Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 4-[(Z)-(*n*-Butylamino)(phenyl)methylidene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

## Hai-Wen Wang

East China University of Science and Technology, College of Chemistry and Molecular Engineering, Mei Long Road 130, Shanghai 200237, People's Republic of China

Correspondence e-mail: wanghaiwen@ecust.edu.cn

Received 21 February 2012; accepted 1 March 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.103; data-to-parameter ratio = 18.8.

The title compound, C<sub>21</sub>H<sub>23</sub>N<sub>3</sub>O, exists in an enamine-keto form with the amino group involved in an intramolecular N- $H \cdots O$  hydrogen bond. The dihedral angle between the phenyl rings is 73.59 (6)°. The five-membered ring is nearly planar, the largest deviation being 0.0004 (7) Å, and makes dihedral angles of 4.81 (6) and 69.81 (5) $^{\circ}$  wth the phenyl rings. In the crystal, pairs of weak C-H···O interactions link the molecules into centrosymmetric dimers.

## **Related literature**

For applications of Schiff bases derived from 4-acylpyrazolones, see: Bernardino et al. (2006); Zhang et al. (2008). For related structures, see: Zhang et al. (2007); Chi et al. (2010); Zhen & Han (2005); Wang (2010).

N

### **Experimental**

### Crystal data

| erystat aata                                                                                                                                                                                |                                                                                                                                                                                                           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| C <sub>21</sub> H <sub>23</sub> N <sub>3</sub> O<br>$M_r = 333.42$<br>Monoclinic, P2 <sub>1</sub> /n<br>a = 9.5215 (9) Å<br>b = 14.7867 (14) Å<br>c = 12.8055 (12) Å<br>$e^{-100.645}$ (2)% | V = 1771.9 (3) Å <sup>3</sup><br>Z = 4<br>Mo $K\alpha$ radiation<br>$\mu = 0.08 \text{ mm}^{-1}$<br>T = 296  K<br>$0.28 \times 0.20 \times 0.16 \text{ mm}$                                               |  |  |
| Data collection<br>Bruker SMART 1000 CCD<br>diffractometer                                                                                                                                  | 4368 independent reflections<br>3362 reflections with $I > 2\sigma(I)$                                                                                                                                    |  |  |
| 16506 measured reflections <i>Refinement</i>                                                                                                                                                | $R_{\rm int} = 0.035$                                                                                                                                                                                     |  |  |
| $R[F^2 > 2\sigma(F^2)] = 0.040$<br>$wR(F^2) = 0.103$<br>S = 1.01<br>4368 reflections<br>232 parameters                                                                                      | H atoms treated by a mixture of<br>independent and constrained<br>refinement<br>$\Delta \rho_{\text{max}} = 0.30 \text{ e} \text{ Å}^{-3}$<br>$\Delta \rho_{\text{min}} = -0.20 \text{ e} \text{ Å}^{-3}$ |  |  |

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - \mathbf{H} \cdots A$ | $D-\mathrm{H}$ | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------|----------------|--------------|--------------|--------------------------------------|
| N3-H3A···O1               | 0.921 (16)     | 1.873 (16)   | 2.6704 (14)  | 143.5 (14)                           |
| $C13-H13\cdots O1^{i}$    | 0.93           | 2.39         | 3.3175 (15)  | 172                                  |

Symmetry code: (i) -x + 1, -y, -z + 2.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the College of Chemistry and Molecular Engineering, East China University of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5252).

### References

Bernardino, A. M. R., Gomes, A. O., Charret, K. S., Freita, A. C. C., Machado, G. M. C., Canto-Cavalheiro, M. M., Leon, L. L. & Amaral, V. F. (2006). Eur. J. Med. Chem. 41, 80-87.

Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Chi, X., Xiao, J., Yin, Y. & Xia, M. (2010). Acta Cryst. E66, 0249.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, H.-W. (2010). Acta Cryst. E66, o1534.

- Zhang, H. Q., Li, J. Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990-993.
- Zhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, 03536
- Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, 04360-04361.

