organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(3,5-Dimethylphenyl)[8-(3,5-dimethylbenzoyl)-2,7-dimethoxynaphthalen-1-yl]methanone

Toyokazu Muto, Kosuke Sasagawa, Akiko Okamoto,* Hideaki Oike and Noriyuki Yonezawa

Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan Correspondence e-mail: aokamoto@cc.tuat.ac.jp

Received 23 February 2012; accepted 21 March 2012

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.118; data-to-parameter ratio = 13.9.

In the title molecule, $C_{30}H_{28}O_4$, the interplanar angle between the two benzene rings of the 3,5-dimethylbenzoyl groups is $50.35 (7)^{\circ}$. The dihedral angles between the two benzene rings and the naphthalene ring system are 81.87 (6) and 83.55 (6)°. In addition, the conformations of the pairs of methyl groups and their counterparts differ from each other though their environment is very similar. In the crystal, weak C-H···O interactions occur.

Related literature

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Muto et al. (2010, 2011a,b; 2012).

Experimental

Crystal data

C30H28O4 $M_r = 452.52$ Monoclinic, $P2_1/c$ a = 19.4659 (3) Å b = 8.27808 (10) Åc = 15.8244 (2) Å $\beta = 110.69^{\circ}$

V = 2385.46 (6) Å ³
Z = 4
Cu Ka radiation
$\mu = 0.66 \text{ mm}^{-1}$
T = 193 K
$0.50 \times 0.20 \times 0.10 \ \mathrm{mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: numerical (NUMABS; Higashi, 1999) $T_{\min} = 0.734, T_{\max} = 0.937$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	314 parameters
$wR(F^2) = 0.118$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
4360 reflections	$\Delta \rho_{\min} = -0.16 \text{ e } \text{\AA}^{-3}$

43008 measured reflections

 $R_{\rm int} = 0.032$

4360 independent reflections

3884 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-l	bond geomet	ry (A, °)
2 0		~ ~ / /

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{C7-H7\cdots O1^{i}}$	0.95	2.55	3.1332 (17)	120
$C25-H25B\cdots O2^{ii}$	0.98	2.41	3.170 (2)	134
$C26-H26A\cdotsO1^{i}$	0.98	2.59	3.475 (2)	150

Symmetry codes: (i) x, y + 1, z; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors express their gratitude to Master Daichi Hijikata, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2243).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66. 02752
- Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011a). Acta Cryst. E67, o2813.
- Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011b). Acta Cryst. E67, o3062.
- Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23.
- Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284
- Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o1200 [https://doi.org/10.1107/S1600536812012202]

(3,5-Dimethylphenyl)[8-(3,5-dimethylbenzoyl)-2,7-dimethoxynaphthalen-1-yl]methanone

Toyokazu Muto, Kosuke Sasagawa, Akiko Okamoto, Hideaki Oike and Noriyuki Yonezawa

S1. Comment

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, *peri*-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui *et al.*, 2011). We have recently reported crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto *et al.*, 2010) and 1,8-bis(2,4,6-tri-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto *et al.*, 2010). In these compounds, the aroyl groups at the 1,8-positions of the naphthalene rings contain almost 90°. In addition, crystal structures of 1-monoaroylated naphthalene derivatives and the β -isomers of 3-monoaroylated derivatives have been also determined such as (2,7-dimethoxynaphthalen-1-yl) (2,4,6-trimethylphenyl)methanone (Muto *et al.*, 2011*a*) and (3,6-dimethoxynaphthalen-2-yl)(2,4,6-trimethylphenyl)-methanone (Muto *et al.*, 2011*b*).

As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, *peri*-aroylnaphthalene bearing two methyl groups at 3,5-positions on the phenyl group, is discussed in this article.

