

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Acetylacetonato- $\kappa^2 O, O'$)carbonyl[tris(4chlorophenyl)phosphane- κP]rhodium(I)

Nathan C. Antonels and Reinout Meijboom*

Research Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa

Correspondence e-mail: rmeijboom@uj.ac.za

Received 23 February 2012; accepted 22 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.027; *wR* factor = 0.063; data-to-parameter ratio = 20.9.

The title compound, $[Rh(C_5H_7O_2)(C_{18}H_{12}Cl_3P)(CO)]$, contains the bidentate acetylacetonate ligand coordinated to the Rh^I atom, forming a chelate ring [Rh-O = 2.0327 (15)and 2.0613 (14) Å]. The Rh^I atom is additionally coordinated by one P [Rh-P = 2.2281 (6) Å] and one carbonyl C [Rh-C = 1.812 (2) Å] atom, resulting in a slightly distorted squareplanar geometry. The molecules are packed to minimize steric hindrance with the phosphanes positioned above and below the slightly distorted square geometrical plane.

Related literature

For background literature on the catalytic activity of rhodiumphosphane compounds, see: Carraz *et al.* (2000); Moloy & Wegman (1989); Bonati & Wilkinson (1964). For related rhodium compounds, see: Brink *et al.* (2007); Erasmus & Conradie (2011); Leipoldt *et al.* (1978); Steynberg *et al.* (1987).

Experimental

Crystal data

 $[Rh(C_{5}H_{7}O_{2})(C_{18}H_{12}Cl_{3}P)(CO)]$ $M_{r} = 595.62$ Triclinic, $P\overline{1}$ a = 9.6528 (17) Å b = 11.535 (2) Å c = 12.875 (2) Å $\alpha = 65.211$ (3)° $\beta = 72.095$ (4)°

Data collection

Bruker APEX DUO 4K CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{min} = 0.826, T_{max} = 0.877$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.063$ S = 1.016083 reflections $\gamma = 72.757 (4)^{\circ}$ $V = 1214.9 (4) Å^{3}$ Z = 2Mo K α radiation $\mu = 1.12 \text{ mm}^{-1}$ T = 100 K $0.18 \times 0.13 \times 0.12 \text{ mm}$

19382 measured reflections 6083 independent reflections 5395 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$

291 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.50 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.48 \text{ e} \text{ Å}^{-3}$

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *publCIF* (Westrip, 2010) and *WinGX* (Farrugia, 1999).

The National Research Foundation (NRF) and the University of Johannesburg are acknowledged for funding. H. Ogutu is acknowledged for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2054).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156-3160.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brink, A., Roodt, A. & Visser, H. G. (2007). Acta Cryst. E63, m48-m50.
- Bruker (2008). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carraz, C. A., Ditzel, E. J., Orpen, A. G., Ellis, D. D., Pringle, P. G. & Sunley, G. J. (2000). Chem. Commun. pp. 1277–1278.
- Erasmus, J. J. C. & Conradie, J. (2011). Inorg. Chim. Acta, 375, 128-134.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Leipoldt, J. G., Basson, S. S., Bok, L. D. C. & Gerber, T. I. A. (1978). Inorg. Chim. Acta, 26, L35–L37.
- Moloy, K. G. & Wegman, R. W. (1989). Organometallics, 8, 2883–2892.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steynberg, E. C., Lamprecht, G. J. & Leipoldt, J. G. (1987). *Inorg. Chim. Acta*, **133**, 33–37.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, m509 [https://doi.org/10.1107/S1600536812012536] (Acetylacetonato-κ²O,O')carbonyl[tris(4-chlorophenyl)phosphaneκP]rhodium(l)

