organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Fluphenazine dihydrochloride dimethanol solvate

Joanna Petrus,* Rafał Petrus and Bogusława Czarnik-**Matusewicz**

Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie St., 50-383 Wroclaw, Poland

Correspondence e-mail: joanna.petrus@chem.uni.wroc.pl

Received 21 February 2012; accepted 27 February 2012

Key indicators: single-crystal X-ray study; T = 85 K; mean σ (C–C) = 0.004 Å; R factor = 0.084; wR factor = 0.197; data-to-parameter ratio = 42.2.

In the title compound {systematic name: 1-(2-hydroxyethyl)-4-[3-(2-trifluoromethyl-10H-phenothiazin-10-yl)propyl]piperazine-1.4-diium dichloride dimethanol disolvate}. $C_{22}H_{28}F_{3}N_{3}OS^{2+} \cdot 2Cl^{-} \cdot 2CH_{3}OH$, the dihedral angle between the planes of the two outer benzene rings of the tricyclic phenothiazine system is 46.91 (13)°. The piperazine ring adopts a chair conformation. The crystal structure is stabilized by O-H···Cl, N-H···Cl, C-H···O, C-H···Cl and C- $H \cdot \cdot \cdot F$ hydrogen bonds and contacts.

Related literature

For the properties of phenothiazines, see: Ford et al. (1988); Ohlow & Moosmann (2011); Tsakovska & Pajeva (2006) and for the biological properties of fluphenazine, see: Gasiorowski et al. (2001); Szabó et al. (1999). For related structures, see: Dahl et al. (1986); Dutkiewicz et al. (2010); McDowell (1978, 1980); Yathirajan et al. (2007). For puckering parameters, see: Cremer & Pople (1975);.

Experimental

Crystal data

 $C_{22}H_{28}F_3N_3OS^{2+}\cdot 2Cl^-\cdot 2(CH_4O)$ $M_r = 574.53$ Orthorhombic, Pca21 a = 39.76 (2) Å b = 9.952 (8) Å c = 7.127 (5) Å

Data collection

Oxford Diffraction Xcalibur PX κ-
geometry diffractometer with
Onyx CCD camera
Absorption correction: multi-scan
(CrysAlis RED; Oxford

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.084$ $wR(F^2) = 0.197$	H-atom parameters constrained $\Delta \rho_{\text{max}} = 1.25 \text{ e} \text{ Å}^{-3}$
S = 1.19	$\Delta \rho_{\rm min} = -0.85 \text{ e} \text{ Å}^{-3}$
13922 reflections	Absolute structure: Flack (1983),
330 parameters	5579 Friedel pairs
1 restraint	Flack parameter: 0.09 (7)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N16-H16···Cl2	0.93	2.12	3.017 (3)	161
N18−H18···Cl1	0.93	2.16	3.078 (3)	171
$O24 - H24 \cdot \cdot \cdot Cl1$	0.84	2.31	3.147 (3)	172
$O22-H22\cdots Cl2^{i}$	0.84	2.27	3.065 (3)	157
O23−H23···Cl2 ⁱⁱ	0.84	2.36	3.169 (3)	163
C18-H18A···O22	0.99	2.23	2.924 (4)	126
C21-H21A···O23	0.99	2.39	3.266 (5)	147
$C2-H2\cdots F13A^{iii}$	0.95	2.45	3.381 (4)	165
$C14 - H14A \cdots O23^{ii}$	0.99	2.51	3.482 (5)	169
$C17 - H17A \cdots O24^{iv}$	0.99	2.24	3.215 (4)	166
$C17 - H17B \cdots O22^{i}$	0.99	2.55	3.379 (5)	141
$C16-H16B\cdots Cl2^{v}$	0.99	2.67	3.619 (4)	161
$C19-H19B\cdots Cl2^{ii}$	0.99	2.75	3.529 (3)	136

Symmetry codes: (i) $-x + 1, -y, z - \frac{1}{2}$; (ii) $-x + 1, -y + 1, z - \frac{1}{2}$; (iii) $-x + \frac{3}{2}, y - 1, z - \frac{1}{2}$; (iv) $-x + 1, -y, z + \frac{1}{2}$; (v) x, y, z - 1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by the Polish Ministry of Sciences and Higher Education (grant Nos. N N204 150440 and N N204 150338) and the European Social Funds (ESF) in the areas of Human Capital Strategy Program and the Marshal's Office of Lower Silesia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5828).