The title molecule is displayed in Fig. 1. Two 3,5-dimethylphenyl groups are out of the plane of the naphthalene ring. The interplanar angle between the best planes of the two phenyl rings (C12\C17 and C19\C24) is 50.35 (7)°. On the other hand, the two interplanar angles between the best planes of the 3,5-dimethylphenyl rings and the naphthalene ring are 81.87 (6) and 83.55 (6)°, respectively.

The torsion angles between the carbonyl groups and the naphthalene ring are $113.52 (15)^{\circ} [C2\C1\C11\O1]$ and $102.95 (16)^{\circ} [C8\C9\C18\O2]$, furthermore those between the carbonyl groups and 3,5-dimethylphenyl groups are $153.91 (13)^{\circ} [O1\C11\C12\C13]$ and $164.07 (13)^{\circ} [O2\C18\C19\C24]$.

In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. In addition, the crystal packing is stabilized by three different C—H···O interactions: 1) C7—H7···O1ⁱ (Fig. 2 and Table 1). This interaction is directed along the *b* axis. 2) C25—H25*b*···O2ⁱⁱ (Fig. 3 and Table 1). This interaction is directed along the *c* axis. 3) C26—H26*a*···O1ⁱ (Fig. 2 and Table 1). This interaction is directed along the *b* axis.

S2. Experimental

3,5-dimethylbenzoyl chloride (1.50 mmol, 253 mg), titanium chloride (1.50 mmol, 285 mg) and methylene chloride (1.25 ml) were placed into a 10 ml flask, followed by stirring at room temperature. To the reaction mixture thus obtained, 2,7dimethoxynaphthalene (0.50 mmol, 94.1 mg) was added. The reaction mixture was poured into ice-cold water (30 ml) after it had been stirred for 6 h at room temperature. The aqueous layer was extracted with CHCl₃ (10 ml \times 3). The combined extracts were washed with 2 *M* aqueous NaOH followed by washing with brine. The extracts thus obtained were dried over anhydrous MgSO₄. The solvent was removed under reduced pressure to give a cake. The crude product was purified by recrystallization from hexane and CHCl₃ (yield 62%). Colourless platelet single crystals suitable for Xray diffraction were obtained (the average size: $0.8 \times 0.4 \times 0.1$ mm) by repeated crystallization from hexane/CHCl₃ mixtures (4:1 ν/ν).

¹H NMR δ (300 MHz, CDCl₃); 2.24 (12*H*, s), 3.69 (6*H*, s), 7.05 (2*H*, s), 7.21 (2*H*, d, *J* = 9.0 Hz), 7.26 (4*H*, s), 7.95 (2*H*, d, *J* = 9.3 Hz) p.p.m..

¹³C NMR δ (75 MHz, CDCl₃); 21.19, 56.53, 111.40, 121.94, 124.53, 125.54, 126.99, 131.86, 134.52, 137.19, 138.56, 156.26, 196.94 p.p.m.

IR (KBr); 1656 (C=O), 1610, 1511, 1459 (Ar, naphthalene), 1267 (=C-O-C) cm⁻¹.

High-resolution mass spectra (m/z); $[M + Na]^+$ Calcd for C₃₀H₂₈O₄Na, 475.1885; found, 475.1851.

m.p. = 576–580 K.

S3. Refinement

All the H atoms were found in the difference electron density map and were subsequently refined in the riding atom approximation, with C—H = 0.95 (aryl) and 0.98 (methyl) Å, and with $U_{iso}(H) = 1.2U_{eq}(C_{aryl})$ and $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$. The methyl H atoms C29 are less clear, indicating possible disorder over 4 positions that has not been described in the published model.

Figure 1

The title molecule with the displacement ellipsoids drawn at the 50% probability level.

Figure 2

Two weak intermolecular C—H···O interactions [distances: H7···O1ⁱ = 2.55 Å and H26*a*···O1ⁱ = 2.59 Å; symmetry code: (i) x, y + 1, z].

