Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,4-Dihexyloxy-2,5-bis(2-nitrophenyl)benzene

Norma Wrobel, Dieter Schollmeyer and Heiner Detert*

University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany Correspondence e-mail: detert@uni-mainz.de

Received 5 March 2012; accepted 6 March 2012

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.120; data-to-parameter ratio = 19.3.

The title compound, $C_{30}H_{36}N_2O_6$, was prepared via twofold Suzuki coupling of a diboronic acid with bromonitrobenzene. The molecule is located on a crystallographic inversion centre. The lateral benzene ring and the central ring make a dihedral angle of $48.75 (14)^{\circ}$ and the nitro group is twisted by $41.47 (13)^{\circ}$ out of the plane of the benzene ring. The nitro and hexyloxy groups are in close proximity and the hexyloxy chain adopts an all-anti conformation.

Related literature

For the synthesis of carbazoles and heteroanalogous carbazoles, see: Letessier et al. (2011); Dassonneville et al. (2011); Nissen & Detert (2011); Letessier & Detert (2012). For the Cadogan reaction, see: Cadogan (1962). For Suzuki crosscouplings see Miyaura & Suzuki (1995). For π -systems for optoelectronic applications, see: Nemkovich et al. (2009). For structures of substituted p-terphenyls, see: Jones et al. (2005), Moschel et al. (2011). For torsion in biphenyls, see: Miao et al. (2009); Fischer et al. (2007).

Experimental

Crystal data

$C_{30}H_{36}N_2O_6$	$V = 1381.17 (16) \text{ Å}^3$
$M_r = 520.61$	Z = 2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 7.9314 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 19.2029 (17) Å	T = 193 K
c = 9.1247 (5) Å	$0.44 \times 0.30 \times 0.20 \text{ mm}$
$\beta = 96.368 \ (5)^{\circ}$	

Data collection

Refinement

3331 reflections

S = 1.07

Stoe IPDS 2T diffractometer 8154 measured reflections 3331 independent reflections

 $R[F^2 > 2\sigma(F^2)] = 0.044$ wR(F²) = 0.120

2610 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.026$

173 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

The authors are grateful to Heinz Kolshorn for invaluable discussions and the NMR spectra.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5839)

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Cadogan, J. I. G. (1962). O. Rev. 16, 208-239.
- Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836-2844.
- Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63. 01357-01358
- Jones, P. G., Kuś, P. & Pasewicz, A. (2005). Acta Cryst. E61, 01895-01896.
- Letessier, J. & Detert, H. (2012). Synthesis, 44, 290-296.

Letessier, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o2494.

Miao, S.-B., Deng, D.-S., Liu, X.-M. & Ji, B.-M. (2009). Acta Cryst. E65, o2314. Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.

- Moschel, S., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, 01425.
- Nemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275-281.
- Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845-2854.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2012). E68, o1022 [https://doi.org/10.1107/S1600536812009944]

1,4-Dihexyloxy-2,5-bis(2-nitrophenyl)benzene

Norma Wrobel, Dieter Schollmeyer and Heiner Detert

S1. Comment

As part of a larger project on the synthesis of carbazoles and heteroanalogous carbazoles (Letessier *et al.* 2011, Dassonneville *et al.* 2011, Nissen & Detert 2011, Letessier & Detert 2012) the Cadogan reaction (Cadogan 1962) appeared to be a suitable method for the construction of larger planar π -systems for optoelectronic applications (Nemkovich *et al.* 2009). The title compond was prepared as an intermediate for the synthesis of dihexyloxy-indolocarbazole.