 $V = 2820 (3) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.24 \times 0.02 \times 0.01 \ \mathrm{mm}$

Diffraction 2007) $T_{\min} = 0.850, \ T_{\max} = 1.000$

43952 measured reflections 13922 independent reflections

10615 reflections with $I > 2\sigma(I)$

 $\mu = 0.35 \text{ mm}^{-1}$

T = 85 K

 $R_{\rm int} = 0.052$

Z = 4

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dahl, S. G., Hough, E. & Hals, P.-A. (1986). Biochem. Pharmacol. 35, 1263-1269.
- Dutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). J. Chem. Crystallogr. 40, 970–974.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ford, J. M., Prozialeck, W. C. & Hait, W. N. (1988). Mol. Pharmacol. 35, 105– 115.
- Gasiorowski, K., Brokos, B., Szyba, K. & Leszek, J. (2001). *Mutagenesis*, 16, 31–38.

- McDowell, J. J. H. (1978). Acta Cryst. B34, 686-689.
- McDowell, J. J. H. (1980). Acta Cryst. B36, 2178-2181.
- Ohlow, M. J. & Moosmann, B. (2011). Drug Discov. Today, 16, 119–131.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED in Xcalibur PX Software. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Szabó, D., Szabó, G., Ocsovszki, I., Aszalos, A. & Molnár, J. (1999). Cancer Lett. 139, 115–119.
- Tsakovska, I. & Pajeva, I. (2006). Curr. Drug Targets, 7, 1123-1134.
- Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, 01693–01695.

Acta Cryst. (2012). E68, o1004–o1005 [https://doi.org/10.1107/S1600536812008707]

Fluphenazine dihydrochloride dimethanol solvate

Joanna Petrus, Rafał Petrus and Bogusława Czarnik-Matusewicz

S1. Comment

Fluphenazine (2-(4-(3-(2-(trifluoromethyl)-10*H*-phenothiazin-10-yl)propyl) piperazin-1-yl)ethanol)) (FPh) belongs to one of the oldest and the biggest family of antipsychotic drugs known as phenothiazines (Ohlow & Moosmann, 2011). Apart from its application in the treatment of many psychoses (mainly schizophrenia, mania and paranoid syndromes), it exhibits also a broad spectrum of biological effects, among them the anti-MDR (multidrug resistance) potency. (Gasiorowski *et al.*, 2001; Szabó *et al.*, 1999). Due to the anti-MDR activity of phenothiazines is strictly correlated with their structure (Tsakovska & Pajeva, 2006; Ford *et al.*, 1988), the aim of our work is to characterize the solid state structure of fluphenazine. In the crystal structure of I (Fig. 1), the dihedral angle between the planes of the two outer benzene rings of the phenothiazine system known as 'butterfly angle', correlates with values find for phenothiazines with high biological activity (Dahl *et al.*, 1986; McDowell, 1978; Yathirajan *et al.*, 2007). The piperazine ring adopts a chair conformation, as in the case before reported fluphenazine dipicrate (Dutkiewicz *et al.*, 2010), described by the Cremer & Pople (1975) puckering parameters $q_2 = 0.019$ Å, $\varphi_2 = 13.9^\circ$, $q_3 = -0.593$ Å, Q = 0.593 Å, $\theta = 178.2^\circ$. The crystal structure is stabilized by O—H…Cl, N—H…Cl, C—H…O, C—H…Cl and C—H…F hydrogen bonds and contacts (Table 1 and Fig. 2), that are very similar to those in trifluperazine dihydrochloride (McDowell, 1980).

S2. Experimental

The FPh²⁺²Cl⁻²CH₃OH crystals were obtained by slow evaporation of methanol solution of dihydrochloride fluphenazine (Jelfa) at -15° C.

S3. Refinement

All H atoms were found in difference Fourier maps. In the final refinement cycles, all H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.95–0.99 Å, N—H = 0.93 Å and O—H = 0.84 Å, and with $U_{iso}(H) = 1.2U_{eq}(C, Nsp^3)$ or $1.5U_{eq}(O, C_{methyl})$.

Figure 1

The structures and atom-numbering schemes for the FPh dication, chloride anions and solvent molecules joined by hydrogen bonds (dashed lines) in the asymmetric unit of I. Displacement ellipsoids are drawn at the 30% probability level.