Figure 3

A week intermolecular C25—H25*b*···O2ⁱⁱ interaction [distance: H25*b*···O2 = 2.41 Å; symmetry code: (ii) x, -y + 3/2, z - 1/2].

(3,5-Dimethylphenyl)[8-(3,5-dimethylbenzoyl)- 2,7-dimethoxynaphthalen-1-yl]methanone

F(000) = 960

 $\theta = 3.0-68.2^{\circ}$

 $\mu = 0.66 \text{ mm}^{-1}$

Platelet, colorless

 $0.50 \times 0.20 \times 0.10 \text{ mm}$

 $\theta_{\rm max} = 68.2^{\circ}, \ \theta_{\rm min} = 4.9^{\circ}$

43008 measured reflections

4360 independent reflections

3884 reflections with $I > 2\sigma(I)$

T = 193 K

 $R_{\rm int} = 0.032$

 $h = -23 \rightarrow 23$

 $k = -9 \rightarrow 9$

 $l = -19 \rightarrow 19$

 $D_{\rm x} = 1.260 {\rm Mg} {\rm m}^{-3}$

Melting point = 576-580 K

Cu *Ka* radiation, $\lambda = 1.54187$ Å

Cell parameters from 38875 reflections

Crystal data

C₃₀H₂₈O₄ $M_r = 452.52$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 19.4659 (3) Å b = 8.27808 (10) Å c = 15.8244 (2) Å $\beta = 110.69^{\circ}$ V = 2385.46 (6) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: rotating anode Graphite monochromator Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: numerical (*NUMABS*; Higashi, 1999) $T_{\min} = 0.734, T_{\max} = 0.937$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.038$ Hydrogen site location: difference Fourier map $wR(F^2) = 0.118$ H-atom parameters constrained S = 1.08 $w = 1/[\sigma^2(F_o^2) + (0.0691P)^2 + 0.4917P]$ 4360 reflections where $P = (F_0^2 + 2F_c^2)/3$ 314 parameters $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$ 106 constraints Extinction correction: SHELXL97 (Sheldrick, Primary atom site location: structure-invariant 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Extinction coefficient: 0.0036 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.22734 (5)	0.71254 (11)	0.66111 (6)	0.0394 (2)	
O2	0.28061 (5)	0.99466 (12)	0.81457 (6)	0.0453 (3)	

