organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,6-Bis(diphenylphosphanyl)-2,8-dimethylphenoxathiin dichloromethane monosolvate

Thashree Marimuthu, Holger B. Friedrich and Muhammad D. Bala*

School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: bala@ukzn.ac.za

Received 22 February 2012; accepted 6 March 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.100; data-to-parameter ratio = 20.1.

The title compound, C₃₈H₃₀OP₂S·CH₂Cl₂, belongs to the xanthene family of ligands containing S- and O-donor atoms in the central heterocylic ring. Positions 2 and 8 on the xanthene backbone are functionalized with methyl groups to allow for the selective functionalization of the backbone at positions 4 and 6 with diphenylphosphanyl units. The title compound shows a significant 'roof-like' bending along the axis of planarity involving the O- and S-donor atoms and the benzene rings, resulting in a dihedral angle between the mean planes of the benzene rings of $32.88 (13)^{\circ}$.

Related literature

For a closely related compound, see: Goertz et al. (1998). For complexation to metal centre and catalysis, see: Kranenburg et al. (1995). For related P-donor ligands, see: Marimuthu et al. (2008). For a related structure, see: Hillebrand et al. (1995).

Experimental

Crystal data

$C_{38}H_{30}OP_2S \cdot CH_2Cl_2$
$M_r = 681.55$
Monoclinic, $P2_1/n$
a = 9.3605 (7) Å
b = 20.6796 (15) Å
c = 18.1360 (15) Å
$\beta = 104.955 \ (1)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer 46059 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.100$ S = 1.078183 reflections

V = 3391.7 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.38 \text{ mm}^-$ T = 173 K $0.47 \times 0.36 \times 0.28 \text{ mm}$

8183 independent reflections 6527 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.039$

408 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.51$ e Å⁻³

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank Dr Manuel Fernandes for the data collection and SASOL, THRIP and the University of KwaZulu-Natal for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2525).

References

- Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Goertz, W., Keim, W., Vogt, D., Englert, U., Boele, M. D. K., van der Veen, L. A., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (1998). J. Chem. Soc. Dalton Trans. pp. 2981-2988.
- Hillebrand, S., Bruckmann, J., Kruger, C. & Haenel, M. W. (1995). Tetrahedron Lett. 36, 75-78.
- Kranenburg, M., Vanderburgt, Y. E. M., Kamer, P. C. J., van Leeuwen, P. W. N. M., Goubitz, K. & Fraanje, J. (1995). Organometallics, 14, 3081-3089.
- Marimuthu, T., Bala, M. D. & Friedrich, H. B. (2008). Acta Cryst. E64, 0711. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2012). E68, o1040 [https://doi.org/10.1107/S1600536812009920]

4,6-Bis(diphenylphosphanyl)-2,8-dimethylphenoxathiin dichloromethane monosolvate

Thashree Marimuthu, Holger B. Friedrich and Muhammad D. Bala

S1. Comment

The title compound, 4,6-bis(diphenylphosphanyl)-2,8-dimethylphenoxathiin (I) (Fig. 1), has been reported as a ligand on rhodium for hydroformylation of olefins and on nickel for hydrocyanation of styrene (Kranenburg *et al.*, 1995). Compound (I) consists of two very nearly regular planar hexagonal carbocyclic rings joined to a non-planar heterocyclic ring. The planes of the aromatic rings of the xanthene backbone bisect at an angle of 147.12° with the S atom lying out of the ring planes.

A comparison of (I) with the closely related structure reported by Goertz *et al.* (1998) shows that sixantphos can adopt two different conformations in the solid state with different crystallographic parameters and cell contents. The conformational differences were due to the presence of an incorporated solvent molecule in (I) and the significant roof-like bending of the backbone framework along the axis of planarity involving the O and S heterocyclic atoms and the aromatic rings. The dihedral angle of 32.88° between the least-squares planes of the aromatic rings of (I) is significant when compared to the essentially co-planar aromatic rings in the phenoxazine backbone of the Goertz *et al.* (1998) compound. The title compound crystallizes in the $P2_1/n$ space group, while the previously reported structure was in the $P2_1/c$ space group. A similar difference in conformation was reported by (Hillebrand *et al.*, 1995) for two separate crystals of xantphos. The bond lengths for (I) are in good agreement with those in the reported structure, but the internal bond angles of the heterocyclic ring are slightly shorter in (I). This is consistent with a bent geometry of the heterocyle in (I) [C11—S1—C5] 98.28 (7) and [C12—O1—C6] 117.5 (1)° compared to 101.4 (1) and 124.4 (2)° for similar bond angles in the previously reported crystal structure.