# supporting information

*Acta Cryst.* (2012). E68, o969 [https://doi.org/10.1107/S1600536812009166] 4-[(*Z*)-(*n*-Butylamino)(phenyl)methylidene]-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one

## Hai-Wen Wang

## S1. Comment

The Schiff bases derived from 4-acylpyrazolones have attracted much attention due to their applications in pharmaceutical and agrochemical fields (*e.g.* Bernardino *et al.*, 2006; Zhang *et al.*, 2008). In order to expand this field, we now report the synthesis and structure of the title compound, (I) (Fig. 1).

In (I), the Schiff base molecule adopts an *E* geometry with respect to the C=N bond (Fig. 1). All bond lengths and angles are comparable with those found in the related compounds (Chi *et al.*, 2010; Wang *et al.*, 2010; Zhen *et al.*, 2005; Zhang *et al.*, 2007). The dihedral angle between the two phenyl rings is 73.59 (6)°. The five-membered ring of the title compound is nearly planar, with the largest deviation being 0.0004 (7)%A for atom N1. The dihedral angles between this mean plane and two benzene rings are 4.81 (6)° and 69.81 (5)%. Weak intermolecular C—H…O interactions (Table 1) link the molecules into centrosymmetric dimers.

## **S2. Experimental**

A mixture of a 10 ml HPMBP (2 mmol, 0.5566 g) anhydrous ethanol solution, and a 0.2 ml n-butylamine (2 mmol, 0.1463 g) solution was refluxed for *ca* 8 h, with addition of a few drops of glacial acetic acid as a catalyst. The ethanol was removed by evaporation and the resulting green precipitate formed was filtered off, washed with cold anhydrous ethanol and dried in air. Yellow block single crystals suitable for analysis were obtained by slow evaporation of a solution in anhydrous ethanol at room temperature for a few days.

## **S3. Refinement**

The H3A atom bonded to N3 was located in a difference map and isotropically refined. C-bound H atoms were placed in calculated positions, with C—H = 0.93-0.97 Å, and refined as riding, with  $U_{iso}$ (H)=1.2-1.5  $U_{eq}$  (C).



## Figure 1

The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. Dashed line denotes hydrogen bond.

4-[(Z)-(n-Butylamino)(phenyl)methylidene]-3-methyl- 1-phenyl-1H-pyrazol-5(4H)-one

| Crystal data                    |
|---------------------------------|
| $C_{21}H_{23}N_3O$              |
| $M_r = 333.42$                  |
| Monoclinic, $P2_1/n$            |
| Hall symbol: -P 2yn             |
| <i>a</i> = 9.5215 (9) Å         |
| <i>b</i> = 14.7867 (14) Å       |
| c = 12.8055 (12)  Å             |
| $\beta = 100.645 \ (2)^{\circ}$ |
| V = 1771.9 (3) Å <sup>3</sup>   |
| Z = 4                           |
|                                 |

F(000) = 712.0  $D_x = 1.250 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3753 reflections  $\theta = 2.6-28.1^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$  T = 296 KBlock, yellow  $0.28 \times 0.20 \times 0.16 \text{ mm}$  Data collection