03	0.35203 (6)	0.73717 (13)	0.54561 (7)	0.0537 (3)
04	0.15557 (6)	1.27961 (12)	0.73319 (8)	0.0523 (3)
C1	0.28767 (6)	0.91046 (15)	0.60689 (8)	0.0338 (3)
C2	0.31864 (7)	0.88289 (17)	0.54171 (9)	0.0410 (3)
C3	0.31234 (8)	0.9973 (2)	0.47309 (9)	0.0497 (4)
H3	0.3334	0.9761	0.4284	0.060*
C4	0.27599 (8)	1.1377 (2)	0.47163 (9)	0.0493 (4)
H4	0.2717	1.2140	0.4252	0.059*
C5	0.24450 (7)	1.17353 (17)	0.53693 (9)	0.0410 (3)
C6	0.20817 (8)	1.32174 (18)	0.53500 (10)	0.0482 (4)
H6	0.2054	1.3975	0.4888	0.058*
C7	0.17710 (8)	1.35995 (17)	0.59644 (10)	0.0473 (4)
H7	0.1527	1.4604	0.5932	0.057*
C8	0.18160 (7)	1.24812 (16)	0.66535 (10)	0.0412 (3)
C9	0.21571 (6)	1.09969 (15)	0.67024 (9)	0.0343 (3)
C10	0.24920 (6)	1.05758 (15)	0.60622 (8)	0.0340 (3)
C11	0.28661 (7)	0.77005 (14)	0.66698 (8)	0.0319 (3)
C12	0.35610 (7)	0.70057 (15)	0.73078 (8)	0.0320 (3)
C13	0.41949 (7)	0.79286 (16)	0.76626 (8)	0.0360 (3)
H13	0.4196	0.9018	0.7475	0.043*
C14	0.48268 (7)	0.72703 (18)	0.82903 (9)	0.0407 (3)
C15	0.48139 (7)	0.56487 (18)	0.85289 (9)	0.0425 (3)
H15	0.5246	0.5181	0.8947	0.051*
C16	0.41900 (7)	0.46975 (17)	0.81758 (9)	0.0399 (3)
C17	0.35596 (7)	0.53999 (16)	0.75728 (9)	0.0356 (3)
H17	0.3122	0.4780	0.7338	0.043*
C18	0.22180 (7)	1.00106 (14)	0.75278 (8)	0.0336 (3)
C19	0.15522 (6)	0.91939 (14)	0.75809 (8)	0.0327 (3)
C20	0.15643 (7)	0.86210 (15)	0.84140 (9)	0.0367 (3)
H20	0.1990	0.8777	0.8936	0.044*
C21	0.09618 (8)	0.78263 (16)	0.84899 (9)	0.0411 (3)
C22	0.03586 (7)	0.75515 (16)	0.77074 (10)	0.0412 (3)
H22	-0.0053	0.6990	0.7751	0.049*
C23	0.03382 (7)	0.80700 (16)	0.68642 (9)	0.0392 (3)
C24	0.09358 (7)	0.89291 (15)	0.68109 (9)	0.0352 (3)
H24	0.0923	0.9338	0.6245	0.042*
C25	0.38607 (10)	0.7042 (2)	0.48124 (11)	0.0560 (4)
H25A	0.4240	0.7854	0.4866	0.084*
H25B	0.3491	0.7076	0.4202	0.084*
H25C	0.4086	0.5967	0.4926	0.084*
C26	0.12856 (10)	1.43782 (19)	0.73930 (15)	0.0627(5)
H26A	0.1665	1.5177	0.7422	0.094*
H26B	0.1159	1.4456	0.7939	0.094*
H26C	0.0847	1.4587	0.6860	0.094*
C27	0.55064 (9)	0.8269 (2)	0.87241 (12)	0.0620 (5)
H27A	0.5428	0.9359	0.8466	0.093*
H27B	0.5922	0.7766	0.8612	0.093*
H27C	0.5612	0.8332	0.9376	0.093*
-				