Nathan C. Antonels and Reinout Meijboom

S1. Comment

Acetylacetonate has two O-donor atoms with equivalent σ -electron donor capabilities. The high symmetry of dicarbonyl-(acetylacetonate)rhodium(I) complexes promotes easy carbonyl displacement of either carbonyl group with a variety of phosphanes, phosphites and arsines (Bonati and Wilkinson, 1964). These dicarbonyl(acetylacetonate)rhodium(I) compounds are typically used in methyl iodide oxidative addition studies (Erasmus and Conradie, 2011). This study is part of ongoing research into induced effects of various phosphanes coordinated to Rh(I) centers. Previous work illustrating the catalytic importance of the rhodium(I) square-planar mojeties has been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy and Wegman, 1989). Symmetrical di-phosphane ligands result in the production of acetaldehyde, whereas unsymmetrical diphosphane ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000). In the title compound, $[Rh(acac)(CO){P(4-Cl-C_6H_4)3}]$ (acac = acetylacetonate), the coordination around the Rh atom shows a slightly distorted square-planar arrangement, illustrated by C24—Rh1—P1 and O1—Rh1—O2 angles of 88.08 (7)° and 89.37 (6)°, respectively and a distance of 0.0015 (2) Å for Rh1 from the mean coordination plane. The Rh—C and Rh—P bond lengths are 1.812 (2) Å and 2.2280 (6) Å respectively. A larger trans influence of the phosphane ligand with respect to the carbonyl ligand is indicated by the longer Rh-O2 (2.0613 (14) Å) bond compared to Rh-O1 (2.0327 (15) Å) bond which is trans to the carbonyl ligand. The molecular geometries are similar to those observed from the closely related compounds known from Steynberg et al. (1987) and Leipoldt et al. (1978). These compounds show similar spectroscopic properties to those as discussed by Brink et al.(2007).

S2. Experimental

A solution of $[PCy_2(4-Me_2NC_6H_4)]$ (63.6 mg, 0.174 mmol) in acetone (3 cm³) was slowly added to a solution of $[Rh(acac)(CO)_2]$ (44.5 mg, 0.172 mmol) in acetone (4 cm³). The solvent was removed and recrystallized from dichloromethane. Slow evaporation of the solvent afforded the title compound as yellow crystals (yield: 85.5 mg, 83%). Spectroscopic data: ^{31P}{H} NMR (CDCl₃, 161.98 MHz, p.p.m.): 47.55 p.p.m. [¹J(Rh—P) = 176 Hz]; IR (solid) *v*(CO): 1976 cm⁻¹. IR (dichloromethane) *v*(CO): 1981 cm⁻¹

S3. Refinement

Hydrogen atom positions were calculated and refined using a riding model (C—H = 0.95–0.98 Å) with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and a riding model allowing the torsion angle to be refined from the electron density with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

 $(Acetylacetonato-\kappa^2 O, O') carbonyl[tris(4- chlorophenyl)phosphane-\kappa P]rhodium(I)$

Crystal data	
$[Rh(C_{5}H_{7}O_{2})(C_{18}H_{12}Cl_{3}P)(CO)]$ $M_{r} = 595.62$ Triclinic, <i>P</i> I Hall symbol: -P 1 a = 9.6528 (17) Å b = 11.535 (2) Å c = 12.875 (2) Å $a = 65.211 (3)^{\circ}$ $\beta = 72.095 (4)^{\circ}$ $\gamma = 72.757 (4)^{\circ}$ $V = 1214.9 (4) \text{ Å}^{3}$	Z = 2 F(000) = 596 $D_x = 1.628 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8738 reflections $\theta = 2.7-28.4^{\circ}$ $\mu = 1.12 \text{ mm}^{-1}$ T = 100 K Block, yellow $0.18 \times 0.13 \times 0.12 \text{ mm}$
Data collection	
Bruker APEX DUO 4K CCD diffractometer Radiation source: sealed tube	Graphite monochromator Detector resolution: 8.4 pixels mm ⁻¹ φ and ω scans