| Bruker SMART 1000 CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>phi and $\omega$ scans<br>16506 measured reflections<br>4368 independent reflections                                            | 3362 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.035$<br>$\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.6^{\circ}$<br>$h = -12 \rightarrow 12$<br>$k = -19 \rightarrow 19$<br>$l = -17 \rightarrow 16$                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.040$<br>$wR(F^2) = 0.103$<br>S = 1.01<br>4368 reflections<br>232 parameters<br>0 restraints<br>Primary atom site location: structure-invariant<br>direct methods | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0499P)^2 + 0.4177P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.30$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.20$ e Å <sup>-3</sup> |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x             | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|---------------|-------------|--------------|-----------------------------|--|
| C1   | 0.21783 (12)  | 0.26068 (9) | 0.88837 (9)  | 0.0167 (2)                  |  |
| C2   | 0.10538 (13)  | 0.21696 (9) | 0.92399 (9)  | 0.0204 (3)                  |  |
| H2   | 0.1013        | 0.1541      | 0.9255       | 0.024*                      |  |
| C3   | -0.00037 (13) | 0.26856 (9) | 0.95714 (10) | 0.0218 (3)                  |  |
| H3   | -0.0742       | 0.2397      | 0.9824       | 0.026*                      |  |
| C4   | 0.00239 (13)  | 0.36198 (9) | 0.95320 (9)  | 0.0218 (3)                  |  |
| H4   | -0.0699       | 0.3957      | 0.9744       | 0.026*                      |  |
| C5   | 0.11413 (13)  | 0.40483 (9) | 0.91726 (10) | 0.0220 (3)                  |  |
| Н5   | 0.1166        | 0.4676      | 0.9144       | 0.026*                      |  |
| C6   | 0.22209 (13)  | 0.35488 (9) | 0.88561 (9)  | 0.0193 (3)                  |  |
| H6   | 0.2973        | 0.3842      | 0.8626       | 0.023*                      |  |
| C7   | 0.35303 (12)  | 0.11883 (8) | 0.85902 (9)  | 0.0158 (2)                  |  |
| C8   | 0.48777 (12)  | 0.10785 (8) | 0.82441 (9)  | 0.0159 (2)                  |  |
| C9   | 0.53156 (12)  | 0.19778 (8) | 0.80232 (9)  | 0.0168 (2)                  |  |
| C10  | 0.66208 (13)  | 0.22991 (9) | 0.76371 (10) | 0.0217 (3)                  |  |
| H10A | 0.6553        | 0.2136      | 0.6904       | 0.033*                      |  |
|      |               |             |              |                             |  |