C28	0.42004 (9)	0.29395 (19)	0.84383(13)	0.0567 (4)	
H28A	0.4598	0.2381	0.8313	0.085*	
H28B	0.3730	0.2438	0.8088	0.085*	
H28C	0.4281	0.2860	0.9084	0.085*	
C29	0.09670 (11)	0.7238 (2)	0.93949 (11)	0.0632 (5)	
H29A	0.1082	0.8141	0.9823	0.095*	
H29B	0.1340	0.6393	0.9621	0.095*	
H29C	0.0483	0.6798	0.9328	0.095*	
C30	-0.03058 (8)	0.7652 (2)	0.60251 (11)	0.0543 (4)	
H30A	-0.0745	0.7500	0.6183	0.081*	
H30B	-0.0200	0.6652	0.5762	0.081*	
H30C	-0.0390	0.8531	0.5585	0.081*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0349 (5)	0.0337 (5)	0.0511 (5)	-0.0012 (4)	0.0170 (4)	0.0029 (4)
O2	0.0366 (5)	0.0497 (6)	0.0424 (5)	-0.0041 (4)	0.0050 (4)	0.0061 (4)
O3	0.0734 (7)	0.0547 (6)	0.0447 (6)	0.0092 (5)	0.0353 (5)	0.0027 (5)
O4	0.0599 (6)	0.0322 (5)	0.0717 (7)	0.0075 (4)	0.0315 (6)	0.0012 (5)
C1	0.0322 (6)	0.0381 (7)	0.0284 (6)	-0.0039(5)	0.0074 (5)	0.0023 (5)
C2	0.0418 (7)	0.0465 (8)	0.0344 (7)	-0.0034 (6)	0.0130 (6)	0.0004 (6)
C3	0.0536 (8)	0.0652 (10)	0.0326 (7)	-0.0090 (7)	0.0181 (6)	0.0043 (6)
C4	0.0515 (8)	0.0559 (9)	0.0355 (7)	-0.0080(7)	0.0090 (6)	0.0151 (6)
C5	0.0367 (6)	0.0427 (7)	0.0356 (7)	-0.0083 (6)	0.0027 (5)	0.0091 (6)
C6	0.0469 (8)	0.0382 (7)	0.0458 (8)	-0.0065 (6)	-0.0007 (6)	0.0152 (6)
C7	0.0423 (7)	0.0307 (7)	0.0579 (9)	-0.0005 (6)	0.0041 (6)	0.0078 (6)
C8	0.0343 (6)	0.0312 (7)	0.0524 (8)	-0.0025 (5)	0.0083 (6)	0.0010 (6)
C9	0.0292 (6)	0.0302 (6)	0.0392 (7)	-0.0033 (5)	0.0068 (5)	0.0024 (5)
C10	0.0300 (6)	0.0342 (6)	0.0320 (6)	-0.0060(5)	0.0035 (5)	0.0038 (5)
C11	0.0349 (6)	0.0304 (6)	0.0326 (6)	-0.0009(5)	0.0145 (5)	-0.0027 (5)
C12	0.0350 (6)	0.0350 (6)	0.0299 (6)	0.0021 (5)	0.0166 (5)	0.0010 (5)
C13	0.0396 (7)	0.0382 (7)	0.0330 (6)	-0.0018 (5)	0.0162 (5)	0.0046 (5)
C14	0.0371 (7)	0.0497 (8)	0.0364 (7)	-0.0026 (6)	0.0144 (6)	0.0053 (6)
C15	0.0362 (7)	0.0514 (8)	0.0408 (7)	0.0080 (6)	0.0149 (6)	0.0099 (6)
C16	0.0412 (7)	0.0383 (7)	0.0448 (7)	0.0071 (5)	0.0209 (6)	0.0062 (6)
C17	0.0366 (6)	0.0354 (7)	0.0386 (7)	0.0014 (5)	0.0182 (5)	0.0006 (5)
C18	0.0352 (6)	0.0281 (6)	0.0366 (6)	0.0010 (5)	0.0113 (5)	-0.0025 (5)
C19	0.0352 (6)	0.0275 (6)	0.0363 (6)	0.0029 (5)	0.0137 (5)	-0.0028 (5)
C20	0.0419 (7)	0.0328 (7)	0.0354 (6)	0.0007 (5)	0.0135 (5)	-0.0046 (5)
C21	0.0493 (8)	0.0362 (7)	0.0436 (7)	0.0007 (6)	0.0235 (6)	-0.0021 (6)
C22	0.0386 (7)	0.0366 (7)	0.0549 (8)	-0.0009(5)	0.0246 (6)	-0.0026 (6)
C23	0.0332 (6)	0.0372 (7)	0.0466 (7)	0.0021 (5)	0.0131 (5)	-0.0052 (6)
C24	0.0352 (6)	0.0342 (7)	0.0367 (6)	0.0033 (5)	0.0134 (5)	-0.0003 (5)
C25	0.0661 (10)	0.0657 (10)	0.0449 (8)	-0.0039 (8)	0.0305 (8)	-0.0111 (7)
C26	0.0634 (10)	0.0313 (7)	0.1061 (14)	0.0047 (7)	0.0459 (10)	0.0001 (8)
C27	0.0479 (8)	0.0714 (11)	0.0542 (9)	-0.0144 (8)	0.0024 (7)	0.0161 (8)
C28	0.0537 (9)	0.0416 (8)	0.0746 (11)	0.0102 (7)	0.0226 (8)	0.0151 (7)

supporting information

C29	0.0749 (11)	0.0720 (11)	0.0509 (9)	-0.0124 (9)	0.0326 (8)	0.0033 (8)
C30	0.0383 (7)	0.0636 (10)	0.0552 (9)	-0.0076 (7)	0.0094 (7)	-0.0055 (7)

