organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(1-Methyl-1H-pyrrol-2-yl)methylidene1propanedinitrile

Abdullah M. Asiri,^{a,b}‡ Hassan M. Faidallah,^a Shaeel A. Al-Thabaiti,^a Seik Weng Ng^{c,a} and Edward R. T. Tiekink^c*

^aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, ^bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 18 March 2012; accepted 20 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.124; data-to-parameter ratio = 13.6.

In the title compound, C₉H₇N₃, the N-bound methyl group and vinyl H atom are syn. The 12 non-H atoms comprising the molecule are essentially coplanar (r.m.s. deviation = 0.071 Å). Supramolecular tapes feature in the crystal packing, orientated perpendicular to $[10\overline{1}]$, and are formed by C-H···N interactions involving each cyano N atom. The tapes are connected into layers via π - π interactions occurring between translationally related pyrrole rings [ring centroid-centroid distance = 3.8754 (10) Å]; the layers stack along the b axis.

Related literature

For the anti-cancer effects of related compounds, see: Rostom et al. (2011). For structural studies of di-carbonitrile compounds, see: Asiri et al. (2011); Al-Youbi et al. (2012).

Experimental

Crystal data C₉H₇N₃ $M_r = 157.18$

Triclinic, $P\overline{1}$ a = 3.8754 (2) Å

c = 12.1773 (7) Å	
$\alpha = 97.517 (5)^{\circ}$	
$\beta = 90.962 \ (5)^{\circ}$	
$\gamma = 98.689 \ (5)^{\circ}$	
$V = 405.76 (4) \text{ Å}^3$	
Data collection	

Agilant SuperNova Dua

h = 8.7705(5) Å

Agilent SuperNova Dual	5871 measured reflections
diffractometer with an Atlas	1866 independent reflections
detector	1463 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.039$
(CrysAlis PRO; Agilent, 2011)	
$T_{\rm min} = 0.980, T_{\rm max} = 0.996$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	137 parameters
$wR(F^2) = 0.124$	All H-atom parameters refined
S = 1.01	$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$
1866 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Z = 2

Mo $K\alpha$ radiation

 $0.25 \times 0.15 \times 0.05 \text{ mm}$

with $I > 2\sigma(I)$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 100 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C3 - H3 \cdots N3^{i} \\ C6 - H6 \cdots N2^{ii} \end{array}$	0.976 (19) 0.969 (17)	2.612 (19) 2.515 (17)	3.579 (2) 3.469 (2)	170.8 (16) 167.8 (14)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x, -y + 1, -z.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5851).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Al-Youbi, A. O., Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1027-o1028.
- Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2449.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Rostom, S. A. F., Faidallah, H. M. & Al Saadi, M. S. M. (2011). Med. Chem. Res. 20, 1260-1272.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

‡ Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

supporting information

Acta Cryst. (2012). E68, o1170 [https://doi.org/10.1107/S160053681201197X]

2-[(1-Methyl-1H-pyrrol-2-yl)methylidene]propanedinitrile

Abdullah M. Asiri, Hassan M. Faidallah, Shaeel A. Al-Thabaiti, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

Arylidenes are considered as key intermediates for the synthesis of a variety of heterocycles of biological importance, such as pyridine, pyridazine and quinoline derivatives. Previous studies have shown that the derived compounds exhibit a variety of biological activities, including anti-cancer effects (Rostom *et al.*, 2011). In continuation of structural studies of di-carbonitrile compounds (Asiri *et al.*, 2011; Al-Youbi *et al.*, 2012), the title compound, (I), was investigated.

In (I), Fig. 1, the N-bound methyl group and vinyl-H atom are *syn*. The 12 non-hydrogen atoms are co-planar having a r.m.s. deviation = 0.071 Å, with the maximum deviations being 0.118 (2) Å for the C1 atom and -0.084 (2) Å for the N2 atom.

In the crystal packing, each cyano-N atom participates in a C—H···N interaction, Table 1, with a centrosymmetrically related molecule to form a supramolecular tape. The tape is orientated along [101] and comprises alternating 10-membered {···HC₃N}₂ and 16-membered {···HC₆N}₂ synthons, Fig. 2. The tapes are connected into layers *via* π — π interactions occurring between translationally related pyrrazole rings [ring centroid..centroid distance = 3.8754 (10) Å for symmetry operation 1 + *x*, *y*, *z*]. The layers stack along the *b* axis, Fig. 3.

S2. Experimental

A mixture of 1-methylpyrrole-2-carboxaldehyde (1.1 g, 0.01 mmol) and malononitrile (1.1 g, 0.01 mmol) in absolute ethanol (50 ml) was refluxed for 2 h. The reaction mixture was allowed to cool, and the formed precipitate was filtered, washed with water, dried and recrystallized from ethanol. Yield: 72%. *M*.pt: 427–229 K.

S3. Refinement

All H-atoms were located in a difference map and were refined freely, the range of C—H bond lengths = 0.952 (19) to 1.002 (19) Å.

