

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(2-Methylbenzyl)-1*H*-indole-3carbaldehyde

Yang Wu,^a Wen Ren,^b Qiang Wang^b and Gu He^{c*}

^aState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China, ^bWest China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, and ^cState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China, Correspondence e-mail: hegu@scu.edu.cn

Received 6 March 2012; accepted 8 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.117; data-to-parameter ratio = 15.6.

In the title compound, $C_{17}H_{15}NO$, the benzene ring and the indole system are almost perpendicular, making a dihedral angle of 87.82 (6)°. The crystal packing is stabilized by C– $H \cdots O$ and $\pi - \pi$ stacking interactions with centroid–centroid distances of 3.592 (4) Å between the pyrrole and the benzene rings in the indole systems of neighboring molecules.

Related literature

For general background to the chemistry and anti-inflammatory activity of indole aldehyde derivatives, see: Andreani *et al.* (1994).

organic compounds

5468 measured reflections 2699 independent reflections

 $R_{\rm int} = 0.016$

1928 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

(

N a

h

C ₁₇ H ₁₅ NO	V = 1320.33 (7) Å ³
$A_r = 249.30$	Z = 4
Aonoclinic, $P2_1/c$	Mo $K\alpha$ radiation
= 10.5251 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
p = 15.4352 (5) Å	T = 293 K
= 8.2335 (2) Å	$0.28 \times 0.25 \times 0.20 \text{ mm}$
$B = 99.214 \ (3)^{\circ}$	

Data collection

Agilent Xcalibur Eos diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{min} = 0.981, T_{max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	173 parameters
$wR(F^2) = 0.117$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.13 \text{ e } \text{\AA}^{-3}$
2699 reflections	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C16-H16\cdots O1^{i}$	0.93	2.56	3.418 (2)	154

Symmetry code: (i) x, y, z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov, 2009); software used to prepare material for publication: *OLEX2*.

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5840).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, California, USA.

- Andreani, A., Rambaldi, M., Locatelli, A. & Pofferi, G. (1994). Eur. J. Med. Chem. 29, 903–906.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o1151 [https://doi.org/10.1107/S1600536812010306]

1-(2-Methylbenzyl)-1H-indole-3-carbaldehyde

Yang Wu, Wen Ren, Qiang Wang and Gu He

S1. Comment

1-(2-Methyl-benzyl)-1*H*-indole-3-carbaldehyde is of great importance owing to its wide biological properties (Andreani *et al.*, 1994). The title compound is one of the key intermediates in our synthetic investigations of antibacterial drugs. We report here its crystal structure.

In the title compound, $C_{17}H_{15}NO$, as shown in Fig 1, the benzene ring with the methyl group in *ortho* position and the indole system are almost perpendicular, making dihedral angle of 87.82 (6)°. A combination of intermolecular C-H···O and π - π packing interaction plays an important role in the connection of neighbouring molecules. The centroid-centroid distance between the pyrrole ring and the benzene ring in the indole system of the neighbouring molecule is 3.592 (4) Å (symmetry operator: -x, -y, -z).

S2. Experimental

1*H*-indole-3-carbaldehyde(14 mmol) was dissolved in dry DMF(25 ml)and treated portionwise,under stirring, with 20 mmol NaH. The mixture was stirred at room temperature for 10 min and treated with 20 mmol of 1-chloromethyl-2- methyl-benzene. After 1 h at 90°C under stirring, the mixture was poured onto ice. The resulting precipitate was collected by filtration and crystallized from ethanol with a yield of 70%. Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of dichloromethane.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with $U_{iso}(H)$ = 1.2 or 1.5 $U_{eq}(C)$ for methyl H atoms.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

A packing diagram of the title compound.