Geometric parameters (Å, °)

01—C11	1.2208 (15)	C16—C28	1.512 (2)
O2—C18	1.2158 (15)	C17—H17	0.9500
O3—C2	1.3613 (18)	C18—C19	1.4903 (17)
O3—C25	1.4242 (17)	C19—C24	1.3926 (17)
O4—C8	1.3644 (18)	C19—C20	1.3935 (18)
O4—C26	1.4272 (18)	C20—C21	1.3865 (19)
C1—C2	1.3853 (18)	C20—H20	0.9500
C1-C10	1.4278 (18)	C21—C22	1.392 (2)
C1-C11	1.5065 (17)	C21—C29	1.509 (2)
C2—C3	1.413 (2)	C22—C23	1.389 (2)
C3—C4	1.356 (2)	C22—H22	0.9500
С3—Н3	0.9500	C23—C24	1.3912 (19)
C4—C5	1.407 (2)	C23—C30	1.5094 (19)
C4—H4	0.9500	C24—H24	0.9500
C5—C6	1.411 (2)	C25—H25A	0.9800
C5-C10	1.4356 (18)	C25—H25B	0.9800
С6—С7	1.351 (2)	C25—H25C	0.9800
С6—Н6	0.9500	C26—H26A	0.9800
С7—С8	1.409 (2)	C26—H26B	0.9800
С7—Н7	0.9500	C26—H26C	0.9800
C8—C9	1.3857 (18)	C27—H27A	0.9800
C9—C10	1.4282 (18)	C27—H27B	0.9800
C9—C18	1.5090 (18)	C27—H27C	0.9800
C11—C12	1.4882 (17)	C28—H28A	0.9800
C12—C13	1.3899 (18)	C28—H28B	0.9800
C12—C17	1.3942 (18)	C28—H28C	0.9800
C13—C14	1.3904 (18)	C29—H29A	0.9800
С13—Н13	0.9500	C29—H29B	0.9800
C14—C15	1.397 (2)	C29—H29C	0.9800
C14—C27	1.504 (2)	C30—H30A	0.9800
C15—C16	1.388 (2)	C30—H30B	0.9800
С15—Н15	0.9500	C30—H30C	0.9800
C16—C17	1.3881 (18)		
C2—O3—C25	118.22 (12)	C19—C18—C9	119.36 (10)
C8—O4—C26	118.47 (12)	C24—C19—C20	119.70 (12)
C2-C1-C10	120.01 (11)	C24—C19—C18	121.32 (11)
C2-C1-C11	116.72 (11)	C20-C19-C18	118.91 (11)
C10-C1-C11	122.59 (11)	C21—C20—C19	120.76 (12)
O3—C2—C1	116.02 (12)	C21—C20—H20	119.6
O3—C2—C3	122.64 (13)	C19—C20—H20	119.6
C1—C2—C3	121.28 (13)	C20—C21—C22	118.30 (12)
C4—C3—C2	119.38 (13)	C20—C21—C29	120.87 (14)