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Figure 2

A view of the supramolecular tape in (I) with C—H…N interactions shown as blue dashed lines.

Figure 3

A view in projection down the *c* axis of the unit-cell contents of (I) showing the stacking of layers along the *b* axis. The C -H \cdots N and π -- π interactions are shown as blue and purple dashed lines, respectively.

2-[(1-Methyl-1*H*-pyrrol-2-yl)methylidene]propanedinitrile

Crystal data
$C_9H_7N_3$
$M_r = 157.18$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
a = 3.8754 (2) Å
<i>b</i> = 8.7795 (5) Å
<i>c</i> = 12.1773 (7) Å
$\alpha = 97.517 (5)^{\circ}$
$\beta = 90.962 \ (5)^{\circ}$
, ()

 $\gamma = 98.689 (5)^{\circ}$ $V = 405.76 (4) Å^{3}$ Z = 2 F(000) = 164 $D_{\rm x} = 1.286 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 Å$ Cell parameters from 1724 reflections $\theta = 2.4-27.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

T = 100 K
Prism, light-brown

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011)	$T_{\min} = 0.980, T_{\max} = 0.996$ 5871 measured reflections 1866 independent reflections 1463 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{\max} = 27.6^{\circ}, \theta_{\min} = 2.4^{\circ}$ $h = -5 \rightarrow 5$ $k = -11 \rightarrow 11$ $l = -15 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.124$ S = 1.01 1866 reflections 137 parameters	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0531P)^2 + 0.1622P]$ where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\text{max}} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.29 \text{ e } \text{\AA}^{-3}$

 $0.25 \times 0.15 \times 0.05 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.3583 (3)	0.18886 (15)	0.26433 (10)	0.0202 (3)	
N2	0.2317 (4)	0.71488 (16)	0.02337 (11)	0.0267 (3)	
N3	0.8617 (4)	0.78536 (16)	0.32981 (11)	0.0267 (3)	
C1	0.1644 (5)	0.0922 (2)	0.16953 (14)	0.0250 (4)	
C2	0.4697 (4)	0.13538 (19)	0.35574 (13)	0.0234 (4)	
C3	0.6539 (4)	0.25848 (19)	0.42647 (13)	0.0246 (4)	
C4	0.6548 (4)	0.39208 (19)	0.37650 (12)	0.0220 (4)	
C5	0.4681 (4)	0.34899 (17)	0.27400 (12)	0.0188 (3)	
C6	0.3763 (4)	0.43469 (17)	0.19062 (12)	0.0185 (3)	
C7	0.4655 (4)	0.59152 (18)	0.18566 (12)	0.0190 (3)	
C8	0.3370 (4)	0.65898 (17)	0.09541 (12)	0.0202 (3)	
C9	0.6828 (4)	0.69787 (17)	0.26673 (12)	0.0196 (3)	
H11	0.106 (5)	-0.015 (3)	0.1842 (17)	0.041 (6)*	
H12	0.308 (5)	0.090 (2)	0.1053 (17)	0.038 (5)*	
H13	-0.050 (5)	0.132 (2)	0.1524 (16)	0.033 (5)*	
H2	0.412 (5)	0.027 (2)	0.3608 (15)	0.025 (4)*	
Н3	0.763 (5)	0.250 (2)	0.4978 (16)	0.031 (5)*	
H4	0.769 (5)	0.500(2)	0.4051 (14)	0.024 (4)*	
H6	0.220 (4)	0.378 (2)	0.1311 (14)	0.020 (4)*	

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0225 (7)	0.0198 (7)	0.0189 (6)	0.0031 (5)	0.0018 (5)	0.0047 (5)
N2	0.0320 (8)	0.0269 (7)	0.0215 (7)	0.0040 (6)	-0.0007 (6)	0.0056 (6)
N3	0.0310 (8)	0.0241 (7)	0.0245 (7)	0.0008 (6)	-0.0021 (6)	0.0062 (6)
C1	0.0282 (9)	0.0221 (8)	0.0235 (8)	0.0002 (7)	-0.0013 (7)	0.0037 (6)
C2	0.0255 (8)	0.0227 (8)	0.0244 (8)	0.0054 (6)	0.0050 (6)	0.0097 (6)
C3	0.0254 (8)	0.0301 (9)	0.0201 (8)	0.0054 (7)	0.0008 (6)	0.0089 (6)
C4	0.0209 (8)	0.0249 (8)	0.0204 (8)	0.0024 (6)	0.0018 (6)	0.0046 (6)
C5	0.0188 (7)	0.0196 (7)	0.0182 (7)	0.0022 (6)	0.0029 (6)	0.0045 (6)
C6	0.0179 (7)	0.0213 (8)	0.0163 (7)	0.0034 (6)	0.0018 (6)	0.0023 (6)
C7	0.0195 (7)	0.0221 (8)	0.0162 (7)	0.0042 (6)	0.0023 (6)	0.0041 (6)
C8	0.0214 (8)	0.0201 (7)	0.0191 (8)	0.0028 (6)	0.0022 (6)	0.0023 (6)
C9	0.0208 (7)	0.0201 (7)	0.0198 (8)	0.0041 (6)	0.0037 (6)	0.0079 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