1-(2-Methylbenzyl)-1H-indole-3-carbaldehyde

Crystal data

 $C_{17}H_{15}NO$ $M_r = 249.30$ Monoclinic, $P2_1/c$ *a* = 10.5251 (3) Å *b* = 15.4352 (5) Å *c* = 8.2335 (2) Å $\beta = 99.214 (3)^{\circ}$ V = 1320.33 (7) Å³ Z = 4

Data collection

Agilent Xcalibur Eos	5468 measured reflect
diffractometer	2699 independent refle
Radiation source: fine-focus sealed tube	1928 reflections with
Graphite monochromator	$R_{\rm int} = 0.016$
Detector resolution: 16.0874 pixels mm ⁻¹	$\theta_{\rm max} = 26.4^\circ, \ \theta_{\rm min} = 3.2$
ω scans	$h = -11 \rightarrow 13$
Absorption correction: multi-scan	$k = -11 \rightarrow 19$
(CrysAlis PRO; Agilent, 2011)	$l = -10 \rightarrow 4$
$T_{\min} = 0.981, \ T_{\max} = 1.000$	

F(000) = 528 $D_{\rm x} = 1.254 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.7107$ Å Cell parameters from 1937 reflections $\theta = 3.2 - 29.1^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.28 \times 0.25 \times 0.20 \text{ mm}$

ions ections $I > 2\sigma(I)$ 0

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.117$	neighbouring sites
S = 1.04	H-atom parameters constrained
2699 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0449P)^2 + 0.2065P]$
173 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.17$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.02058 (15)	0.14964 (11)	-0.33644 (17)	0.0895 (5)
N1	0.21128 (12)	0.01830 (9)	0.14071 (15)	0.0439 (3)
C1	0.18887 (13)	-0.04418 (11)	0.01839 (19)	0.0404 (4)
C2	0.13295 (13)	-0.00278 (11)	-0.12762 (19)	0.0415 (4)
C3	0.12187 (14)	0.08699 (11)	-0.0886 (2)	0.0457 (4)
C4	0.17018 (15)	0.09542 (11)	0.0760 (2)	0.0475 (4)
H4	0.1739	0.1472	0.1344	0.057*
C5	0.10025 (15)	-0.05289 (13)	-0.2699 (2)	0.0506 (4)
Н5	0.0639	-0.0273	-0.3687	0.061*
C6	0.12281 (16)	-0.14068 (13)	-0.2611 (2)	0.0573 (5)
H6	0.1010	-0.1744	-0.3549	0.069*
C7	0.17749 (16)	-0.17975 (12)	-0.1149 (2)	0.0567 (5)
H7	0.1910	-0.2393	-0.1126	0.068*
C8	0.21221 (15)	-0.13246 (11)	0.0266 (2)	0.0503 (4)
H8	0.2499	-0.1587	0.1242	0.060*
С9	0.06793 (18)	0.15646 (14)	-0.1918 (3)	0.0642 (5)
Н9	0.0690	0.2113	-0.1449	0.077*
C10	0.26384 (17)	0.00142 (12)	0.31387 (19)	0.0536 (5)
H10A	0.3153	-0.0510	0.3210	0.064*
H10B	0.1933	-0.0082	0.3745	0.064*
C11	0.34564 (15)	0.07493 (11)	0.39236 (19)	0.0455 (4)
C12	0.46514 (15)	0.09284 (11)	0.34816 (19)	0.0448 (4)
C13	0.53745 (17)	0.15965 (12)	0.4283 (2)	0.0565 (5)
H13	0.6176	0.1721	0.4002	0.068*
C14	0.4941 (2)	0.20792 (14)	0.5479 (2)	0.0679 (6)