Upon complexation to a metal centre the backbone of sixantphos tends to bend to accommodate the extra steric congestion around the metal centre (Goertz *et al.*, 1998). Therefore when compound (I) is used as a ligand, the backbone needs little tilting in order to coordinate to a metal centre. The bond angles at the P atoms range from 100.04 (6) to $102.95 (7)^{\circ}$ which are similar to those found for a realated P donor ligand [99.93 (10) to $103.02 (10)^{\circ}$] (Marimuthu *et al.*, 2008).

S2. Experimental

A solution of 2,8-dimethylphenoxathiin (1.5 g, 6.6 mmol) and TMEDA (2.5 ml, 16.8 mmol) in 45 ml of dry degassed Et_2O was cooled to 0 °C. To the chilled solution, *n*BuLi (10.3 ml, 16.8 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and left to stir for 16 h. The resulting dark orange reaction mixture was cooled to 0 °C and PPh₂Cl (3.1 ml, 16.8 mmol) in hexane (6 ml) added dropwise. The reaction mixture slowly decolourized and a fine precipitate formed. The reaction was allowed to stir for a further 16 h. Thereafter, the reaction was slowly hydro-ylsed with 40 ml of 10% HCl/brine mixture (1/1). The organic layer was removed, and the aqueous layer extracted with dichloromethane. The combined fractions were dried over MgSO₄, filtered, and the volume reduced to give a yellow oil.

The crude product was washed with hexane (3 *x* 20 ml), the oil dissolved in dichloromethane, and an equal volume of ethanol added slowly. The solution was left to recrystalize at room temperature and the crystals filtered and dried under vacuum. Recrystallization from dichloromethane/ethanol (1:1) afforded colourless crystals of (I) suitable for X-ray analysis. [yield: 2.2 g, 62%; m.p. 457 K]. Spectroscopic analysis: ¹H NMR (400 MHz, CDCl₃, δ , p.p.m.): 7.29 – 7.12 (m, 20H), 6.86 (apparent d, J = 1.0 Hz, 2H), 6.22 (bs, 2H), 2.05 (s, 6H); ¹³C NMR (101 MHz, CDCl₃, δ , p.p.m.): 152.2(t, J(P,C) = 24.4 Hz, CO), 137.2 (t, J(P,C) = 13.1 Hz phenyl C-*ipso*, PC), 133.9 (t, J(P,C) = 21 Hz, CH phenyl), 133.5 (C), 132.7 (CH), 128.2 (CH phenyl), 128.1 (t, J(P,C) = 3.5 Hz, CH phenyl), 127.6 (CH) 127.3 (dd, J(P,C) = 12.6, 11 Hz, CHCH*C*–P), 119.5 (CS), 20.6 (CH₃); ³¹P NMR (243 MHz, CDCl₃ δ , p.p.m.): -17.9; IR (neat, v_{max} , cm-1): 3050 (w), 2961 (w), 2921 (w), 1556 (m), 1476 (m), 1432 (m), 1402 (s), 1238 (m), 1221 (m) 1199 (m), 742 (s), 692 (s); HR—MS (ESI) (m/z): 597.1559 [M + H]⁺ calcd. for C₃₈H₃₁OP₂S, 597.1565.

S3. Refinement

All H-atoms were refined using a riding model, with C—H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic and C—H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃.

Figure 1 *ORTEP* diagram of compound (I). Thermal ellipsoids are represented at the 50% probability level

4,6-Bis(diphenylphosphanyl)-2,8-dimethylphenoxathiin dichloromethane monosolvate

Crystal data	
$C_{38}H_{30}OP_2S \cdot CH_2Cl_2$	$V = 3391.7 (5) Å^3$
$M_r = 681.55$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 1416
Hall symbol: -P 2yn	$D_{\rm x} = 1.335 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.3605 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 20.6796 (15) Å	Cell parameters from 9922 reflections
c = 18.1360 (15) Å	$\theta = 2.3 - 28.3^{\circ}$
$\beta = 104.955 \ (1)^{\circ}$	$\mu = 0.38 \text{ mm}^{-1}$

T = 173 KPrism, colourless

Data collection

Dulu concenton	
Bruker APEXII CCD diffractometer	6527 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.039$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
Graphite monochromator	$h = -12 \rightarrow 12$
φ and ω scans	$k = -27 \rightarrow 27$
46059 measured reflections	$l = -15 \rightarrow 23$
8183 independent reflections	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.100$	neighbouring sites
S = 1.07	H-atom parameters constrained
8183 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0535P)^2 + 0.4429P]$
408 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.46$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