1-(2-hydroxyethyl)-4-[3-(2-trifluoromethyl-10*H*-phenothiazin- 10-yl)propyl]piperazine-1,4-diium dichloride dimethanol disolvate

F(000) = 1208

 $\theta = 4.8 - 38.5^{\circ}$

 $\mu = 0.35 \text{ mm}^{-1}$ T = 85 K

 $R_{\rm int} = 0.052$

 $h = -69 \rightarrow 64$

 $k = -17 \rightarrow 15$

 $l = -12 \rightarrow 10$

Needle, colourless

 $0.24 \times 0.02 \times 0.01$ mm

 $\theta_{\rm max} = 38.6^\circ, \ \theta_{\rm min} = 4.8^\circ$

43952 measured reflections

13922 independent reflections

10615 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.353 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 13454 reflections

Crystal data

C₂₂H₂₈F₃N₃OS²⁺·2Cl⁻·2(CH₄O) $M_r = 574.53$ Orthorhombic, *Pca*2₁ Hall symbol: P 2c -2ac a = 39.76 (2) Å b = 9.952 (8) Å c = 7.127 (5) Å V = 2820 (3) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur PX κ -geometry diffractometer with CCD Onyx camera Radiation source: fine-focus sealed tube Graphite/ monochromator ω and φ scans Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2007) $T_{\min} = 0.850, T_{\max} = 1.000$

Refinement

neginement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.084$	H-atom parameters constrained
$wR(F^2) = 0.197$	$w = 1/[\sigma^2(F_o^2) + (0.062P)^2 + 4.274P]$
S = 1.19	where $P = (F_o^2 + 2F_c^2)/3$
13922 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
330 parameters	$\Delta \rho_{\rm max} = 1.25 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.85 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 5579 Friedel
direct methods	pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.09 (7)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.716794 (19)	0.15955 (8)	0.47197 (13)	0.01988 (15)
C1	0.69059 (7)	0.1626 (3)	0.2720 (4)	0.0141 (5)

C2	0.69591 (8)	0.0733 (3)	0.1245 (5)	0.0186 (6)
H2	0.7139	0.0109	0.1301	0.022*
C3	0.67489 (8)	0.0756 (3)	-0.0306 (5)	0.0217 (6)
H3	0.6781	0.0136	-0.1303	0.026*
C4	0.64910 (8)	0.1692 (3)	-0.0392 (5)	0.0218 (5)
H4	0.6347	0.1709	-0.1456	0.026*
C5	0.64397 (7)	0.2604 (3)	0.1050 (5)	0.0178 (5)
Н5	0.6265	0.3251	0.0956	0.021*
C6	0.66444 (7)	0.2571 (3)	0.2641 (4)	0.0131 (4)
N6	0.66034 (6)	0.3468 (2)	0.4191 (4)	0.0154 (5)
C7	0.68982 (7)	0.4120 (3)	0.4788 (4)	0.0146 (5)
C8	0.69142 (8)	0.5497 (3)	0.5105 (5)	0.0176 (5)
H8	0.6722	0.6045	0.4893	0.021*
C9	0.72137 (8)	0.6071 (3)	0.5736 (5)	0.0204 (6)
C10	0.75000 (9)	0.5322 (3)	0.5989 (5)	0.0219 (6)
H10	0.7702	0.5731	0.6409	0.026*
C11	0.74876 (8)	0.3957 (3)	0.5618 (5)	0.0208 (6)
H11	0.7686	0.3432	0.5746	0.025*
C12	0.71912 (7)	0.3344 (3)	0.5065 (4)	0.0174 (5)
C13	0.72107 (9)	0.7549 (4)	0.6146 (6)	0.0288 (8)
F13A	0.75142 (7)	0.8068 (2)	0.6355 (6)	0.0553 (10)
F13B	0.70499 (8)	0.8260 (2)	0.4841 (5)	0.0470 (7)
F13C	0.70460 (9)	0.7820 (3)	0.7761 (5)	0.0500 (8)
C14	0.62843 (7)	0.4191 (3)	0.4335 (5)	0.0178 (5)
H14A	0.6242	0.4684	0.3151	0.021*
H14B	0.6299	0.4858	0.5363	0.021*
C15	0.59930 (7)	0.3231 (3)	0.4715 (5)	0.0163 (5)
H15A	0.5998	0.2482	0.3802	0.020*
H15B	0.6013	0.2850	0.5993	0.020*
C16	0.56640 (6)	0.4003 (2)	0.4535 (5)	0.0133 (4)
H16A	0.5691	0.4910	0.5085	0.016*
H16B	0.5607	0.4111	0.3192	0.016*
N16	0.53816 (6)	0.3281 (2)	0.5520 (3)	0.0112 (4)
H16	0.5436	0.3238	0.6788	0.013*
C17	0.53309 (7)	0.1872 (3)	0.4842 (4)	0.0142 (5)
H17A	0.5541	0.1354	0.5009	0.017*
H17B	0.5276	0.1882	0.3488	0.017*
C18	0.50516 (7)	0.1208 (3)	0.5911 (5)	0.0146 (5)
H18A	0.5022	0.0278	0.5447	0.018*
H18B	0.5113	0.1160	0.7256	0.018*
N18	0.47276 (6)	0.1961 (2)	0.5704 (3)	0.0108 (4)
H18	0.4676	0.2015	0.4433	0.013*
C19	0.47808 (7)	0.3362 (3)	0.6430 (4)	0.0132 (4)
H19A	0.4840	0.3327	0.7779	0.016*
H19B	0.4570	0.3885	0.6296	0.016*
C20	0.50609 (6)	0.4044 (2)	0.5348 (4)	0.0101 (4)
H20A	0.4997	0.4111	0.4008	0.012*
H20B	0.5093	0.4967	0.5835	0.012*