С4—С3—Н3	120.3	C22—C21—C29	120.81 (13)
С2—С3—Н3	120.3	C23—C22—C21	122.22 (12)
C3—C4—C5	121.87 (13)	С23—С22—Н22	118.9
С3—С4—Н4	119.1	C21—C22—H22	118.9
C5—C4—H4	119.1	C22—C23—C24	118.40 (12)
C4—C5—C6	120.83 (13)	C22—C23—C30	120.47 (13)
C4—C5—C10	119.56 (13)	C24—C23—C30	121.08 (13)
C6—C5—C10	119.61 (13)	C23—C24—C19	120.52 (12)
C7—C6—C5	122.42 (13)	C23—C24—H24	119.7
C7—C6—H6	118.8	C19—C24—H24	119.7
C5—C6—H6	118.8	03-C25-H25A	109 5
C6-C7-C8	118 79 (13)	03 - C25 - H25R	109.5
C6 C7 H7	120.6	H25A C25 H25B	109.5
C_{0} C_{7} H_{7}	120.6	Ω_{2}^{2} Ω_{2}^{2} Ω_{2}^{2} Ω_{2}^{2} Ω_{2}^{2} Ω_{2}^{2} Ω_{2}^{2}	109.5
$C_{0} = C_{1} = 11$	120.0		109.5
04 - 08 - 09	113.42(12) 122.00(12)	H25A - C25 - H25C	109.5
04-08-07	122.99 (13)	H25B-C25-H25C	109.5
C9—C8—C7	121.55 (14)	04—C26—H26A	109.5
C8—C9—C10	120.43 (12)	04—C26—H26B	109.5
C8—C9—C18	114.69 (12)	H26A—C26—H26B	109.5
C10—C9—C18	124.47 (11)	O4—C26—H26C	109.5
C1—C10—C9	124.93 (11)	H26A—C26—H26C	109.5
C1—C10—C5	117.89 (12)	H26B—C26—H26C	109.5
C9—C10—C5	117.18 (12)	C14—C27—H27A	109.5
O1—C11—C12	120.59 (11)	С14—С27—Н27В	109.5
O1—C11—C1	118.44 (11)	H27A—C27—H27B	109.5
C12—C11—C1	120.96 (10)	C14—C27—H27C	109.5
C13—C12—C17	119.89 (12)	H27A—C27—H27C	109.5
C13—C12—C11	121.74 (11)	H27B—C27—H27C	109.5
C17—C12—C11	118.34 (11)	C16—C28—H28A	109.5
C12—C13—C14	120.54 (12)	C16—C28—H28B	109.5
C12—C13—H13	119.7	H28A—C28—H28B	109.5
C14—C13—H13	119.7	C16—C28—H28C	109.5
C13—C14—C15	118.28 (12)	H28A—C28—H28C	109.5
C_{13} C_{14} C_{27}	121 61 (13)	H_{28B} C_{28} H_{28C}	109.5
C15 - C14 - C27	120.10(13)	C_{21} C_{29} H_{29A}	109.5
C_{16} C_{15} C_{14} C_{27}	120.10(13) 122.20(12)	$C_{21} = C_{29} = H_{29R}$	109.5
$C_{10} = C_{15} = C_{14}$	118.0	$H_{20A} = C_{20} = H_{20B}$	109.5
$C_{10} = C_{15} = H_{15}$	118.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C17 - C16 - C15	110.7		109.5
C17 - C10 - C13	110.31(12) 120.00(12)	$H_29A - C_29 - H_29C$	109.5
C17 - C16 - C28	120.99 (13)	H29B-C29-H29C	109.5
C15 - C16 - C28	120.70 (13)	$C_{23} = C_{30} = H_{30} D_{30}$	109.5
C10-C1/-C12	120.75 (12)	C23—C30—H30B	109.5
C16—C17—H17	119.6	H30A—C30—H30B	109.5
C12—C17—H17	119.6	C23—C30—H30C	109.5
O2—C18—C19	121.69 (12)	H30A—C30—H30C	109.5
O2—C18—C9	118.91 (11)	H30B—C30—H30C	109.5
C25—O3—C2—C1	-178.72 (12)	C10-C1-C11-C12	-124.21 (12)