1.352 (2)	C3—C4	1.390 (2)
1.3949 (19)	С3—Н3	0.977 (19)
1.463 (2)	C4—C5	1.410 (2)
1.157 (2)	C4—H4	1.002 (19)
1.152 (2)	C5—C6	1.412 (2)
0.97 (2)	C6—C7	1.378 (2)
0.97 (2)	С6—Н6	0.969 (17)
0.98 (2)	С7—С8	1.431 (2)
1.386 (2)	С7—С9	1.431 (2)
0.952 (19)		
108 97 (13)	C_{3} — C_{4} — C_{5}	107 69 (14)
124.98 (13)	C3 - C4 - H4	127.8 (10)
126.02 (13)	C5—C4—H4	124.5(10)
110.6 (12)	N1—C5—C4	106.64 (13)
109.7 (11)	N1—C5—C6	120.42 (13)
106.9 (17)	C4—C5—C6	132.91 (14)
111.0 (11)	C7—C6—C5	128.23 (14)
109.4 (17)	С7—С6—Н6	115.2 (10)
109.2 (16)	С5—С6—Н6	116.5 (10)
109.17 (14)	C6—C7—C8	120.18 (13)
118.3 (11)	C6—C7—C9	124.54 (13)
132.5 (11)	C8—C7—C9	115.29 (13)
107.53 (14)	N2	179.15 (16)
125.1 (11)	N3—C9—C7	178.23 (16)
127.3 (11)		
-0.11 (17)	C1—N1—C5—C6	3.9 (2)
177.99 (14)	C3—C4—C5—N1	-0.10 (17)
0.05 (18)	C3—C4—C5—C6	177.75 (16)
	$\begin{array}{c} 1.352 \ (2) \\ 1.3949 \ (19) \\ 1.463 \ (2) \\ 1.157 \ (2) \\ 1.157 \ (2) \\ 1.152 \ (2) \\ 0.97 \ (2) \\ 0.97 \ (2) \\ 0.98 \ (2) \\ 1.386 \ (2) \\ 0.952 \ (19) \\ \hline \\ 108.97 \ (13) \\ 124.98 \ (13) \\ 126.02 \ (13) \\ 110.6 \ (12) \\ 109.7 \ (11) \\ 106.9 \ (17) \\ 111.0 \ (11) \\ 109.4 \ (17) \\ 109.2 \ (16) \\ 109.17 \ (14) \\ 118.3 \ (11) \\ 132.5 \ (11) \\ 107.53 \ (14) \\ 125.1 \ (11) \\ 127.3 \ (11) \\ \hline \\ -0.11 \ (17) \\ 177.99 \ (14) \\ 0.05 \ (18) \\ \end{array}$	1.352 (2) $C3-C4$ $1.3949 (19)$ $C3-H3$ $1.463 (2)$ $C4-C5$ $1.157 (2)$ $C4-H4$ $1.152 (2)$ $C5-C6$ $0.97 (2)$ $C6-C7$ $0.97 (2)$ $C6-H6$ $0.97 (2)$ $C6-H6$ $0.97 (2)$ $C6-H6$ $0.98 (2)$ $C7-C8$ $1.386 (2)$ $C7-C9$ $0.952 (19)$ $108.97 (13)$ $108.97 (13)$ $C3-C4-C5$ $124.98 (13)$ $C3-C4-H4$ $126.02 (13)$ $C5-C4-H4$ $106.9 (17)$ $C4-C5-C6$ $106.9 (17)$ $C4-C5-C6$ $109.7 (11)$ $N1-C5-C6$ $11.0 (11)$ $C7-C6-H6$ $109.2 (16)$ $C5-C6-H6$ $109.2 (16)$ $C5-C6-H6$ $109.17 (14)$ $C6-C7-C9$ $132.5 (11)$ $C8-C7-C9$ $107.53 (14)$ $N2-C8-C7$ $127.3 (11)$ $N3-C9-C7$ $127.3 (11)$ $C3-C4-C5-N1$ $0.05 (18)$ $C3-C4-C5-C6$

supporting information

C2—C3—C4—C5	0.04 (18)	N1—C5—C6—C7	-178.89 (14)
C2—N1—C5—C4	0.13 (17)	C4—C5—C6—C7	3.5 (3)
C1—N1—C5—C4	-177.94 (14)	C5—C6—C7—C8	-177.93 (14)
C2—N1—C5—C6	-178.05 (13)	С5—С6—С7—С9	1.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3···N3 ⁱ	0.976 (19)	2.612 (19)	3.579 (2)	170.8 (16)
C6—H6···N2 ⁱⁱ	0.969 (17)	2.515 (17)	3.469 (2)	167.8 (14)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*, -*y*+1, -*z*.