 $0.47 \times 0.36 \times 0.28 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	12	7	I. */I.	
	<i>х</i>	J	2	Uiso / Ueq	
C1	0.67489 (15)	-0.01794 (7)	0.12353 (8)	0.0246 (3)	
C2	0.61337 (16)	-0.07280 (7)	0.08142 (8)	0.0275 (3)	
H2	0.6780	-0.1031	0.0675	0.033*	
C3	0.46158 (16)	-0.08469 (7)	0.05916 (8)	0.0282 (3)	
C4	0.36781 (16)	-0.04140 (7)	0.08135 (8)	0.0274 (3)	
H4	0.2641	-0.0486	0.0671	0.033*	
C5	0.42542 (15)	0.01272 (7)	0.12445 (8)	0.0245 (3)	
C6	0.57712 (15)	0.02502 (7)	0.14406 (8)	0.0234 (3)	
C7	0.63835 (15)	0.19416 (7)	0.18215 (8)	0.0240 (3)	
C8	0.55781 (16)	0.25217 (7)	0.17171 (8)	0.0272 (3)	
H8	0.6101	0.2920	0.1770	0.033*	
C9	0.40319 (16)	0.25350 (7)	0.15383 (9)	0.0295 (3)	
C10	0.32755 (16)	0.19526 (7)	0.14747 (9)	0.0302 (3)	
H10	0.2225	0.1952	0.1351	0.036*	
C11	0.40387 (16)	0.13687 (7)	0.15907 (8)	0.0260 (3)	

C12	0.55822 (15)	0.13654 (7)	0.17502 (7)	0.0233 (3)
C13	0.39974 (19)	-0.14374 (8)	0.01255 (10)	0.0377 (4)
H13A	0.3703	-0.1759	0.0455	0.057*
H13B	0.4754	-0.1623	-0.0097	0.057*
H13C	0.3134	-0.1313	-0.0284	0.057*
C14	0.31804 (19)	0.31613 (8)	0.14184 (11)	0.0410 (4)
H14A	0.2463	0.3155	0.0918	0.062*
H14B	0.3867	0.3523	0.1441	0.062*
H14C	0.2657	0.3213	0.1818	0.062*
C21	0.93204 (15)	-0.01030(7)	0.25149 (8)	0.0249 (3)
C22	0.83985 (17)	-0.03259(8)	0.29494 (9)	0.0319 (3)
H22	0.7394	-0.0424	0.2710	0.038*
C23	0.89407 (18)	-0.04055 (9)	0.37329 (9)	0.0376 (4)
H23	0.8297	-0.0556	0.4024	0.045*
C24	1.04062 (18)	-0.02698 (8)	0.40987 (9)	0.0353 (4)
H24	1.0763	-0.0326	0.4635	0.042*
C25	1.13368 (18)	-0.00517 (8)	0.36723 (10)	0.0362 (4)
H25	1.2345	0.0038	0.3913	0.043*
C26	1.07971 (17)	0.00357 (8)	0.28947 (9)	0.0328 (3)
H26	1.1442	0.0194	0.2609	0.039*
C31	0.94616 (16)	-0.07369(7)	0.11622 (9)	0.0270 (3)
C32	0.9978 (2)	-0.12632(8)	0.16371 (10)	0.0425 (4)
H32	0.9980	-0.1242	0.2161	0.051*
C33	1.0489 (2)	-0.18156 (9)	0.13569 (12)	0.0523 (5)
H33	1.0840	-0.2169	0.1688	0.063*
C34	1.0487 (2)	-0.18526(9)	0.05995 (11)	0.0451 (4)
H34	1.0836	-0.2232	0.0408	0.054*
C35	0.99786 (18)	-0.13374(8)	0.01163 (9)	0.0372 (4)
H35	0.9971	-0.1365	-0.0408	0.045*
C36	0.94815 (16)	-0.07838(8)	0.03957 (9)	0.0308 (3)
H36	0.9148	-0.0429	0.0062	0.037*
C41	0 89248 (15)	0.27288(7)	0 18795 (8)	0.0268 (3)
C42	0.86834(18)	0.29087 (8)	0.11127 (9)	0.0360(4)
H42	0.8192	0.2619	0.0723	0.043*
C43	0.91518 (19)	0.35028 (9)	0.09168 (11)	0.0425 (4)
H43	0.8969	0.3622	0.0395	0.051*
C44	0.98901 (19)	0.39268 (8)	0.14815 (11)	0.0428(4)
H44	1 0223	0.4333	0.1346	0.051*
C45	1.0223 1.0138 (2)	0.37585 (8)	0 22366 (11)	0.021 0.0429 (4)
H45	1.0639	0.4050	0.2622	0.051*
C46	0.96594 (18)	0.31636 (8)	0.2022 0.24391 (10)	0.0343(3)
H46	0.9834	0.3052	0.2963	0.0545 (5)
C51	0.88289 (17)	0.19002 (7)	0.31191 (9)	0.0297(3)
C52	0.7990 (2)	0.19002(7)	0 35306 (10)	0.0277(3) 0.0415(4)
H52	0.7145	0.22277 (7)	0 3270	0.050*
C53	0.7175 0.8384 (2)	0.21088 (11)	0.43235 (11)	0.0525 (5)
UUU Н53	0.7803	0.2421	0.4601	0.063*
C54	0.7605	0.2721 0.18540 (10)	0.47112 (11)	0.005
CJT	0.2011 (3)	0.10340 (10)	0.7/112(11)	0.0508 (0)