The title compound crystallizes in a centrosymmetrical conformation with a highly twisted dinitroterphenyl core and hexyloxy chains in an *all-anti* conformation. The dihedral angle of the mean planes of the central and the lateral ring is 131.25 (14)° with the *ortho*-substituents nitro- and hexyloxy in close proximity. The distance N10 - O13 (nitro-hexyloxy) is only 2.710 (2) Å. The nitro group is twisted out of the plane of the adjacent benzene ring, the dihedral angle is 138.53 (13)° pointing towards the adjacent *o*-hexyloxy group. A *o*-methyl substitution on on a biphenyl linkage is sufficient to open the dihedral angle from 9.45 ° (Fischer *et al.* 2007) to more than 63° (Jones *et al.* 2005). The twist (131.25°) found in the title compound - though *o*,*o*-disubstituted on both biphenyl linkages - is significantly smaller. This can result from an electronic attraction between N10 (nitro) and O13 (hexyloxy). Miao *et al.* (2009) reported a dihedral angle of 60.5° in the fourfold *o*-substituted 2,2-dimethoxy-6,6-dinitrobiphenyl.

S2. Experimental

Synthesis: A mixture of 2,5-dihexyloxy-1,4-phenylenediboronic acid (500 mg, 1.37 mmol), 1-bromo-2-nitrobenzene (553 mg, 2.74 mmol), Pd(PPh₃)₃ (79 mg, 0.067 mmol) in dimethoxyethane (10 ml) was stirred for 45 min at 298 K. An aqueous solution of Na₂CO₃ (1*M*, 8.2 ml) was added and the mixture heated to 353 K for 18 h. The cooled mixture was poured into water (40 ml) and the product was isolated by extraction with dichloromethane (3 *x* 15 ml), washing the pooled solutions with brine (2 *x* 10 ml), drying (Na₂SO₄) and crystallization from chloroform/pentane. Yield: 495 mg (70%) of a yellow solid with m. p. 438 - 440 K. $R_f = 0.41$ (silica gel, petroleum ether/ethyl acetate 9/1).

S3. Refinement

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (*sp*³ C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the U_{eq} of the parent atom.

Figure 1

View of compound I. Displacement ellipsoids are drawn at the 50% probability level. Second part of the molecule labeled with *a* generated applying symmetry code 1 - x, 1 - y, 1 - z.

1,4-Dihexyloxy-2,5-bis(2-nitrophenyl)benzene

Crystal data

C₃₀H₃₆N₂O₆ $M_r = 520.61$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.9314 (4) Å b = 19.2029 (17) Å c = 9.1247 (5) Å $\beta = 96.368$ (5)° V = 1381.17 (16) Å³ Z = 2

Data collection

Stoe IPDS 2T diffractometer
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus
Plane graphite monochromator
Detector resolution: 6.67 pixels mm⁻¹ ω scan
8154 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.120$ S = 1.073331 reflections 173 parameters F(000) = 556 $D_x = 1.252 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7928 reflections $\theta = 3.2-29.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 193 KBlock, yellow $0.44 \times 0.30 \times 0.20 \text{ mm}$

3331 independent reflections 2610 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 28.0^\circ, \ \theta_{min} = 3.2^\circ$ $h = -10 \rightarrow 10$ $k = -25 \rightarrow 22$ $l = -12 \rightarrow 10$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{ m max}$ < 0.001
$w = 1/[\sigma^2(F_o^2) + (0.0562P)^2 + 0.4038P]$	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. ¹H-NMR (400 MHz, CDCl₃): δ = 7.95 (dd, ³J = 8.5 Hz, ⁴J= 1.2 Hz, 2 H, 3-H); 7.64 (dt, ³J = 7.5 Hz, ⁴J = 1.4 Hz, 2 H, 4-H); 7.49 - 7.45 (m, 4 H); 6.83 (s, 2 H, 2-H); 3.81 (bs (*t*), 4 H, O—CH₂); 1.59 - 1.54 (m, 4 H); 1.25 - 1.18 (m, 12 H); 0.80 (t, ³J = 6.9 Hz, 6 H, CH₃).

¹³C-NMR (75 MHz, CDCl₃): δ = 149.7 (s, 2-C), 149.5 (s), 132.9 (s), 132.6 (d), 132.5 (d), 128.1 (d), 127.8 (s), 123.9 (d), 113.4 (d), 69.1 (t), 31.3 (t), 28.8 (t), 25.4 (t), 22.5 (t), 13.8 (q).