Absorption correction: multi-scan	$R_{\rm int} = 0.029$
(SADABS; Bruker, 2008)	$\theta_{\rm max} = 28.7^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
$T_{\min} = 0.826, \ T_{\max} = 0.877$	$h = -11 \rightarrow 13$
19382 measured reflections	$k = -15 \rightarrow 15$
6083 independent reflections	$l = -17 \rightarrow 17$
5395 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.027$	Hydrogen site location: inferred from
$wP(F^2) = 0.063$	paichbouring sites
WR(F') = 0.003 S = 1.01 6083 reflections 291 parameters	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0242P)^2 + 0.9592P]$ where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.005$
Primary atom site location: structure-invariant	$\Delta\rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta\rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
1.052699 (17)	0.359470 (15)	0.333583 (13)	0.01682 (5)
0.39474 (6)	0.72923 (6)	0.04828 (5)	0.03653 (14)
1.24276 (7)	0.04921 (6)	-0.10196 (5)	0.03470 (14)
0.52995 (6)	-0.10417 (5)	0.72212 (5)	0.02947 (12)
0.89407 (5)	0.28944 (5)	0.28971 (4)	0.01573 (10)
0.96017 (16)	0.28916 (14)	0.50713 (12)	0.0221 (3)
1.20480 (15)	0.42067 (14)	0.37193 (13)	0.0230 (3)
1.18810 (19)	0.46211 (18)	0.08083 (14)	0.0365 (4)
1.0041 (2)	0.2905 (2)	0.59045 (19)	0.0245 (4)
0.9110 (3)	0.2347 (3)	0.7102 (2)	0.0373 (6)
0.863	0.3036	0.7426	0.056*
0.9742	0.1658	0.7615	0.056*
0.8349	0.1984	0.7045	0.056*
1.1259 (2)	0.3395 (2)	0.57878 (19)	0.0259 (5)
1.1492	0.3296	0.649	0.031*
1.2168 (2)	0.4018 (2)	0.4741 (2)	0.0235 (4)
1.3406 (3)	0.4541 (2)	0.4762 (2)	0.0325 (5)
1.4362	0.4059	0.4468	0.049*
1.3355	0.4441	0.5567	0.049*
	x 1.052699 (17) 0.39474 (6) 1.24276 (7) 0.52995 (6) 0.89407 (5) 0.96017 (16) 1.20480 (15) 1.18810 (19) 1.0041 (2) 0.9110 (3) 0.863 0.9742 0.8349 1.1259 (2) 1.1492 1.2168 (2) 1.3406 (3) 1.4362 1.3355	x y $1.052699 (17)$ $0.359470 (15)$ $0.39474 (6)$ $0.72923 (6)$ $1.24276 (7)$ $0.04921 (6)$ $0.52995 (6)$ $-0.10417 (5)$ $0.89407 (5)$ $0.28944 (5)$ $0.96017 (16)$ $0.28916 (14)$ $1.20480 (15)$ $0.42067 (14)$ $1.18810 (19)$ $0.46211 (18)$ $1.0041 (2)$ $0.2905 (2)$ $0.9110 (3)$ $0.2347 (3)$ 0.863 0.3036 0.9742 0.1658 0.8349 0.1984 $1.1259 (2)$ $0.3395 (2)$ 1.1492 0.3296 $1.2168 (2)$ $0.4018 (2)$ $1.3406 (3)$ $0.4541 (2)$ 1.3355 0.4441	xyz $1.052699 (17)$ $0.359470 (15)$ $0.333583 (13)$ $0.39474 (6)$ $0.72923 (6)$ $0.04828 (5)$ $1.24276 (7)$ $0.04921 (6)$ $-0.10196 (5)$ $0.52995 (6)$ $-0.10417 (5)$ $0.72212 (5)$ $0.89407 (5)$ $0.28944 (5)$ $0.28971 (4)$ $0.96017 (16)$ $0.28916 (14)$ $0.50713 (12)$ $1.20480 (15)$ $0.42067 (14)$ $0.37193 (13)$ $1.18810 (19)$ $0.46211 (18)$ $0.08083 (14)$ $1.0041 (2)$ $0.2905 (2)$ $0.59045 (19)$ $0.9110 (3)$ $0.2347 (3)$ $0.7102 (2)$ 0.863 0.3036 0.7426 0.9742 0.1658 0.7615 0.8349 0.1984 0.7045 $1.1259 (2)$ $0.3395 (2)$ $0.57878 (19)$ 1.1492 0.3296 0.649 $1.2168 (2)$ $0.4018 (2)$ $0.4762 (2)$ 1.4362 0.4059 0.4468 1.3355 0.4441 0.5567