.9873	0.1839	0.5253	0.068*
.0442 (3)	0.15360 (10)	0.43126 (12)	0.0649 (6)
.1289	0.1299	0.4577	0.078*
.0059 (2)	0.15565 (9)	0.35211 (11)	0.0495 (5)
.0647	0.1332	0.3250	0.059*
.63781 (10)	0.07871 (4)	0.18809 (6)	0.0254 (2)
.87456 (4)	0.001195 (17)	0.14751 (2)	0.02475 (9)
.84253 (4)	0.189890 (18)	0.20739 (2)	0.02557 (9)
.30570 (4)	0.064058 (19)	0.15779 (2)	0.03050 (10)
.5549 (3)	0.08998 (11)	0.36408 (12)	0.0588 (5)
.5305	0.0567	0.3235	0.071*
.6410	0.1149	0.3574	0.071*
.40384 (9)	0.14207 (3)	0.35502 (3)	0.07616 (19)
.60096 (7)	0.05229 (3)	0.45321 (3)	0.06801 (17)
	9873 0442 (3) 1289 0059 (2) 0647 63781 (10) 87456 (4) 84253 (4) 30570 (4) 5549 (3) 5305 6410 40384 (9) 60096 (7)	98730.18390442 (3)0.15360 (10)12890.12990059 (2)0.15565 (9)06470.133263781 (10)0.07871 (4)87456 (4)0.001195 (17)84253 (4)0.189890 (18)30570 (4)0.064058 (19)5549 (3)0.08998 (11)53050.056764100.114940384 (9)0.14207 (3)60096 (7)0.05229 (3)	98730.18390.52530442 (3)0.15360 (10)0.43126 (12)12890.12990.45770059 (2)0.15565 (9)0.35211 (11)06470.13320.325063781 (10)0.07871 (4)0.18809 (6)87456 (4)0.001195 (17)0.14751 (2)84253 (4)0.189890 (18)0.20739 (2)30570 (4)0.064058 (19)0.15779 (2)5549 (3)0.08998 (11)0.36408 (12)53050.05670.323564100.11490.357440384 (9)0.14207 (3)0.35502 (3)60096 (7)0.05229 (3)0.45321 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0241 (7)	0.0248 (7)	0.0251 (7)	-0.0002 (5)	0.0067 (5)	0.0043 (5)
C2	0.0296 (7)	0.0257 (7)	0.0280 (7)	-0.0009 (6)	0.0091 (6)	0.0003 (6)
C3	0.0308 (7)	0.0282 (7)	0.0247 (7)	-0.0043 (6)	0.0057 (6)	0.0014 (6)
C4	0.0249 (7)	0.0309 (7)	0.0253 (7)	-0.0040 (6)	0.0047 (6)	0.0032 (6)
C5	0.0248 (7)	0.0258 (7)	0.0227 (7)	0.0007 (5)	0.0059 (5)	0.0038 (5)
C6	0.0251 (7)	0.0229 (7)	0.0214 (6)	-0.0011 (5)	0.0045 (5)	0.0027 (5)
C7	0.0238 (7)	0.0282 (7)	0.0198 (6)	0.0004 (6)	0.0052 (5)	-0.0020 (5)
C8	0.0293 (7)	0.0249 (7)	0.0272 (7)	0.0013 (6)	0.0068 (6)	-0.0024 (6)
С9	0.0291 (7)	0.0298 (7)	0.0293 (8)	0.0061 (6)	0.0070 (6)	-0.0013 (6)
C10	0.0233 (7)	0.0352 (8)	0.0322 (8)	0.0030 (6)	0.0075 (6)	-0.0019 (6)
C11	0.0244 (7)	0.0295 (7)	0.0246 (7)	-0.0011 (6)	0.0074 (6)	-0.0007 (6)
C12	0.0246 (7)	0.0260 (7)	0.0191 (6)	0.0031 (5)	0.0051 (5)	0.0008 (5)
C13	0.0369 (9)	0.0360 (9)	0.0406 (9)	-0.0076 (7)	0.0107 (7)	-0.0098 (7)
C14	0.0365 (9)	0.0333 (9)	0.0520 (11)	0.0091 (7)	0.0092 (8)	-0.0033 (7)
C21	0.0251 (7)	0.0226 (7)	0.0275 (7)	-0.0001 (5)	0.0077 (6)	0.0006 (5)
C22	0.0248 (7)	0.0389 (8)	0.0326 (8)	-0.0013 (6)	0.0083 (6)	0.0037 (7)
C23	0.0347 (8)	0.0482 (10)	0.0329 (8)	0.0002 (7)	0.0143 (7)	0.0074 (7)
C24	0.0381 (8)	0.0388 (9)	0.0275 (8)	0.0037 (7)	0.0056 (7)	0.0012 (7)
C25	0.0290 (8)	0.0400 (9)	0.0366 (9)	-0.0044 (7)	0.0028 (7)	-0.0006 (7)
C26	0.0278 (7)	0.0366 (8)	0.0344 (8)	-0.0057 (6)	0.0090 (6)	0.0021 (7)
C31	0.0239 (7)	0.0295 (7)	0.0295 (7)	-0.0012 (6)	0.0100 (6)	0.0010 (6)
C32	0.0623 (12)	0.0354 (9)	0.0346 (9)	0.0130 (8)	0.0213 (8)	0.0060 (7)
C33	0.0747 (14)	0.0362 (10)	0.0512 (11)	0.0197 (9)	0.0256 (10)	0.0075 (8)
C34	0.0497 (11)	0.0378 (9)	0.0529 (11)	0.0042 (8)	0.0222 (9)	-0.0104 (8)
C35	0.0331 (8)	0.0480 (10)	0.0332 (8)	-0.0062 (7)	0.0133 (7)	-0.0104 (7)
C36	0.0262 (7)	0.0366 (8)	0.0295 (8)	-0.0028 (6)	0.0070 (6)	0.0014 (6)
C41	0.0230 (7)	0.0286 (7)	0.0307 (8)	0.0013 (6)	0.0103 (6)	-0.0018 (6)
C42	0.0326 (8)	0.0440 (9)	0.0329 (8)	-0.0032 (7)	0.0109 (7)	0.0005 (7)
C43	0.0360 (9)	0.0503 (10)	0.0437 (10)	0.0030 (8)	0.0146 (8)	0.0166 (8)
C44	0.0377 (9)	0.0320 (8)	0.0648 (12)	0.0037 (7)	0.0244 (9)	0.0092 (8)