| H10B | 0.7453       | 0.2023       | 0.8052       | 0.033*     |
|------|--------------|--------------|--------------|------------|
| H10C | 0.6693       | 0.2945       | 0.7708       | 0.033*     |
| C11  | 0.55372 (12) | 0.02287 (8)  | 0.82705 (9)  | 0.0152 (2) |
| C12  | 0.69661 (12) | 0.00963 (8)  | 0.79819 (9)  | 0.0153 (2) |
| C13  | 0.81099 (13) | -0.01709 (9) | 0.87666 (9)  | 0.0185 (3) |
| H13  | 0.7970       | -0.0279      | 0.9456       | 0.022*     |
| C14  | 0.94570 (13) | -0.02752 (9) | 0.85151 (10) | 0.0221 (3) |
| H14  | 1.0223       | -0.0446      | 0.9038       | 0.027*     |
| C15  | 0.96628 (13) | -0.01252 (9) | 0.74855 (10) | 0.0228 (3) |
| H15  | 1.0567       | -0.0195      | 0.7319       | 0.027*     |
| C16  | 0.85241 (14) | 0.01285 (9)  | 0.67051 (10) | 0.0212 (3) |
| H16  | 0.8663       | 0.0221       | 0.6013       | 0.025*     |
| C17  | 0.71793 (13) | 0.02451 (8)  | 0.69496 (9)  | 0.0179 (2) |
| H17  | 0.6419       | 0.0423       | 0.6425       | 0.021*     |
| C18  | 0.53117 (13) | -0.14295 (8) | 0.85933 (9)  | 0.0177 (2) |
| H18A | 0.6204       | -0.1519      | 0.9088       | 0.021*     |
| H18B | 0.5456       | -0.1600      | 0.7889       | 0.021*     |
| C19  | 0.41494 (13) | -0.20109 (8) | 0.89147 (9)  | 0.0172 (2) |
| H19A | 0.4043       | -0.1852      | 0.9631       | 0.021*     |
| H19B | 0.3250       | -0.1886      | 0.8444       | 0.021*     |
| C20  | 0.44787 (13) | -0.30125 (9) | 0.88723 (10) | 0.0197 (3) |
| H20A | 0.5401       | -0.3132      | 0.9316       | 0.024*     |
| H20B | 0.4540       | -0.3177      | 0.8149       | 0.024*     |
| C21  | 0.33508 (15) | -0.35963 (9) | 0.92449 (11) | 0.0262 (3) |
| H21A | 0.3317       | -0.3456      | 0.9972       | 0.039*     |
| H21B | 0.3589       | -0.4223      | 0.9188       | 0.039*     |
| H21C | 0.2435       | -0.3478      | 0.8810       | 0.039*     |
| H3A  | 0.4031 (17)  | -0.0341 (11) | 0.8798 (12)  | 0.030 (4)* |
| N1   | 0.32840 (10) | 0.21097 (7)  | 0.85512 (8)  | 0.0172 (2) |
| N2   | 0.43854 (10) | 0.25859 (7)  | 0.82022 (8)  | 0.0182 (2) |
| N3   | 0.48854 (11) | -0.04789 (7) | 0.85966 (8)  | 0.0172 (2) |
| 01   | 0.27412 (9)  | 0.06007 (6)  | 0.88848 (7)  | 0.0195 (2) |
|      |              |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| C1  | 0.0156 (5) | 0.0187 (6) | 0.0152 (5) | 0.0023 (5)  | 0.0014 (4) | -0.0004 (4) |
| C2  | 0.0197 (6) | 0.0187 (6) | 0.0231 (6) | 0.0020 (5)  | 0.0050 (5) | 0.0022 (5)  |
| C3  | 0.0188 (6) | 0.0255 (7) | 0.0219 (6) | 0.0013 (5)  | 0.0058 (5) | 0.0014 (5)  |
| C4  | 0.0203 (6) | 0.0251 (7) | 0.0204 (6) | 0.0061 (5)  | 0.0048 (5) | -0.0026 (5) |
| C5  | 0.0249 (6) | 0.0175 (7) | 0.0234 (6) | 0.0020 (5)  | 0.0042 (5) | -0.0032 (5) |
| C6  | 0.0189 (6) | 0.0180 (6) | 0.0209 (6) | -0.0008(5)  | 0.0034 (4) | -0.0002(5)  |
| C7  | 0.0163 (5) | 0.0158 (6) | 0.0149 (5) | -0.0001 (5) | 0.0019 (4) | 0.0002 (4)  |
| C8  | 0.0150 (5) | 0.0171 (6) | 0.0157 (5) | -0.0013 (4) | 0.0034 (4) | 0.0005 (4)  |
| C9  | 0.0165 (5) | 0.0171 (6) | 0.0167 (5) | -0.0003 (5) | 0.0026 (4) | 0.0004 (4)  |
| C10 | 0.0200 (6) | 0.0174 (6) | 0.0293 (6) | -0.0020 (5) | 0.0088 (5) | 0.0009 (5)  |
| C11 | 0.0156 (5) | 0.0171 (6) | 0.0128 (5) | -0.0014 (5) | 0.0019 (4) | 0.0000 (4)  |
| C12 | 0.0154 (5) | 0.0129 (6) | 0.0184 (5) | -0.0009 (4) | 0.0050 (4) | -0.0011 (4) |
|     |            |            |            |             |            |             |