C21	0.44365 (7)	0.1309 (3)	0.6692 (4)	0.0150 (5)
H21A	0.4259	0.1990	0.6905	0.018*
H21B	0.4512	0.0981	0.7933	0.018*
C22	0.42902 (8)	0.0152 (3)	0.5600 (5)	0.0170 (5)
H22A	0.4094	-0.0220	0.6277	0.020*
H22B	0.4214	0.0468	0.4355	0.020*
O22	0.45382 (7)	-0.0860(2)	0.5376 (4)	0.0262 (5)
H22	0.4445	-0.1616	0.5324	0.039*
O23	0.39180 (8)	0.3725 (3)	0.5576 (5)	0.0333 (6)
H23	0.4001	0.4451	0.5190	0.050*
C23	0.36311 (18)	0.3410 (7)	0.4515 (13)	0.071 (2)
H23A	0.3484	0.4200	0.4441	0.106*
H23B	0.3510	0.2669	0.5115	0.106*
H23C	0.3699	0.3142	0.3247	0.106*
O24	0.40656 (6)	0.0214 (2)	0.0563 (4)	0.0233 (5)
H24	0.4190	0.0875	0.0808	0.035*
C24	0.37321 (9)	0.0675 (5)	0.0181 (6)	0.0335 (9)
H24A	0.3639	0.1101	0.1306	0.050*
H24B	0.3591	-0.0090	-0.0179	0.050*
H24C	0.3738	0.1328	-0.0847	0.050*
C11	0.459485 (19)	0.24652 (8)	0.15078 (11)	0.01844 (13)
Cl2	0.562033 (17)	0.38032 (7)	0.94712 (10)	0.01575 (12)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0209 (3)	0.0132 (3)	0.0255 (4)	0.0016 (2)	-0.0071 (3)	0.0018 (3)
C1	0.0136 (11)	0.0084 (10)	0.0203 (13)	-0.0007 (9)	-0.0001 (9)	0.0013 (9)
C2	0.0164 (11)	0.0105 (11)	0.0289 (17)	0.0025 (9)	0.0035 (11)	-0.0022 (10)
C3	0.0259 (13)	0.0161 (12)	0.0230 (15)	0.0017 (10)	0.0032 (13)	-0.0057 (12)
C4	0.0257 (13)	0.0220 (13)	0.0175 (13)	0.0010 (11)	-0.0047 (12)	-0.0027 (13)
C5	0.0160 (12)	0.0170 (12)	0.0203 (14)	0.0028 (10)	-0.0017 (10)	-0.0001 (10)
C6	0.0135 (10)	0.0061 (9)	0.0198 (13)	-0.0007 (8)	0.0023 (9)	-0.0009 (9)
N6	0.0128 (9)	0.0112 (9)	0.0223 (13)	0.0003 (8)	0.0018 (8)	-0.0045 (8)
C7	0.0162 (10)	0.0123 (10)	0.0153 (12)	0.0000 (8)	-0.0009 (9)	-0.0019 (9)
C8	0.0164 (11)	0.0110 (11)	0.0253 (15)	-0.0001 (9)	0.0000 (10)	-0.0015 (10)
C9	0.0211 (13)	0.0143 (12)	0.0258 (15)	-0.0048 (10)	-0.0021 (12)	-0.0064 (11)
C10	0.0200 (13)	0.0205 (14)	0.0253 (16)	-0.0021 (11)	-0.0043 (12)	-0.0034 (12)
C11	0.0181 (12)	0.0198 (14)	0.0246 (15)	0.0008 (10)	-0.0057 (11)	-0.0019 (12)
C12	0.0163 (11)	0.0175 (12)	0.0184 (14)	0.0012 (10)	-0.0041 (10)	-0.0004 (10)
C13	0.0258 (15)	0.0192 (15)	0.041 (2)	-0.0062 (12)	0.0014 (14)	-0.0085 (15)
F13A	0.0261 (11)	0.0234 (11)	0.116 (3)	-0.0107 (10)	0.0014 (16)	-0.0251 (15)
F13B	0.0628 (17)	0.0125 (9)	0.066 (2)	-0.0013 (10)	-0.0150 (16)	-0.0016 (11)
F13C	0.066 (2)	0.0277 (13)	0.0561 (19)	-0.0046 (13)	0.0231 (16)	-0.0180 (13)
C14	0.0139 (10)	0.0171 (12)	0.0224 (14)	0.0014 (9)	0.0035 (11)	-0.0034 (11)
C15	0.0135 (10)	0.0122 (10)	0.0233 (14)	0.0015 (8)	0.0036 (10)	-0.0010 (11)
C16	0.0135 (10)	0.0110 (10)	0.0153 (11)	0.0004 (7)	0.0025 (10)	-0.0001 (10)
N16	0.0117 (9)	0.0114 (9)	0.0104 (9)	0.0011 (7)	-0.0015 (7)	-0.0008 (8)