C45	0.0466 (10)	0.0309 (8)	0.0563 (11)	-0.0075 (7)	0.0224 (9)	-0.0110 (8)
C46	0.0391 (9)	0.0325 (8)	0.0340 (8)	-0.0034 (7)	0.0141 (7)	-0.0045 (6)
C51	0.0310 (7)	0.0262 (7)	0.0288 (7)	-0.0041 (6)	0.0022 (6)	0.0022 (6)
C52	0.0394 (9)	0.0540 (11)	0.0308 (8)	-0.0005 (8)	0.0084 (7)	0.0023 (8)
C53	0.0611 (12)	0.0645 (13)	0.0334 (10)	-0.0123 (10)	0.0150 (9)	-0.0037 (9)
C54	0.0847 (16)	0.0486 (11)	0.0274 (9)	-0.0151 (11)	-0.0030 (9)	0.0046 (8)
C55	0.0803 (16)	0.0536 (12)	0.0421 (11)	0.0176 (11)	-0.0182 (11)	0.0022 (10)
C56	0.0538 (11)	0.0435 (10)	0.0405 (10)	0.0141 (9)	-0.0069 (8)	-0.0034 (8)
01	0.0243 (5)	0.0226 (5)	0.0271 (5)	0.0010 (4)	0.0027 (4)	-0.0005 (4)
P1	0.02381 (18)	0.02421 (18)	0.02701 (19)	-0.00075 (14)	0.00797 (14)	0.00316 (14)
P2	0.02309 (18)	0.02554 (19)	0.02756 (19)	0.00042 (14)	0.00558 (14)	-0.00296 (14)
S1	0.02473 (18)	0.0316 (2)	0.0379 (2)	-0.00240 (14)	0.01310 (15)	-0.00110 (16)
C57	0.0696 (14)	0.0653 (13)	0.0483 (12)	-0.0136 (11)	0.0277 (11)	0.0025 (10)
Cl1	0.1172 (6)	0.0525 (3)	0.0529 (3)	0.0151 (3)	0.0113 (3)	0.0040 (2)
Cl2	0.0751 (4)	0.0842 (4)	0.0416 (3)	0.0195 (3)	0.0094 (3)	0.0037 (3)

Geometric parameters (Å, °)