## supporting information

| C13 | 0.0184 (6) | 0.0186 (6) | 0.0188 (5) | -0.0011 (5) | 0.0042 (4) | 0.0005 (5)  |
|-----|------------|------------|------------|-------------|------------|-------------|
| C14 | 0.0162 (6) | 0.0213 (7) | 0.0282 (6) | -0.0001 (5) | 0.0024 (5) | 0.0004 (5)  |
| C15 | 0.0170 (6) | 0.0209 (7) | 0.0333 (7) | -0.0030 (5) | 0.0116 (5) | -0.0056 (5) |
| C16 | 0.0261 (6) | 0.0189 (6) | 0.0208 (6) | -0.0054 (5) | 0.0106 (5) | -0.0040 (5) |
| C17 | 0.0197 (6) | 0.0159 (6) | 0.0183 (5) | -0.0023 (5) | 0.0038 (4) | -0.0010 (5) |
| C18 | 0.0181 (5) | 0.0142 (6) | 0.0216 (5) | 0.0010 (5)  | 0.0055 (4) | 0.0006 (5)  |
| C19 | 0.0181 (5) | 0.0159 (6) | 0.0182 (5) | -0.0007 (5) | 0.0051 (4) | 0.0012 (4)  |
| C20 | 0.0218 (6) | 0.0153 (6) | 0.0224 (6) | -0.0006 (5) | 0.0047 (5) | 0.0012 (5)  |
| C21 | 0.0324 (7) | 0.0190 (7) | 0.0283 (6) | -0.0056 (6) | 0.0087 (5) | 0.0008 (5)  |
| N1  | 0.0159 (5) | 0.0149 (5) | 0.0218 (5) | 0.0002 (4)  | 0.0064 (4) | 0.0020 (4)  |
| N2  | 0.0164 (5) | 0.0168 (5) | 0.0226 (5) | -0.0020 (4) | 0.0068 (4) | 0.0016 (4)  |
| N3  | 0.0165 (5) | 0.0142 (5) | 0.0224 (5) | 0.0007 (4)  | 0.0073 (4) | 0.0009 (4)  |
| 01  | 0.0180 (4) | 0.0168 (5) | 0.0252 (4) | -0.0018 (3) | 0.0082 (3) | 0.0018 (3)  |
|     |            |            |            |             |            |             |

Geometric parameters (Å, °)

| C1—C6    | 1.3942 (18) | C12—C13     | 1.3956 (16) |
|----------|-------------|-------------|-------------|
| C1—C2    | 1.3975 (17) | C13—C14     | 1.3876 (17) |
| C1—N1    | 1.4125 (15) | C13—H13     | 0.9300      |
| С2—С3    | 1.3906 (18) | C14—C15     | 1.3861 (18) |
| С2—Н2    | 0.9300      | C14—H14     | 0.9300      |
| C3—C4    | 1.3827 (19) | C15—C16     | 1.3838 (18) |
| С3—Н3    | 0.9300      | C15—H15     | 0.9300      |
| C4—C5    | 1.3879 (19) | C16—C17     | 1.3840 (17) |
| C4—H4    | 0.9300      | C16—H16     | 0.9300      |
| C5—C6    | 1.3858 (18) | C17—H17     | 0.9300      |
| С5—Н5    | 0.9300      | C18—N3      | 1.4633 (16) |
| С6—Н6    | 0.9300      | C18—C19     | 1.5171 (16) |
| C7—O1    | 1.2516 (15) | C18—H18A    | 0.9700      |
| C7—N1    | 1.3819 (16) | C18—H18B    | 0.9700      |
| С7—С8    | 1.4418 (16) | C19—C20     | 1.5169 (17) |
| C8—C11   | 1.4023 (17) | C19—H19A    | 0.9700      |
| С8—С9    | 1.4373 (17) | C19—H19B    | 0.9700      |
| C9—N2    | 1.3117 (16) | C20—C21     | 1.5218 (18) |
| C9—C10   | 1.4971 (16) | C20—H20A    | 0.9700      |
| C10—H10A | 0.9600      | C20—H20B    | 0.9700      |
| C10—H10B | 0.9600      | C21—H21A    | 0.9600      |
| C10—H10C | 0.9600      | C21—H21B    | 0.9600      |
| C11—N3   | 1.3230 (15) | C21—H21C    | 0.9600      |
| C11—C12  | 1.4872 (16) | N1—N2       | 1.4030 (14) |
| C12—C17  | 1.3914 (16) | N3—H3A      | 0.921 (16)  |
| C6—C1—C2 | 119.87 (11) | C15—C14—H14 | 119.9       |
| C6-C1-N1 | 119.04 (11) | C13—C14—H14 | 119.9       |
| C2-C1-N1 | 121.09 (11) | C16—C15—C14 | 120.05 (11) |
| C3—C2—C1 | 119.18 (13) | C16—C15—H15 | 120.0       |
| С3—С2—Н2 | 120.4       | C14—C15—H15 | 120.0       |
| С1—С2—Н2 | 120.4       | C15—C16—C17 | 120.31 (11) |
|          |             |             |             |