IR (ATR): *v* = 3734, 3585, 3070, 2944, 2869, 2855, 2363, 2334, 1608, 1573, 1530, 1510, 1469, 1441, 1387, 1358, 1290, 1255, 1209, 1165, 1144, 1025, 997, 870, 860.

MS (EI): $m/z = 520 (100\%, M^{+})$.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.46215 (15)	0.52525 (7)	0.35512 (14)	0.0240 (3)	
C2	0.35820 (15)	0.54228 (7)	0.46442 (14)	0.0252 (3)	
C3	0.60362 (16)	0.48321 (8)	0.39358 (14)	0.0264 (3)	
H3	0.6756	0.4717	0.3206	0.032*	
C4	0.43305 (15)	0.55452 (7)	0.20336 (14)	0.0232 (3)	
C5	0.57076 (16)	0.58310 (8)	0.14150 (15)	0.0299 (3)	
Н5	0.6801	0.5811	0.1956	0.036*	
C6	0.55321 (18)	0.61424 (8)	0.00394 (16)	0.0338 (3)	
H6	0.6502	0.6318	-0.0362	0.041*	
C7	0.39481 (18)	0.61991 (8)	-0.07522 (16)	0.0309 (3)	
H7	0.3820	0.6432	-0.1676	0.037*	
C8	0.25493 (17)	0.59149 (7)	-0.01925 (15)	0.0273 (3)	
H8	0.1456	0.5945	-0.0732	0.033*	
C9	0.27660 (15)	0.55862 (7)	0.11640 (14)	0.0225 (3)	
N10	0.12608 (13)	0.52343 (6)	0.16019 (12)	0.0271 (3)	
011	-0.01207 (12)	0.55180 (6)	0.13048 (12)	0.0381 (3)	
O12	0.14470 (14)	0.46637 (6)	0.21901 (12)	0.0380 (3)	
O13	0.22425 (12)	0.58564 (6)	0.42244 (10)	0.0314 (2)	
C14	0.11269 (18)	0.60345 (9)	0.52871 (16)	0.0330 (3)	
H14A	0.1748	0.6300	0.6106	0.040*	
H14B	0.0665	0.5607	0.5699	0.040*	
C15	-0.02962 (17)	0.64694 (9)	0.45359 (16)	0.0330 (3)	
H15A	0.0189	0.6874	0.4055	0.040*	
H15B	-0.0946	0.6188	0.3758	0.040*	
C16	-0.1481 (2)	0.67270 (12)	0.5597 (2)	0.0560 (6)	