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

				0.040#	
H5C	1.331	0.5465	0.4265	0.049*	
C6	0.7434 (2)	0.41545 (19)	0.22884 (17)	0.0184 (4)	
C7	0.7514 (2)	0.5465 (2)	0.18792 (18)	0.0229 (4)	
H7	0.8327	0.57	0.1962	0.027*	
C8	0.6419 (3)	0.6428 (2)	0.13528 (19)	0.0275 (5)	
H8	0.647	0.732	0.1086	0.033*	
C9	0.5257 (2)	0.6074 (2)	0.12224 (18)	0.0247 (4)	
C10	0.5121 (2)	0.4789 (2)	0.1645 (2)	0.0275 (5)	
H10	0.4301	0.4563	0.1563	0.033*	
C11	0.6208 (2)	0.3830 (2)	0.2192 (2)	0.0247 (4)	
H11	0.6115	0.2944	0.2505	0.03*	
C12	0.9830 (2)	0.21278 (19)	0.18053 (17)	0.0175 (4)	
C13	1.1223 (2)	0.1333 (2)	0.18776 (19)	0.0266 (5)	
H13	1.1643	0.1155	0.2518	0.032*	
C14	1.2014 (3)	0.0792 (2)	0.10336 (19)	0.0278 (5)	
H14	1.2958	0.0239	0.1099	0.033*	
C15	1.1402 (2)	0.1073 (2)	0.00991 (18)	0.0240 (4)	
C16	1.0022 (3)	0.1842 (3)	0.0012 (2)	0.0335 (5)	
H16	0.9606	0.2013	-0.0629	0.04*	
C17	0.9235 (2)	0.2369 (2)	0.0866 (2)	0.0285 (5)	
H17	0.8279	0.2901	0.0805	0.034*	
C18	0.7931 (2)	0.17036 (19)	0.41102 (17)	0.0177 (4)	
C19	0.8076 (2)	0.0432 (2)	0.41969 (18)	0.0224 (4)	
H19	0.8742	0.014	0.3599	0.027*	
C20	0.7263 (2)	-0.0419 (2)	0.51444 (19)	0.0246 (4)	
H20	0.7369	-0.1286	0.5197	0.03*	
C21	0.6299 (2)	0.0015 (2)	0.60070 (18)	0.0206 (4)	
C22	0.6129 (2)	0.1278 (2)	0.59502 (19)	0.0257 (5)	
H22	0.5459	0.1565	0.6549	0.031*	
C23	0.6956 (2)	0.2108 (2)	0.50032 (19)	0.0245 (4)	
H23	0.6859	0.297	0.496	0.029*	
C24	1.1342 (2)	0.4217 (2)	0.17864 (19)	0.0232 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rh1	0.01580 (8)	0.02264 (8)	0.01419 (8)	-0.00561 (6)	-0.00310 (6)	-0.00747 (6)
Cl1	0.0251 (3)	0.0402 (3)	0.0282 (3)	0.0055 (2)	-0.0093 (2)	-0.0025 (2)
Cl2	0.0464 (3)	0.0316 (3)	0.0238 (3)	-0.0026 (3)	-0.0002 (2)	-0.0161 (2)
C13	0.0293 (3)	0.0268 (3)	0.0266 (3)	-0.0137 (2)	0.0029 (2)	-0.0049 (2)
P1	0.0154 (2)	0.0184 (2)	0.0137 (2)	-0.00436 (19)	-0.00333 (18)	-0.00522 (19)
01	0.0227 (7)	0.0290 (8)	0.0157 (7)	-0.0058 (6)	-0.0035 (6)	-0.0088 (6)
O2	0.0185 (7)	0.0307 (8)	0.0263 (8)	-0.0054 (6)	-0.0052 (6)	-0.0156 (7)
O3	0.0359 (9)	0.0545 (11)	0.0200 (9)	-0.0231 (8)	0.0014 (7)	-0.0096 (8)
C1	0.0264 (11)	0.0272 (11)	0.0195 (10)	0.0001 (9)	-0.0068 (9)	-0.0101 (9)
C2	0.0447 (15)	0.0505 (15)	0.0177 (11)	-0.0151 (12)	-0.0054 (10)	-0.0099 (11)
C3	0.0277 (11)	0.0337 (12)	0.0236 (11)	0.0010 (9)	-0.0128 (9)	-0.0167 (9)
C4	0.0204 (10)	0.0243 (10)	0.0328 (12)	0.0041 (8)	-0.0119 (9)	-0.0183 (9)