C17	0.0143 (10)	0.0095 (10)	0.0187 (13)	0.0009 (8)	-0.0010 (9)	-0.0022 (9)
C18	0.0161 (11)	0.0062 (9)	0.0216 (13)	0.0014 (8)	-0.0022 (10)	-0.0014 (9)
N18	0.0133 (9)	0.0072 (8)	0.0118 (10)	0.0012 (7)	-0.0008 (8)	0.0006 (7)
C19	0.0155 (10)	0.0084 (9)	0.0156 (11)	-0.0011 (8)	0.0013 (9)	-0.0011 (9)
C20	0.0140 (10)	0.0037 (9)	0.0127 (11)	0.0007 (7)	-0.0002 (8)	0.0011 (7)
C21	0.0168 (11)	0.0126 (11)	0.0157 (12)	-0.0032 (9)	0.0031 (9)	0.0008 (9)
C22	0.0212 (12)	0.0118 (11)	0.0179 (13)	-0.0033 (9)	0.0008 (10)	0.0016 (10)
O22	0.0263 (11)	0.0120 (9)	0.0404 (15)	-0.0039 (8)	0.0014 (11)	-0.0060 (10)
O23	0.0375 (15)	0.0228 (13)	0.0394 (17)	-0.0038 (11)	-0.0043 (13)	0.0034 (12)
C23	0.080 (4)	0.055 (3)	0.077 (4)	-0.036 (3)	-0.038 (4)	0.013 (3)
O24	0.0189 (10)	0.0157 (10)	0.0353 (14)	-0.0021 (8)	0.0012 (10)	-0.0041 (10)
C24	0.0175 (14)	0.045 (2)	0.038 (2)	0.0028 (15)	0.0015 (14)	-0.0069 (17)
C11	0.0254 (3)	0.0182 (3)	0.0118 (2)	-0.0055 (3)	-0.0041 (3)	0.0017 (2)
Cl2	0.0212 (3)	0.0131 (2)	0.0129 (3)	0.0022 (2)	-0.0034 (2)	-0.0012 (2)

Geometric parameters (Å, °)