| C4—C3—C2                     | 121.15 (12) | C15—C16—H16                  | 119.8       |
|------------------------------|-------------|------------------------------|-------------|
| С4—С3—Н3                     | 119.4       | C17—C16—H16                  | 119.8       |
| С2—С3—Н3                     | 119.4       | C16—C17—C12                  | 119.91 (11) |
| C3—C4—C5                     | 119.28 (12) | C16—C17—H17                  | 120.0       |
| C3—C4—H4                     | 120.4       | C12—C17—H17                  | 120.0       |
| C5—C4—H4                     | 120.4       | N3—C18—C19                   | 109.09 (10) |
| C6—C5—C4                     | 120.60 (13) | N3—C18—H18A                  | 109.9       |
| С6—С5—Н5                     | 119.7       | C19—C18—H18A                 | 109.9       |
| С4—С5—Н5                     | 119.7       | N3—C18—H18B                  | 109.9       |
| C5—C6—C1                     | 119.90 (12) | C19—C18—H18B                 | 109.9       |
| С5—С6—Н6                     | 120.0       | H18A—C18—H18B                | 108.3       |
| C1—C6—H6                     | 120.0       | C20-C19-C18                  | 112.19 (10) |
| 01—C7—N1                     | 126.02 (11) | C20—C19—H19A                 | 109.2       |
| 01                           | 129.22 (12) | C18—C19—H19A                 | 109.2       |
| N1-C7-C8                     | 104 75 (10) | C20—C19—H19B                 | 109.2       |
| $C_{11} - C_{8} - C_{9}$     | 133 54 (11) | C18—C19—H19B                 | 109.2       |
| C11 - C8 - C7                | 120.89 (11) | H19A—C19—H19B                | 107.9       |
| C9-C8-C7                     | 105 26 (10) | C19-C20-C21                  | 112 34 (11) |
| $N_{2} - C_{9} - C_{8}$      | 111 72 (11) | C19 - C20 - H20A             | 109.1       |
| $N_2 - C_9 - C_{10}$         | 117.95 (11) | $C_{21}$ $C_{20}$ $H_{20A}$  | 109.1       |
| C8 - C9 - C10                | 130.33(11)  | C19 - C20 - H20B             | 109.1       |
| C9-C10-H10A                  | 109 5       | C21—C20—H20B                 | 109.1       |
| C9-C10-H10B                  | 109.5       | H20A—C20—H20B                | 107.9       |
| H10A - C10 - H10B            | 109.5       | $C_{20}$ $C_{21}$ $H_{21A}$  | 109.5       |
| C9-C10-H10C                  | 109.5       | $C_{20}$ $C_{21}$ $H_{21B}$  | 109.5       |
| H10A—C10—H10C                | 109.5       | $H_{21}A = C_{21} = H_{21}B$ | 109.5       |
| H10B-C10-H10C                | 109.5       | $C_{20}$ $C_{21}$ $H_{21}C$  | 109.5       |
| N3-C11-C8                    | 118.83 (11) | H21A— $C21$ — $H21C$         | 109.5       |
| N3-C11-C12                   | 118.58 (11) | $H_{21B}$ $C_{21}$ $H_{21C}$ | 109.5       |
| C8-C11-C12                   | 122.56 (11) | C7—N1—N2                     | 111.99 (9)  |
| C17—C12—C13                  | 119.83 (11) | C7—N1—C1                     | 129.28 (10) |
| C17—C12—C11                  | 121.06 (10) | N2—N1—C1                     | 118.52 (10) |
| $C_{13}$ $-C_{12}$ $-C_{11}$ | 119.10 (10) | C9—N2—N1                     | 106.27(10)  |
| C14—C13—C12                  | 119.75 (11) | C11 - N3 - C18               | 127.75(10)  |
| C14—C13—H13                  | 120.1       | C11—N3—H3A                   | 113.8 (10)  |
| C12—C13—H13                  | 120.1       | C18—N3—H3A                   | 118.3 (10)  |
| C15-C14-C13                  | 120.14 (11) |                              | 11010 (10)  |
|                              |             |                              |             |
| C6-C1-C2-C3                  | -0.55(16)   | C11—C12—C13—C14              | -178.40(11) |
| N1 - C1 - C2 - C3            | 179.27 (10) | C12—C13—C14—C15              | -0.77(19)   |
| C1—C2—C3—C4                  | 1.43 (17)   | C13—C14—C15—C16              | 0.0 (2)     |
| C2-C3-C4-C5                  | -1.14(18)   | C14—C15—C16—C17              | 0.8(2)      |
| C3—C4—C5—C6                  | -0.03(18)   | C15—C16—C17—C12              | -0.76(19)   |
| C4—C5—C6—C1                  | 0.89 (17)   | C13—C12—C17—C16              | -0.06 (18)  |
| C2—C1—C6—C5                  | -0.60 (17)  | C11—C12—C17—C16              | 179.14 (11) |
| N1—C1—C6—C5                  | 179.59 (10) | N3—C18—C19—C20               | 176.92 (9)  |
| O1—C7—C8—C11                 | -4.43 (18)  | C18—C19—C20—C21              | 177.25 (10) |
| N1—C7—C8—C11                 | 174.38 (10) | O1—C7—N1—N2                  | 178.95 (10) |
|                              | · · ·       |                              |             |