C1—C6	1.393 (2)	C26—H26	0.9500
C1—C2	1.405 (2)	C31—C32	1.395 (2)
C1—P1	1.8492 (14)	C31—C36	1.399 (2)
C2—C3	1.395 (2)	C31—P1	1.8345 (15)
С2—Н2	0.9500	C32—C33	1.384 (2)
C3—C4	1.384 (2)	С32—Н32	0.9500
C3—C13	1.513 (2)	C33—C34	1.375 (3)
C4—C5	1.392 (2)	С33—Н33	0.9500
C4—H4	0.9500	C34—C35	1.384 (3)
C5—C6	1.3953 (19)	C34—H34	0.9500
C5—S1	1.7601 (14)	C35—C36	1.380 (2)
C6—O1	1.3996 (16)	С35—Н35	0.9500
C7—C12	1.3961 (19)	С36—Н36	0.9500
С7—С8	1.4035 (19)	C41—C46	1.397 (2)
C7—P2	1.8489 (14)	C41—C42	1.400 (2)
C8—C9	1.399 (2)	C41—P2	1.8367 (15)
С8—Н8	0.9500	C42—C43	1.381 (2)
C9—C10	1.387 (2)	C42—H42	0.9500
C9—C14	1.507 (2)	C43—C44	1.389 (3)
C10—C11	1.391 (2)	C43—H43	0.9500
C10—H10	0.9500	C44—C45	1.373 (3)
C11—C12	1.3983 (19)	C44—H44	0.9500
C11—S1	1.7610 (15)	C45—C46	1.391 (2)
C12—O1	1.3966 (16)	C45—H45	0.9500
С13—Н13А	0.9800	C46—H46	0.9500
С13—Н13В	0.9800	C51—C52	1.387 (2)
С13—Н13С	0.9800	C51—C56	1.389 (2)
C14—H14A	0.9800	C51—P2	1.8349 (16)
C14—H14B	0.9800	C52—C53	1.390 (2)
C14—H14C	0.9800	С52—Н52	0.9500

C21—C22	1.389 (2)	C53—C54	1.380 (3)
C21—C26	1.406 (2)	C53—H53	0.9500
C21—P1	1.8381 (15)	C54—C55	1.360(3)
C22—C23	1.390 (2)	C54—H54	0.9500
C22—H22	0.9500	C55—C56	1.387 (3)
C23—C24	1.390(2)	С55—Н55	0.9500
С23—Н23	0.9500	С56—Н56	0.9500
C_{24} C_{25}	1 381 (2)	$C57 - Cl^2$	1 745 (2)
C24—H24	0.9500	C57—C11	1.713 (2)
C_{25} C_{26}	1.382(2)	C57—H57A	0.9900
C25 H25	0.9500	C57 H57B	0.9900
025-1125	0.9500	057-115715	0.9900
C6-C1-C2	117.04 (13)	C32—C31—P1	124.33 (12)
C6—C1—P1	119.63 (11)	C36—C31—P1	117.76 (11)
$C^2 - C^1 - P^1$	123 24 (11)	$C_{33} - C_{32} - C_{31}$	120.99 (16)
C_{3} C_{2} C_{1}	122.21 (11)	$C_{33} - C_{32} - H_{32}$	119.5
C_{3} C_{2} H_{2}	118 5	C31_C32_H32	119.5
C_1 C_2 H_2	118.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.5 120.07(17)
$C_1 - C_2 - H_2$	118.77 (13)	$C_{34} = C_{33} = C_{32}$	120.07 (17)
$C_{4} = C_{3} = C_{2}$	110.47(13) 120.21(14)	$C_{22} C_{23} H_{23}$	120.0
$C_{4} = C_{3} = C_{13}$	120.31(14) 121.22(14)	$C_{32} = C_{33} = 1155$	120.0
$C_2 = C_3 = C_{13}$	121.22(14) 120.04(12)	$C_{33} - C_{34} - C_{33}$	120.08 (10)
$C_3 = C_4 = C_5$	120.04 (13)	$C_{3} - C_{3} - H_{3} + H_{3}$	120.0
C3—C4—H4	120.0	C35—C34—H34	120.0
C5—C4—H4	120.0	C36—C35—C34	119.97 (15)
C4—C5—C6	120.73 (13)	C36—C35—H35	120.0
C4—C5—S1	119.29 (11)	C34—C35—H35	120.0
C6—C5—S1	119.92 (11)	C35—C36—C31	120.98 (15)
C1—C6—C5	120.74 (13)	C35—C36—H36	119.5
C1—C6—O1	117.41 (12)	C31—C36—H36	119.5
C5—C6—O1	121.77 (12)	C46—C41—C42	118.26 (14)
C12—C7—C8	117.39 (13)	C46—C41—P2	124.34 (12)
C12—C7—P2	118.59 (10)	C42—C41—P2	117.07 (12)
C8—C7—P2	124.00 (11)	C43—C42—C41	120.73 (16)
C9—C8—C7	122.37 (14)	C43—C42—H42	119.6
С9—С8—Н8	118.8	C41—C42—H42	119.6
С7—С8—Н8	118.8	C42—C43—C44	120.15 (16)
С10—С9—С8	118.53 (13)	C42—C43—H43	119.9
C10—C9—C14	119.65 (14)	C44—C43—H43	119.9
C8—C9—C14	121.81 (14)	C45—C44—C43	119.93 (16)
C9—C10—C11	120.66 (13)	C45—C44—H44	120.0
С9—С10—Н10	119.7	C43—C44—H44	120.0
C11—C10—H10	119.7	C44—C45—C46	120.29 (16)
C10-C11-C12	119,89 (13)	C44—C45—H45	119.9
C10-C11-S1	119.63 (11)	C46—C45—H45	119.9
C12-C11-S1	120 42 (11)	C45-C46-C41	120.62 (16)
C7-C12-O1	117 70 (12)	C45-C46-H46	110 7
C7 - C12 - C11	121 12 (12)	C41 - C46 + H46	110.7
01 C12 C11	121.12(13) 121.11(12)	$C_{11} = C_{10} = 1140$ $C_{52} = C_{51} = C_{56}$	117./
01-012-011	121.11(12)	UJ2-UJ1-UJ0	110.19(10)