supporting information

H16A	-0.1793	0.6328	0.6201	0.067*	
H16B	-0.0862	0.7067	0.6274	0.067*	
C17	-0.30865 (18)	0.70652 (8)	0.49024 (18)	0.0344 (3)	
H17A	-0.2781	0.7465	0.4299	0.041*	
H17B	-0.3715	0.6726	0.4231	0.041*	
C18	-0.4239 (3)	0.73189 (14)	0.5993 (3)	0.0670 (7)	
H18A	-0.4492	0.6924	0.6631	0.080*	
H18B	-0.3626	0.7675	0.6632	0.080*	
C19	-0.5889 (2)	0.76264 (11)	0.5319(3)	0.0602 (6)	
H19A	-0.5662	0.8048	0.4767	0.090*	
H19B	-0.6592	0.7745	0.6101	0.090*	
H19C	-0.6488	0.7287	0.4650	0.090*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0190 (5)	0.0341 (7)	0.0187 (6)	0.0020 (5)	0.0005 (4)	-0.0030 (5)
C2	0.0172 (5)	0.0358 (7)	0.0218 (6)	0.0056 (5)	-0.0005 (4)	-0.0031 (5)
C3	0.0204 (6)	0.0391 (7)	0.0199 (6)	0.0049 (5)	0.0027 (5)	-0.0037 (5)
C4	0.0202 (5)	0.0296 (6)	0.0198 (6)	0.0027 (5)	0.0023 (4)	-0.0032 (5)
C5	0.0189 (6)	0.0436 (8)	0.0271 (7)	-0.0031 (5)	0.0017 (5)	-0.0039 (6)
C6	0.0302 (7)	0.0441 (8)	0.0285 (7)	-0.0111 (6)	0.0094 (6)	-0.0021 (6)
C7	0.0375 (7)	0.0326 (7)	0.0229 (6)	-0.0045 (6)	0.0040 (5)	0.0024 (5)
C8	0.0260 (6)	0.0322 (7)	0.0228 (6)	0.0003 (5)	-0.0010 (5)	0.0010 (5)
C9	0.0186 (5)	0.0268 (6)	0.0219 (6)	-0.0002 (5)	0.0020 (4)	-0.0012 (5)
N10	0.0210 (5)	0.0398 (7)	0.0201 (5)	-0.0036 (5)	0.0009 (4)	-0.0006(5)
O11	0.0178 (4)	0.0605 (7)	0.0353 (6)	0.0027 (4)	0.0006 (4)	-0.0021 (5)
O12	0.0358 (5)	0.0425 (6)	0.0351 (6)	-0.0098 (5)	0.0014 (4)	0.0114 (5)
O13	0.0239 (4)	0.0492 (6)	0.0213 (5)	0.0155 (4)	0.0029 (4)	0.0003 (4)
C14	0.0277 (6)	0.0471 (9)	0.0254 (7)	0.0141 (6)	0.0078 (5)	0.0025 (6)
C15	0.0248 (6)	0.0453 (8)	0.0288 (7)	0.0118 (6)	0.0030 (5)	0.0009 (6)
C16	0.0502 (10)	0.0811 (14)	0.0402 (9)	0.0427 (10)	0.0203 (8)	0.0197 (9)
C17	0.0254 (6)	0.0330(7)	0.0459 (9)	0.0059 (6)	0.0090 (6)	0.0019 (6)
C18	0.0543 (11)	0.0902 (16)	0.0615 (13)	0.0435 (11)	0.0297 (10)	0.0211 (12)
C19	0.0324 (8)	0.0556 (12)	0.0951 (17)	0.0150 (8)	0.0188 (10)	0.0009 (11)

Geometric parameters (Å, °)

C1—C3	1.3952 (18)	O13—C14	1.4250 (15)
C1—C2	1.4014 (17)	C14—C15	1.5065 (19)
C1—C4	1.4886 (18)	C14—H14A	0.9900
C2—O13	1.3705 (15)	C14—H14B	0.9900
C2-C3 ⁱ	1.3867 (19)	C15—C16	1.506 (2)
$C3-C2^i$	1.3867 (19)	C15—H15A	0.9900
С3—Н3	0.9500	C15—H15B	0.9900
C4—C5	1.3963 (18)	C16—C17	1.505 (2)
С4—С9	1.3990 (17)	C16—H16A	0.9900
C5—C6	1.383 (2)	C16—H16B	0.9900

