4)
C2-C1-C6-C11	179.5 (2)	C17-C18-C19-C20	-174.2 (2)
N1-C1-C6-C11	-0.4 (3)	C24—C19—C20—C21	-1.0 (4)
C16—N1—C7—C8	78.0 (3)	C18-C19-C20-C21	179.5 (2)
C1—N1—C7—C8	-98.7 (3)	C19—C20—C21—C22	0.2 (4)
N1—C7—C8—C9	65.2 (3)	C26—N2—C22—C21	1.4 (4)
C7—C8—C9—C10	-175.0 (2)	C25—N2—C22—C21	-171.3 (2)
C5-C6-C11-C12	-0.2 (5)	C26—N2—C22—C23	-177.6 (3)
C1-C6-C11-C12	-179.5 (3)	C25—N2—C22—C23	9.7 (4)
C5-C6-C11-C16	179.3 (3)	C20—C21—C22—N2	-178.0 (3)
C1-C6-C11-C16	0.0 (3)	C20—C21—C22—C23	1.1 (4)
C16—C11—C12—C13	0.4 (3)	N2-C22-C23-C24	177.5 (3)
C6-C11-C12-C13	179.8 (2)	C21—C22—C23—C24	-1.6 (4)
C11—C12—C13—C14	0.0 (4)	C22—C23—C24—C19	0.8 (4)
C11—C12—C13—Br3	-179.05 (17)	C20—C19—C24—C23	0.6 (4)
C12—C13—C14—C15	-0.2 (4)	C18—C19—C24—C23	180.0 (2)
Br3-C13-C14-C15	178.85 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C26—H26C···Br1 ⁱ	0.98	2.91	3.844 (3)	161

Symmetry code: (i) *x*+1, *y*-1, *z*+1.