С3—С13—Н13А	109.5	C52—C51—P2	124.20 (12)
C3—C13—H13B	109.5	C56—C51—P2	117.61 (13)
H13A—C13—H13B	109.5	C51—C52—C53	120.12 (18)
C3—C13—H13C	109.5	С51—С52—Н52	119.9
H13A—C13—H13C	109.5	С53—С52—Н52	119.9
H13B-C13-H13C	109.5	C54—C53—C52	120.7 (2)
C9-C14-H14A	109.5	С54—С53—Н53	119.7
C9-C14-H14B	109.5	С52—С53—Н53	119.7
H14A—C14—H14B	109.5	C55-C54-C53	119 59 (18)
C9-C14-H14C	109.5	C55—C54—H54	120.2
H_{14A} $-C_{14}$ $-H_{14C}$	109.5	C53—C54—H54	120.2
H14B— $C14$ — $H14C$	109.5	C_{54} C_{55} C_{56}	120.2
C^{22} C^{21} C^{26}	117 78 (14)	C_{54} C_{55} H_{55}	119.9
$C_{22} = C_{21} = C_{20}$	124 39 (11)	C56-C55-H55	119.9
$C_{22} = C_{21} = P_1$	117 83 (11)	$C_{55} = C_{56} = C_{51}$	121 12 (19)
$C_{20} = C_{21} = C_{11}$	120.19(14)	C55-C56-H56	121.12 (17)
$C_{21} = C_{22} = C_{23}$	110.0	C51 C56 H56	119.4
$C_{21} = C_{22} = H_{22}$	119.9	$C_{12} = C_{10} = C_{10}$	117.4
$C_{23} = C_{22} = H_{22}$	119.9	$C_{12} = 01 = C_{01}$	117.33(10) 100.06(7)
$C_{24} = C_{23} = C_{22}$	121.29 (15)	C_{21} P_1 C_1	100.00(7)
$C_{24} = C_{23} = H_{23}$	119.4	C_{21} P_{1} C_{1}	100.04(0)
$C_{22} = C_{23} = H_{23}$	119.4	C_{21} P_{1} C_{1}	102.93(0)
$C_{25} = C_{24} = C_{25}$	119.08 (15)	$C_{51} = P_2 = C_{41}$	101.00(7)
C25—C24—H24	120.5	$C_{31} = P_{2} = C_{7}$	100.36 (7)
C23—C24—H24	120.5	C41 - P2 - C7	101.89 (6)
$C_{24} = C_{25} = C_{26}$	119.79 (15)		98.28 (7)
С24—С25—Н25	120.1	Cl2—C57—Cl1	111.22 (11)
С26—С25—Н25	120.1	Cl2—C57—H57A	109.4
C25—C26—C21	121.85 (14)	CI1—C57—H57A	109.4
C25—C26—H26	119.1	Cl2—C57—H57B	109.4
C21—C26—H26	119.1	Cl1—C57—H57B	109.4
C32—C31—C36	117.91 (14)	Н57А—С57—Н57В	108.0
C6—C1—C2—C3	1.0 (2)	C46—C41—C42—C43	-0.4 (2)
P1—C1—C2—C3	-175.58 (11)	P2—C41—C42—C43	-174.05 (13)
C1—C2—C3—C4	-1.8(2)	C41—C42—C43—C44	0.9 (2)
C1—C2—C3—C13	178.82 (14)	C42—C43—C44—C45	-0.8(3)
C2—C3—C4—C5	0.4 (2)	C43—C44—C45—C46	0.3 (3)
C13—C3—C4—C5	179.78 (14)	C44—C45—C46—C41	0.2 (3)
C3—C4—C5—C6	1.7 (2)	C42—C41—C46—C45	-0.1(2)
C3—C4—C5—S1	-175.53 (11)	P2-C41-C46-C45	173.01 (13)
C2—C1—C6—C5	1.2 (2)	C56—C51—C52—C53	-0.2 (3)
P1—C1—C6—C5	177.91 (10)	P2—C51—C52—C53	-179.86 (14)
C2-C1-C6-O1	178.01 (12)	C51—C52—C53—C54	0.2 (3)
P1—C1—C6—O1	-5.27 (17)	C52—C53—C54—C55	0.0 (3)
C4—C5—C6—C1	-2.6 (2)	C53—C54—C55—C56	-0.1 (3)
S1—C5—C6—C1	174.68 (11)	C54—C55—C56—C51	0.1 (3)
C4—C5—C6—O1	-179.26 (12)	C52—C51—C56—C55	0.0 (3)
S1-C5-C6-O1	-2.00(18)	P2-C51-C56-C55	179.73 (17)