supporting information

С5—Н5	0.9500	C17—C18	1.505 (2)
C6—C7	1.382 (2)	C17—H17A	0.9900
С6—Н6	0.9500	C17—H17B	0.9900
С7—С8	1.3838 (19)	C18—C19	1.503 (3)
С7—Н7	0.9500	C18—H18A	0.9900
C°	1 2021 (10)		0.9900
	1.3831 (18)		0.9900
С8—н8	0.9500	С19—Н19А	0.9800
C9—N10	1.4655 (16)	C19—H19B	0.9800
N10-012	1.2218 (16)	C19—H19C	0.9800
N10—O11	1.2268 (15)		
C3—C1—C2	118.44 (12)	O13—C14—H14B	110.0
$C_{3}-C_{1}-C_{4}$	119 33 (11)	C15-C14-H14B	110.0
$C_2 C_1 C_4$	122.08 (11)		108.4
$C_2 - C_1 - C_4$	122.08 (11)		100.4
$013 - 02 - 03^{-1}$	125.90 (11)		112.27 (12)
013-02-01	116.22 (11)	C16—C15—H15A	109.2
$C3^{i}$ — $C2$ — $C1$	119.85 (12)	C14—C15—H15A	109.2
$C2^{i}$ —C3—C1	121.70 (11)	C16—C15—H15B	109.2
C2 ⁱ —C3—H3	119.2	C14—C15—H15B	109.2
С1—С3—Н3	119.2	H15A—C15—H15B	107.9
C5—C4—C9	115.65 (12)	C17—C16—C15	115.45 (14)
C5—C4—C1	118.49 (11)	C17—C16—H16A	108.4
C9—C4—C1	125.82 (11)	C15—C16—H16A	108.4
C6-C5-C4	122.16(12)	C17—C16—H16B	108.4
С6-С5-Н5	118.9	C15-C16-H16B	108.4
$C_4 C_5 H_5$	118.0		107.5
C4—C5—II5	110.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.3
C/-CO-CS	120.15 (12)		114.11 (15)
С/—С6—Н6	119.9	C18—C1/—H1/A	108.7
С5—С6—Н6	119.9	C16—C17—H17A	108.7
C6—C7—C8	119.71 (13)	C18—C17—H17B	108.7
С6—С7—Н7	120.1	C16—C17—H17B	108.7
С8—С7—Н7	120.1	H17A—C17—H17B	107.6
C9—C8—C7	119.02 (12)	C19—C18—C17	114.93 (19)
С9—С8—Н8	120.5	C19—C18—H18A	108.5
С7—С8—Н8	120.5	C17—C18—H18A	108.5
C8—C9—C4	123.21 (12)	C19—C18—H18B	108.5
C8-C9-N10	115 49 (11)	C17— $C18$ — $H18B$	108.5
C_{4} C_{9} N10	121 17 (11)	$H18\Lambda$ C18 $H18B$	107.5
O_{12} N10 O11	121.17(11) 123.84(12)	$C_{18} C_{10} H_{10A}$	107.5
012 - N10 - 011	123.04(12)	C18 C10 U10D	109.5
012—N10—C9	118.09 (11)		109.5
011—N10—C9	118.01 (12)	H19A—C19—H19B	109.5
C2-013-C14	118.44 (10)	C18—C19—H19C	109.5
O13—C14—C15	108.30 (11)	H19A—C19—H19C	109.5
O13—C14—H14A	110.0	H19B—C19—H19C	109.5
C15—C14—H14A	110.0		
C3—C1—C2—O13	177.82 (12)	C7—C8—C9—N10	-173.60 (12)
C4—C1—C2—O13	2.17 (19)	C5—C4—C9—C8	-3.0 (2)
	× /		× /

$C3-C1-C2-C3^{i}$	-0.7 (2)	C1—C4—C9—C8	174.57 (13)
$C4-C1-C2-C3^{i}$	-176.30 (13)	C5-C4-C9-N10	172.61 (12)
$C2-C1-C3-C2^{i}$	0.7 (2)	C1-C4-C9-N10	-9.8 (2)
$C4-C1-C3-C2^{i}$	176.44 (13)	C8—C9—N10—O12	138.53 (13)
C3—C1—C4—C5	-44.37 (18)	C4—C9—N10—O12	-37.39 (18)
C2-C1-C4-C5	131.25 (14)	C8—C9—N10—O11	-38.71 (17)
C3—C1—C4—C9	138.15 (14)	C4—C9—N10—O11	145.37 (13)
C2-C1-C4-C9	-46.2 (2)	C3 ⁱ —C2—O13—C14	-2.8 (2)
C9—C4—C5—C6	0.8 (2)	C1-C2-O13-C14	178.78 (13)
C1-C4-C5-C6	-176.95 (13)	C2-013-C14-C15	-176.02 (12)
C4—C5—C6—C7	2.1 (2)	O13—C14—C15—C16	-175.95 (16)
C5—C6—C7—C8	-2.9 (2)	C14—C15—C16—C17	-170.43 (16)
C6—C7—C8—C9	0.8 (2)	C15—C16—C17—C18	-179.81 (19)
C7—C8—C9—C4	2.2 (2)	C16—C17—C18—C19	-177.1 (2)

Symmetry code: (i) -x+1, -y+1, -z+1.