C5	0.0254 (12)	0.0406 (13)	0.0466 (15)	-0.0015 (10)	-0.0138 (11)	-0.0289 (12)
C6	0.0170 (9)	0.0226 (9)	0.0160 (9)	-0.0037 (8)	-0.0040 (7)	-0.0072 (8)
C7	0.0238 (10)	0.0229 (10)	0.0236 (11)	-0.0087 (8)	-0.0066 (8)	-0.0060 (9)
C8	0.0304 (12)	0.0213 (10)	0.0242 (11)	-0.0043 (9)	-0.0065 (9)	-0.0020 (9)
C9	0.0188 (10)	0.0299 (11)	0.0166 (10)	0.0012 (8)	-0.0039 (8)	-0.0040 (9)
C10	0.0164 (10)	0.0349 (12)	0.0303 (12)	-0.0069 (9)	-0.0065 (9)	-0.0085 (10)
C11	0.0193 (10)	0.0240 (10)	0.0298 (12)	-0.0069 (8)	-0.0061 (9)	-0.0063 (9)
C12	0.0186 (9)	0.0198 (9)	0.0145 (9)	-0.0073 (7)	-0.0014 (7)	-0.0055 (8)
C13	0.0288 (11)	0.0299 (11)	0.0198 (11)	-0.0006 (9)	-0.0087 (9)	-0.0086 (9)
C14	0.0277 (11)	0.0267 (11)	0.0229 (11)	0.0017 (9)	-0.0043 (9)	-0.0088 (9)
C15	0.0315 (11)	0.0218 (10)	0.0176 (10)	-0.0075 (9)	0.0017 (9)	-0.0092 (8)
C16	0.0346 (13)	0.0486 (14)	0.0254 (12)	-0.0020 (11)	-0.0114 (10)	-0.0215 (11)
C17	0.0232 (11)	0.0396 (13)	0.0289 (12)	0.0001 (9)	-0.0092 (9)	-0.0199 (10)
C18	0.0170 (9)	0.0204 (9)	0.0156 (9)	-0.0055 (7)	-0.0053 (7)	-0.0039 (8)
C19	0.0239 (10)	0.0224 (10)	0.0204 (10)	-0.0037 (8)	-0.0026 (8)	-0.0093 (8)
C20	0.0283 (11)	0.0185 (9)	0.0255 (11)	-0.0060 (8)	-0.0034 (9)	-0.0071 (9)
C21	0.0183 (10)	0.0228 (10)	0.0190 (10)	-0.0075 (8)	-0.0040 (8)	-0.0035 (8)
C22	0.0241 (11)	0.0271 (11)	0.0243 (11)	-0.0074 (9)	0.0031 (9)	-0.0119 (9)
C23	0.0264 (11)	0.0216 (10)	0.0257 (11)	-0.0072 (8)	-0.0006 (9)	-0.0104 (9)
C24	0.0204 (10)	0.0307 (11)	0.0235 (11)	-0.0096 (9)	-0.0053 (8)	-0.0110 (9)

Geometric parameters (Å, °)

Rh1—C24	1.812 (2)	С7—Н7	0.95
Rh1—O1	2.0324 (14)	C8—C9	1.378 (3)
Rh1—O2	2.0616 (14)	C8—H8	0.95
Rh1—P1	2.2280 (6)	C9—C10	1.381 (3)
Cl1—C9	1.745 (2)	C10—C11	1.390 (3)
Cl2—C15	1.744 (2)	C10—H10	0.95
Cl3—C21	1.741 (2)	C11—H11	0.95
P1—C6	1.826 (2)	C12—C17	1.386 (3)
P1—C18	1.826 (2)	C12—C13	1.390 (3)
P1—C12	1.829 (2)	C13—C14	1.389 (3)
O1—C1	1.276 (2)	C13—H13	0.95
O2—C4	1.277 (2)	C14—C15	1.378 (3)
O3—C24	1.150 (3)	C14—H14	0.95
C1—C3	1.392 (3)	C15—C16	1.372 (3)
C1—C2	1.502 (3)	C16—C17	1.388 (3)
C2—H2A	0.98	C16—H16	0.95
C2—H2B	0.98	C17—H17	0.95
C2—H2C	0.98	C18—C19	1.391 (3)
C3—C4	1.391 (3)	C18—C23	1.396 (3)
С3—Н3	0.95	C19—C20	1.390 (3)
C4—C5	1.502 (3)	C19—H19	0.95
С5—Н5А	0.98	C20—C21	1.380 (3)
C5—H5B	0.98	C20—H20	0.95
С5—Н5С	0.98	C21—C22	1.390 (3)
C6—C7	1.394 (3)	C22—C23	1.385 (3)