S1—C12	1.760 (4)	C16—H16B	0.9900
S1—C1	1.766 (3)	N16-C20	1.489 (3)
C1—C2	1.393 (4)	N16—C17	1.497 (4)
C1—C6	1.403 (4)	N16—H16	0.9300
С2—С3	1.386 (5)	C17—C18	1.500 (4)
С2—Н2	0.9500	C17—H17A	0.9900
C3—C4	1.387 (4)	C17—H17B	0.9900
С3—Н3	0.9500	C18—N18	1.498 (4)
C4—C5	1.386 (5)	C18—H18A	0.9900
C4—H4	0.9500	C18—H18B	0.9900
С5—С6	1.396 (4)	N18—C19	1.502 (4)
С5—Н5	0.9500	N18—C21	1.502 (4)
C6—N6	1.430 (4)	N18—H18	0.9300
N6—C7	1.406 (4)	C19—C20	1.516 (4)
N6-C14	1.462 (4)	C19—H19A	0.9900
С7—С8	1.390 (4)	C19—H19B	0.9900
C7—C12	1.412 (4)	C20—H20A	0.9900
С8—С9	1.395 (4)	C20—H20B	0.9900
C8—H8	0.9500	C21—C22	1.507 (4)
C9—C10	1.373 (5)	C21—H21A	0.9900
С9—С13	1.499 (5)	C21—H21B	0.9900
C10-C11	1.385 (5)	C22—O22	1.418 (4)
C10—H10	0.9500	C22—H22A	0.9900
C11—C12	1.385 (4)	C22—H22B	0.9900
C11—H11	0.9500	O22—H22	0.8400
C13—F13A	1.321 (4)	O23—C23	1.404 (7)
C13—F13B	1.332 (5)	O23—H23	0.8400
C13—F13C	1.352 (5)	C23—H23A	0.9800
C14—C15	1.526 (4)	C23—H23B	0.9800
C14—H14A	0.9900	C23—H23C	0.9800
C14—H14B	0.9900	O24—C24	1.429 (4)

C15—C16	1.522 (4)	O24—H24	0.8400
С15—Н15А	0.9900	C24—H24A	0.9800
C15—H15B	0.9900	C24—H24B	0.9800
C16—N16	1.507 (4)	C24—H24C	0.9800
C16—H16A	0.9900		
C12—S1—C1	97.29 (14)	C20—N16—C17	109.6 (2)
C2—C1—C6	120.6 (3)	C20—N16—C16	110.9 (2)
C2—C1—S1	120.6 (2)	C17—N16—C16	113.4 (2)
C6—C1—S1	118.8 (2)	C20—N16—H16	107.6
C3—C2—C1	120.0 (3)	C17—N16—H16	107.6
С3—С2—Н2	120.0	C16—N16—H16	107.6
C1—C2—H2	120.0	N16—C17—C18	110.4 (2)
C2—C3—C4	119.5 (3)	N16—C17—H17A	109.6
С2—С3—Н3	120.3	C18—C17—H17A	109.6
С4—С3—Н3	120.3	N16—C17—H17B	109.6
C5—C4—C3	121.1 (3)	C18—C17—H17B	109.6
C5—C4—H4	119.5	H17A—C17—H17B	108.1
C3—C4—H4	119.5	N18—C18—C17	111.5 (2)
C4-C5-C6	120.1 (3)	N18—C18—H18A	109.3
C4—C5—H5	120.0	C17—C18—H18A	109.3
С6—С5—Н5	120.0	N18—C18—H18B	109.3
C5-C6-C1	118.7 (3)	C17—C18—H18B	109.3
C5-C6-N6	123.1 (3)	H18A—C18—H18B	108.0
C1-C6-N6	118 2 (3)	C18 - N18 - C19	108.0(2)
C7-N6-C6	115.3 (2)	C18 - N18 - C21	113.6(2)
C7-N6-C14	118.4(2)	C19 - N18 - C21	110.3(2)
C6-N6-C14	117.4 (2)	C18—N18—H18	108.2
C8—C7—N6	122.8 (3)	C19—N18—H18	108.2
C8-C7-C12	118.6 (3)	C21—N18—H18	108.2
N6-C7-C12	118.6 (3)	N18—C19—C20	110.1 (2)
C7—C8—C9	119.7 (3)	N18—C19—H19A	109.6
C7—C8—H8	120.2	С20—С19—Н19А	109.6
C9—C8—H8	120.2	N18—C19—H19B	109.6
C10—C9—C8	121.9 (3)	C20—C19—H19B	109.6
C10—C9—C13	120.9 (3)	H19A—C19—H19B	108.1
C8-C9-C13	117.2 (3)	N16—C20—C19	111.0(2)
C9-C10-C11	118.6 (3)	N16—C20—H20A	109.4
C9—C10—H10	120.7	C19—C20—H20A	109.4
С11—С10—Н10	120.7	N16—C20—H20B	109.4
C12-C11-C10	121.1 (3)	C19—C20—H20B	109.4
C12—C11—H11	119.5	H20A—C20—H20B	108.0
C10—C11—H11	119.5	N18—C21—C22	112.7 (2)
C11—C12—C7	120.1 (3)	N18—C21—H21A	109.1
C11—C12—S1	121.3 (2)	C22—C21—H21A	109.1
C7—C12—S1	118.6 (2)	N18—C21—H21B	109.1
F13A—C13—F13B	108.0 (4)	C22—C21—H21B	109.1
F13A—C13—F13C	105.6 (3)	H21A—C21—H21B	107.8