| 01              | -178.92 (11) | C8—C7—N1—N2    | 0.09 (12)    |
|-----------------|--------------|----------------|--------------|
| N1—C7—C8—C9     | -0.11 (11)   | O1—C7—N1—C1    | 4.41 (19)    |
| C11-C8-C9-N2    | -173.37 (12) | C8—C7—N1—C1    | -174.45 (10) |
| C7—C8—C9—N2     | 0.10 (13)    | C6-C1-N1-C7    | 174.10 (11)  |
| C11-C8-C9-C10   | 6.6 (2)      | C2-C1-N1-C7    | -5.72 (17)   |
| C7—C8—C9—C10    | -179.93 (11) | C6-C1-N1-N2    | -0.14 (15)   |
| C9—C8—C11—N3    | 174.20 (12)  | C2-C1-N1-N2    | -179.96 (10) |
| C7—C8—C11—N3    | 1.54 (16)    | C8—C9—N2—N1    | -0.04 (12)   |
| C9—C8—C11—C12   | -3.62 (19)   | C10—C9—N2—N1   | 179.98 (9)   |
| C7—C8—C11—C12   | -176.27 (10) | C7—N1—N2—C9    | -0.03 (12)   |
| N3—C11—C12—C17  | 116.65 (13)  | C1—N1—N2—C9    | 175.16 (9)   |
| C8—C11—C12—C17  | -65.53 (16)  | C8—C11—N3—C18  | 173.83 (11)  |
| N3—C11—C12—C13  | -64.14 (15)  | C12—C11—N3—C18 | -8.27 (17)   |
| C8—C11—C12—C13  | 113.67 (13)  | C19—C18—N3—C11 | -173.20 (11) |
| C17—C12—C13—C14 | 0.82 (18)    |                |              |
|                 |              |                |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                 | D—H        | H…A        | $D \cdots A$ | D—H··· $A$ |
|-------------------------|------------|------------|--------------|------------|
| N3—H3A…O1               | 0.921 (16) | 1.873 (16) | 2.6704 (14)  | 143.5 (14) |
| C13—H13…O1 <sup>i</sup> | 0.93       | 2.39       | 3.3175 (15)  | 172        |

Symmetry code: (i) -x+1, -y, -z+2.