supporting information

C6—C11	1.395 (3)	С22—Н22	0.95
С7—С8	1.387 (3)	С23—Н23	0.95
C24—Rh1—O1	179.59 (8)	C8—C9—C11	118.52 (17)
C24—Rh1—O2	91.04 (8)	C10—C9—Cl1	119.74 (17)
O1—Rh1—O2	89.37 (6)	C9—C10—C11	118.7 (2)
C24—Rh1—P1	88.08 (7)	С9—С10—Н10	120.6
O1—Rh1—P1	91.50 (4)	C11—C10—H10	120.6
O2—Rh1—P1	178.23 (4)	C10—C11—C6	120.8 (2)
C6—P1—C18	101.96 (9)	C10—C11—H11	119.6
C6—P1—C12	104.31 (9)	C6-C11-H11	119.6
C18—P1—C12	104.69 (9)	C17—C12—C13	118.31 (18)
C6—P1—Rh1	115.10(7)	C17—C12—P1	123.42 (15)
C18—P1—Rh1	116.37 (6)	C13—C12—P1	118.10 (15)
C12—P1—Rh1	112.95 (7)	C14—C13—C12	121.5 (2)
C1—O1—Rh1	126.58 (14)	C14—C13—H13	119.3
C4—O2—Rh1	126.09 (14)	C12—C13—H13	119.3
01	126.0 (2)	C15—C14—C13	118.7 (2)
01	114.7 (2)	C15—C14—H14	120.6
$C_{3}-C_{1}-C_{2}$	119.3 (2)	C13—C14—H14	120.6
C1-C2-H2A	109.5	C16-C15-C14	121.06 (19)
C1 - C2 - H2B	109.5	C16-C15-C12	119 43 (17)
$H^2A - C^2 - H^2B$	109.5	C14-C15-C12	119.15(17) 119.46(17)
C1 - C2 - H2C	109.5	C_{15} C_{16} C_{17}	119.8 (2)
$H^2A - C^2 - H^2C$	109.5	C15 - C16 - H16	120.1
H2B - C2 - H2C	109.5	C17 - C16 - H16	120.1
C4-C3-C1	126 21 (19)	C12 - C17 - C16	120.1 120.7(2)
C4-C3-H3	116.9	C12 - C17 - H17	119.7
C1 - C3 - H3	116.9	$C_{12} = C_{17} = H_{17}$	119.7
$0^{2}-C^{4}-C^{3}$	125 59 (19)	C19 - C18 - C23	118 53 (19)
02 - C4 - C5	1123.33(13)	C19 - C18 - P1	124 22 (15)
C_{3} C_{4} C_{5}	119.7 (2)	C_{23} C_{18} P_{1}	127.22(15) 117.25(15)
C4 - C5 - H5A	109.5	C_{20} C_{10} C_{18}	120.98(19)
C4-C5-H5B	109.5	C_{20} C_{19} H_{19}	110.5
H5A_C5_H5B	109.5	C_{18} C_{19} H_{19}	119.5
C4-C5-H5C	109.5	$C_{10} = C_{10} = C_{10}$	119.05 (19)
H_{5A} C_{5} H_{5C}	109.5	$C_{21} = C_{20} = C_{12}$	120.5
H5B_C5_H5C	109.5	C19 - C20 - H20	120.5
C_{7}	118 78 (18)	C_{20} C_{21} C_{22}	121.51 (19)
C7 - C6 - P1	120.16(15)	$C_{20} = C_{21} = C_{22}$	121.91(19) 120.00(16)
$C_{11} C_{6} P_{1}$	120.10(15)	$C_{20} = C_{21} = C_{13}$	120.00(10) 118.47(16)
C^{R} C^{T} C^{R}	121.04(13) 120.7(2)	$C_{22} = C_{21} = C_{13}$	118.47(10) 118.60(10)
$C_{8} = C_{7} = C_{0}$	120.7 (2)	$C_{23} = C_{22} = C_{21}$	110.00 (19)
$C_{6} = C_{7} = H_{7}$	119.0	$C_{23} = C_{22} = H_{22}$	120.7
$C_0 = C_1 = C_1$	119.0	$C_{21} - C_{22} - C_{122}$	120.7 121.22(10)
$C_{0} = C_{0} = C_{1}$	119.1 (2)	$C_{22} = C_{23} = C_{10}$	121.32 (19)
$C_{7} = C_{8} = H_{8}$	120.5	$C_{22} - C_{23} - H_{23}$	117.5
$C_{1} = C_{0} = C_{10}$	120.3 121.72(10)	$C_{10} - C_{23} - \Pi_{23}$	117.5
Co-Cy-C10	121./3 (19)	U3-U24-KIII	1/0.3/(19)