F13B—C13—F13C	104.8 (3)	O22—C22—C21	109.4 (3)
F13A—C13—C9	113.5 (3)	O22—C22—H22A	109.8
F13B—C13—C9	112.9 (3)	C21—C22—H22A	109.8
F13C—C13—C9	111.4 (3)	O22—C22—H22B	109.8
N6—C14—C15	111.3 (2)	C21—C22—H22B	109.8
N6—C14—H14A	109.4	H22A—C22—H22B	108.2
C15—C14—H14A	109.4	C22—O22—H22	109.5
N6—C14—H14B	109.4	C23—O23—H23	109.5
C15—C14—H14B	109.4	O23—C23—H23A	109.5
H14A—C14—H14B	108.0	O23—C23—H23B	109.5
C16—C15—C14	108.8 (2)	H23A—C23—H23B	109.5
C16—C15—H15A	109.9	023—C23—H23C	109.5
C14—C15—H15A	109.9	$H_{23}A - C_{23} - H_{23}C$	109.5
C16—C15—H15B	109.9	H_{23B} C_{23} H_{23C}	109.5
C14—C15—H15B	109.9	$C^{24} - O^{24} - H^{24}$	109.5
H15A - C15 - H15B	108.3	024-C24-H24A	109.5
N16-C16-C15	111 1 (2)	O24— $C24$ — $H24B$	109.5
N16-C16-H16A	109.4	H24A - C24 - H24B	109.5
C_{15} C_{16} H_{16A}	109.4	024 $C24$ $H24D$	109.5
N16-C16-H16B	109.4	$H_{24} = C_{24} = H_{24} = H_{24}$	109.5
C15-C16-H16B	109.4	$H_24R = C_24 = H_24C$	109.5
H_{164} C_{16} H_{16B}	109.4	11240 024 11240	109.5
	100.0		
C12 = S1 = C1 = C2	1410(3)	N6-C7-C12-C11	178 8 (3)
$C_{12} = S_{1} = C_{1} = C_{6}$	-386(3)	C8 - C7 - C12 - S1	178.4(2)
C6-C1-C2-C3	-1.2(4)	N6-C7-C12-S1	-20(4)
$S_1 - C_1 - C_2 - C_3$	1.2(1) 179 2 (2)	C1 = S1 = C12 = C11	-1411(3)
C1 - C2 - C3 - C4	14(5)	C1 = S1 = C12 = C7	39.8 (3)
$C_{2} = C_{3} = C_{4} = C_{5}$	-0.1(5)	C10-C9-C13-F13A	137(6)
$C_{2} = C_{3} = C_{4} = C_{5} = C_{6}$	-14(5)	C8-C9-C13-F13A	-166.8(4)
C4-C5-C6-C1	1.1(3)	C10-C9-C13-F13B	1371(4)
C4-C5-C6-N6	-1792(3)	C8 - C9 - C13 - F13B	-434(5)
$C_{2}^{2} - C_{1}^{2} - C_{6}^{2} - C_{5}^{2}$	-0.3(4)	C10-C9-C13-F13C	-1053(4)
$S_1 - C_1 - C_6 - C_5$	1793(2)	C8 - C9 - C13 - F13C	74 2 (5)
C_{2} C_{1} C_{6} N_{6}	-179.5(2)	C7 - N6 - C14 - C15	-1480(3)
S1 - C1 - C6 - N6	01(4)	C6-N6-C14-C15	66 1 (4)
C_{5} C_{6} N_{6} C_{7}	-1301(3)	N6-C14-C15-C16	-170.9(3)
C1 - C6 - N6 - C7	49.0 (4)	C14-C15-C16-N16	-160.3(3)
C_{5} C_{6} N_{6} C_{14}	167(4)	C_{15} C_{16} N_{16} C_{20}	1797(2)
C1 - C6 - N6 - C14	-1641(3)	C15 - C16 - N16 - C17	-56.5(3)
C6 N6 C7 C8	1316(3)	$C_{10} = 0.00 \text{ M}_{10} = 0.00 \text{ M}_{10}$	-56.8(3)
C14 - N6 - C7 - C8	-14.9(5)	$C_{20} = N_{10} = C_{17} = C_{18}$	178.8(2)
C6 N6 C7 C12	-47.9(3)	N16-C17-C18-N18	59 1 (3)
C14 - N6 - C7 - C12	165 6 (3)	C17 - C18 - N18 - C19	-59.3(3)
N6-C7-C8-C9	178 6 (3)	C17 - C18 - N18 - C17	177 0 (3)
$C_1^2 - C_7 - C_8 - C_9$	-19(5)	C17 = C10 = 1010 = C21 C18 = N18 = C10 = C20	177.7(2)
$C_{12} = C_{12} = C_{12} = C_{12}$	26(5)	$C_{10} = 110 = C_{10} = C_{20}$	-1766(2)
$C_{7} = C_{8} = C_{9} = C_{10}$	-1770(3)	C_{21} M_{10} C_{19} C_{20} C_{10}	170.0(2)
-00-09-013	1//.0(3)	U1/-100-U20-U19	57.5 (5)