supporting information

H14	0.5445	0.2525	0.5997	0.082*	
C15	0.3765 (2)	0.19041 (15)	0.5909 (3)	0.0744 (6)	
H15	0.3467	0.2228	0.6722	0.089*	
C16	0.30237 (18)	0.12415 (14)	0.5125 (2)	0.0637 (5)	
H16	0.2221	0.1125	0.5411	0.076*	
C17	0.51550 (17)	0.04237 (15)	0.2160 (2)	0.0666 (6)	
H17A	0.5075	-0.0185	0.2360	0.100*	
H17B	0.6044	0.0565	0.2168	0.100*	
H17C	0.4667	0.0568	0.1108	0.100*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1027 (11)	0.1071 (13)	0.0562 (9)	0.0489 (10)	0.0050 (8)	0.0189 (9)
N1	0.0436 (7)	0.0468 (8)	0.0395 (7)	-0.0044 (6)	0.0014 (6)	0.0004 (7)
C1	0.0344 (8)	0.0448 (10)	0.0419 (9)	-0.0048 (7)	0.0059 (6)	-0.0003 (8)
C2	0.0307 (7)	0.0519 (10)	0.0418 (9)	-0.0009 (7)	0.0059 (6)	0.0016 (8)
C3	0.0377 (8)	0.0520 (11)	0.0471 (9)	0.0042 (7)	0.0054 (7)	0.0049 (8)
C4	0.0461 (9)	0.0446 (10)	0.0515 (10)	-0.0020 (7)	0.0070 (8)	-0.0009 (8)
C5	0.0386 (8)	0.0719 (13)	0.0404 (9)	-0.0027 (8)	0.0031 (7)	-0.0013 (9)
C6	0.0509 (10)	0.0663 (13)	0.0550 (11)	-0.0111 (9)	0.0098 (8)	-0.0169 (10)
C7	0.0570 (10)	0.0472 (11)	0.0663 (12)	-0.0060 (8)	0.0109 (9)	-0.0063 (9)
C8	0.0495 (9)	0.0482 (11)	0.0523 (10)	-0.0042 (8)	0.0052 (8)	0.0054 (9)
C9	0.0626 (12)	0.0655 (13)	0.0659 (13)	0.0204 (10)	0.0145 (10)	0.0106 (11)
C10	0.0586 (10)	0.0626 (12)	0.0381 (9)	-0.0110 (9)	0.0031 (8)	0.0043 (8)
C11	0.0486 (9)	0.0514 (10)	0.0348 (8)	-0.0002 (8)	0.0020 (7)	0.0014 (8)
C12	0.0459 (9)	0.0520 (10)	0.0345 (8)	0.0019 (8)	0.0004 (7)	0.0041 (8)
C13	0.0511 (10)	0.0644 (12)	0.0505 (10)	-0.0082 (9)	-0.0028 (8)	0.0026 (10)
C14	0.0765 (13)	0.0592 (13)	0.0622 (12)	-0.0081 (11)	-0.0073 (11)	-0.0119 (11)
C15	0.0856 (15)	0.0753 (15)	0.0612 (13)	0.0110 (12)	0.0082 (11)	-0.0251 (11)
C16	0.0579 (11)	0.0806 (15)	0.0541 (11)	0.0017 (10)	0.0133 (9)	-0.0112 (10)
C17	0.0572 (11)	0.0863 (16)	0.0584 (12)	0.0029 (10)	0.0161 (9)	-0.0093 (11)

Geometric parameters (Å, °)

01	1.220 (2)	С9—Н9	0.9300
N1—C1	1.387 (2)	C10—H10A	0.9700
N1—C4	1.347 (2)	C10—H10B	0.9700
N1—C10	1.4677 (19)	C10—C11	1.506 (2)
C1—C2	1.405 (2)	C11—C12	1.392 (2)
C1—C8	1.384 (2)	C11—C16	1.381 (2)
C2—C3	1.431 (2)	C12—C13	1.385 (2)
C2—C5	1.400 (2)	C12—C17	1.502 (2)
C3—C4	1.375 (2)	С13—Н13	0.9300
С3—С9	1.428 (2)	C13—C14	1.370 (3)
C4—H4	0.9300	C14—H14	0.9300
С5—Н5	0.9300	C14—C15	1.367 (3)
C5—C6	1.376 (3)	C15—H15	0.9300