C12—C7—C8—C9	-0.8 (2)	C7—C12—O1—C6	-145.15 (12)
P2C7C8C9	-178.94 (11)	C11—C12—O1—C6	37.94 (17)
C7—C8—C9—C10	1.0 (2)	C1-C6-O1-C12	145.19 (12)
C7—C8—C9—C14	-179.24 (14)	C5-C6-O1-C12	-38.02 (17)
C8—C9—C10—C11	0.4 (2)	C32—C31—P1—C21	11.81 (16)
C14—C9—C10—C11	-179.35 (14)	C36—C31—P1—C21	-168.59 (11)
C9—C10—C11—C12	-2.0 (2)	C32—C31—P1—C1	-93.41 (15)
C9—C10—C11—S1	175.18 (12)	C36—C31—P1—C1	86.19 (12)
C8—C7—C12—O1	-177.71 (12)	C22—C21—P1—C31	-98.97 (13)
P2C7C12O1	0.51 (17)	C26—C21—P1—C31	80.13 (12)
C8—C7—C12—C11	-0.8 (2)	C22—C21—P1—C1	3.88 (14)
P2-C7-C12-C11	177.42 (10)	C26—C21—P1—C1	-177.02 (12)
C10-C11-C12-C7	2.2 (2)	C6-C1-P1-C31	174.71 (11)
S1—C11—C12—C7	-174.93 (10)	C2-C1-P1-C31	-8.79 (13)
C10-C11-C12-O1	178.99 (13)	C6-C1-P1-C21	71.84 (12)
S1-C11-C12-O1	1.87 (18)	C2-C1-P1-C21	-111.66 (12)
C26—C21—C22—C23	0.0 (2)	C52—C51—P2—C41	71.69 (15)
P1-C21-C22-C23	179.12 (12)	C56—C51—P2—C41	-107.97 (14)
C21—C22—C23—C24	-0.4 (3)	C52—C51—P2—C7	-32.88 (15)
C22—C23—C24—C25	0.0 (3)	C56—C51—P2—C7	147.46 (13)
C23—C24—C25—C26	0.8 (2)	C46—C41—P2—C51	9.70 (14)
C24—C25—C26—C21	-1.2 (2)	C42—C41—P2—C51	-177.11 (12)
C22—C21—C26—C25	0.8 (2)	C46—C41—P2—C7	113.06 (13)
P1-C21-C26-C25	-178.36 (12)	C42—C41—P2—C7	-73.75 (12)
C36—C31—C32—C33	-0.3 (3)	C12—C7—P2—C51	-88.24 (12)
P1—C31—C32—C33	179.32 (15)	C8—C7—P2—C51	89.85 (13)
C31—C32—C33—C34	-0.2 (3)	C12—C7—P2—C41	167.38 (11)
C32—C33—C34—C35	0.1 (3)	C8—C7—P2—C41	-14.54 (13)
C33—C34—C35—C36	0.5 (3)	C4—C5—S1—C11	-150.31 (12)
C34—C35—C36—C31	-1.0 (2)	C6—C5—S1—C11	32.39 (12)
C32—C31—C36—C35	0.9 (2)	C10-C11-S1-C5	150.43 (12)
P1-C31-C36-C35	-178.76 (12)	C12—C11—S1—C5	-32.45 (13)