C8—C9—C10—C11	-0.6 (6)	C16—N16—C20—C19	-176.8 (2)
C13—C9—C10—C11	179.0 (3)	N18—C19—C20—N16	-59.3 (3)
C9—C10—C11—C12	-2.1 (6)	C18—N18—C21—C22	-79.5 (3)
C10-C11-C12-C7	2.8 (5)	C19—N18—C21—C22	159.0 (2)
C10-C11-C12-S1	-176.4 (3)	N18—C21—C22—O22	61.8 (3)
C8—C7—C12—C11	-0.7 (5)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.93	2.12	3.017 (3)	161
0.93	2.16	3.078 (3)	171
0.84	2.31	3.147 (3)	172
0.84	2.27	3.065 (3)	157
0.84	2.36	3.169 (3)	163
0.99	2.23	2.924 (4)	126
0.99	2.39	3.266 (5)	147
0.95	2.45	3.381 (4)	165
0.99	2.51	3.482 (5)	169
0.99	2.24	3.215 (4)	166
0.99	2.55	3.379 (5)	141
0.99	2.67	3.619 (4)	161
0.99	2.75	3.529 (3)	136
	<i>D</i> —H 0.93 0.93 0.84 0.84 0.84 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9	D —H $H \cdots A$ 0.932.120.932.160.842.310.842.270.842.360.992.230.992.390.952.450.992.510.992.550.992.670.992.75	D—HH···A D ···A0.932.12 $3.017 (3)$ 0.932.16 $3.078 (3)$ 0.842.31 $3.147 (3)$ 0.842.27 $3.065 (3)$ 0.842.36 $3.169 (3)$ 0.992.23 $2.924 (4)$ 0.992.39 $3.266 (5)$ 0.952.45 $3.381 (4)$ 0.992.51 $3.482 (5)$ 0.992.55 $3.379 (5)$ 0.992.55 $3.619 (4)$ 0.992.75 $3.529 (3)$

Symmetry codes: (i) -*x*+1, -*y*, *z*-1/2; (ii) -*x*+1, -*y*+1, *z*-1/2; (iii) -*x*+3/2, *y*-1, *z*-1/2; (iv) -*x*+1, -*y*, *z*+1/2; (v) *x*, *y*, *z*-1.