C25—O3—C2—C3	4.3 (2)	O1—C11—C12—C13	-153.92 (12)
C10-C1-C2-O3	-177.78 (11)	C1—C11—C12—C13	27.31 (17)
C11—C1—C2—O3	-7.02 (17)	O1—C11—C12—C17	23.92 (17)
C10—C1—C2—C3	-0.73 (19)	C1—C11—C12—C17	-154.85 (11)
C11—C1—C2—C3	170.02 (12)	C17—C12—C13—C14	-0.87 (18)
O3—C2—C3—C4	177.62 (13)	C11—C12—C13—C14	176.94 (11)
C1—C2—C3—C4	0.8 (2)	C12—C13—C14—C15	2.17 (19)
C2—C3—C4—C5	0.3 (2)	C12—C13—C14—C27	-176.47 (14)
C3—C4—C5—C6	178.77 (13)	C13—C14—C15—C16	-1.4 (2)
C3-C4-C5-C10	-1.4 (2)	C27—C14—C15—C16	177.23 (14)
C4—C5—C6—C7	179.79 (13)	C14—C15—C16—C17	-0.6 (2)
C10—C5—C6—C7	0.0 (2)	C14—C15—C16—C28	178.99 (14)
C5—C6—C7—C8	0.5 (2)	C15—C16—C17—C12	1.98 (19)
C26—O4—C8—C9	171.87 (13)	C28—C16—C17—C12	-177.64 (13)
C26—O4—C8—C7	-5.8 (2)	C13—C12—C17—C16	-1.26 (18)
C6—C7—C8—O4	176.22 (13)	C11—C12—C17—C16	-179.14 (11)
C6—C7—C8—C9	-1.3 (2)	C8—C9—C18—O2	-102.93 (14)
O4—C8—C9—C10	-176.03 (11)	C10-C9-C18-O2	69.75 (17)
C7—C8—C9—C10	1.64 (19)	C8—C9—C18—C19	74.74 (14)
O4—C8—C9—C18	-3.02 (16)	C10-C9-C18-C19	-112.58 (13)
C7—C8—C9—C18	174.65 (12)	O2—C18—C19—C24	-164.08 (12)
C2-C1-C10-C9	-179.42 (11)	C9—C18—C19—C24	18.31 (17)
C11—C1—C10—C9	10.39 (18)	O2-C18-C19-C20	12.90 (18)
C2-C1-C10-C5	-0.37 (17)	C9—C18—C19—C20	-164.70 (11)
C11—C1—C10—C5	-170.56 (11)	C24—C19—C20—C21	-1.70 (19)
C8—C9—C10—C1	177.91 (11)	C18—C19—C20—C21	-178.73 (11)
C18—C9—C10—C1	5.62 (19)	C19—C20—C21—C22	2.87 (19)
C8—C9—C10—C5	-1.15 (17)	C19—C20—C21—C29	-178.60 (14)
C18—C9—C10—C5	-173.44 (11)	C20—C21—C22—C23	-1.1 (2)
C4—C5—C10—C1	1.42 (18)	C29—C21—C22—C23	-179.68 (14)
C6-C5-C10-C1	-178.78 (11)	C21—C22—C23—C24	-1.7 (2)
C4—C5—C10—C9	-179.46 (11)	C21—C22—C23—C30	175.97 (13)
C6—C5—C10—C9	0.35 (17)	C22—C23—C24—C19	2.93 (19)
C2-C1-C11-O1	-113.50 (13)	C30—C23—C24—C19	-174.75 (12)
C10-C1-C11-O1	56.99 (17)	C20—C19—C24—C23	-1.27 (18)
C2-C1-C11-C12	65.29 (15)	C18—C19—C24—C23	175.69 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C7—H7···O1 ⁱ	0.95	2.55	3.1332 (17)	120
C25—H25 <i>B</i> ···O2 ⁱⁱ	0.98	2.41	3.170 (2)	134
C26—H26A····O1 ⁱ	0.98	2.59	3.475 (2)	150

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, -*y*+3/2, *z*-1/2.