supporting information

С6—Н6	0.9300	C15—C16	1.382 (3)
C6—C7	1.386 (3)	С16—Н16	0.9300
С7—Н7	0.9300	C17—H17A	0.9600
C7—C8	1.374 (2)	C17—H17B	0.9600
C8—H8	0.9300	С17—Н17С	0.9600
C1—N1—C10	125.15 (14)	N1-C10-H10A	109.1
C4—N1—C1	108.69 (13)	N1-C10-H10B	109.1
C4—N1—C10	126.06 (14)	N1—C10—C11	112.57 (14)
N1—C1—C2	107.72 (14)	H10A—C10—H10B	107.8
C8—C1—N1	129.84 (15)	C11—C10—H10A	109.1
C8—C1—C2	122.44 (15)	C11—C10—H10B	109.1
C1—C2—C3	106.65 (14)	C12—C11—C10	121.05 (15)
C5—C2—C1	118.56 (16)	C16—C11—C10	119.37 (16)
C5—C2—C3	134.79 (16)	C16—C11—C12	119.57 (16)
C4—C3—C2	106.38 (14)	C11—C12—C17	121.66 (15)
C4—C3—C9	124.34 (17)	C13—C12—C11	118.30 (15)
C9—C3—C2	129.24 (16)	C13—C12—C17	120.04 (16)
N1—C4—C3	110.55 (15)	С12—С13—Н13	119.1
N1-C4-H4	124.7	C14—C13—C12	121.77 (17)
C3—C4—H4	124.7	С14—С13—Н13	119.1
C2—C5—H5	120.6	C13—C14—H14	120.1
C6-C5-C2	118.87 (16)	C15-C14-C13	119.88 (18)
C6—C5—H5	120.6	C15—C14—H14	120.1
C5—C6—H6	119.4	C14—C15—H15	120.3
C_{5} C_{6} C_{7}	121 23 (17)	C14-C15-C16	119 49 (18)
C7—C6—H6	119.4	C16—C15—H15	120.3
C6—C7—H7	119.3	$C_{11} - C_{16} - C_{15}$	120.0 121.00(18)
C8-C7-C6	121 48 (18)	$C_{11} - C_{16} - H_{16}$	119.5
C8—C7—H7	119 3	C15—C16—H16	119.5
C1 - C8 - H8	121.3	C12—C17—H17A	109.5
C7 - C8 - C1	117 41 (16)	C12 - C17 - H17B	109.5
C7 - C8 - H8	121.3	C12 - C17 - H17C	109.5
01 - C9 - C3	125.3 (2)	H17A - C17 - H17B	109.5
01 - C9 - H9	117.4	H17A - C17 - H17C	109.5
C3_C9_H9	117.4	H17B-C17-H17C	109.5
65-65-115	117.4		109.5
N1 - C1 - C2 - C3	-0.28(16)	$C_{5} - C_{2} - C_{3} - C_{9}$	12(3)
N1-C1-C2-C5	-179.55(13)	C5-C6-C7-C8	-0.5(3)
N1-C1-C8-C7	178.63 (15)	C6-C7-C8-C1	0.9(2)
N1-C10-C11-C12	-699(2)	C8-C1-C2-C3	179.02(14)
N1-C10-C11-C16	111 41 (18)	C8-C1-C2-C5	-0.3(2)
C1 - N1 - C4 - C3	-0.86(18)	C9-C3-C4-N1	178.46 (15)
C1 - N1 - C10 - C11	147 04 (15)	C10-N1-C1-C2	177 28 (13)
C1 - C2 - C3 - C4	-0.23(16)	C10 - N1 - C1 - C2	-19(2)
C1 - C2 - C3 - C9	-177 87 (16)	C10 - N1 - C4 - C3	-177 41 (13)
C1 - C2 - C5 - C6	0.6.(2)	C10-C11-C12-C13	-178 10 (15)
C_{2} C_{2} C_{3} C_{3} C_{4} C_{7}	-0.5(2)	C10-C11-C12-C17	25(2)
02 01 00 07	0.5 (2)	010 - 011 - 012 - 017	2.3 (2)

C2-C3-C4-N1 C2-C3-C9-O1 C2-C5-C6-C7 C3-C2-C5-C6 C4-N1-C1-C2 C4-N1-C1-C8 C4-N1-C10-C11 C4-C3-C9-O1	0.67 (17) 0.0 (3) -0.3 (2) -178.37 (16) 0.69 (16) -178.54 (15) -37.0 (2) -177 28 (17)	$\begin{array}{c} C10 & -C11 & -C16 & -C15 \\ C11 & -C12 & -C13 & -C14 \\ C12 & -C11 & -C16 & -C15 \\ C12 & -C13 & -C14 & -C15 \\ C13 & -C14 & -C15 & -C16 \\ C14 & -C15 & -C16 & -C11 \\ C16 & -C11 & -C12 & -C13 \\ C16 & -C11 & -C12 & -C17 \end{array}$	$178.00 (18) \\ -0.3 (3) \\ -0.7 (3) \\ 0.1 (3) \\ -0.2 (3) \\ 0.5 (3) \\ 0.5 (2) \\ -178.81 (16)$
C4—N1—C10—C11	-37.0 (2)	C16—C11—C12—C13	0.5 (2)
C4—C3—C9—O1	-177.28 (17)	C16—C11—C12—C17	-178.81 (16)
C5—C2—C3—C4	178.87 (16)	C17—C12—C13—C14	179.10 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C16—H16…O1 ⁱ	0.93	2.56	3.418 (2)	154

Symmetry code: (i) x, y, z+1.