

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,4'-[(5-Carboxy-1,3-phenylene)bis(oxy)]dibenzoic acid

Chao Du^a Wei Wu^b and Ge Tian^c*

^aSecond Department of Neurosurgery, Bethune Third Hospital (China–Japan Union Hospital), Jilin University, People's Republic of China, ^bRadiological Department, Tumor Hospital of Jilin Province, People's Republic of China, and ^cState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China Correspondence e-mail: tiange@mail.jlu.edu.cn

Received 2 March 2012; accepted 21 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.121; data-to-parameter ratio = 15.5.

In the title compound, $C_{21}H_{14}O_8$, the central benzene ring makes dihedral angles of 77.8 (6) and 75.9 $(5)^{\circ}$ with the outer benzene rings. In the crystal, molecules are linked by O-H...O hydrogen bonds involving carboxyl groups, forming one-dimensional ladders. Two-dimensional layers are formed by interpenetration of these one-dimensional ladders.

Related literature

For general background, see: Moulton & Zaworotko,(2001); Kitagawa et al.,(2001); Lee et al.,(2009); Robin & Fromm, (2006). For the preparation of title compound, see: Neogi et al. (2009). For related structures, see: Lama et al. (2010); Pan et al. (2007).

Experimental

Crystal data

$C_{21}H_{14}O_8$	b = 13.419 (3) Å
$M_r = 394.32$	c = 15.586 (3) Å
Monoclinic, C2/c	$\beta = 96.24 \ (3)^{\circ}$
a = 17.235 (3) Å	$V = 3583.3 (12) \text{ Å}^3$

Z = 8Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector	16922 measured reflections
diffractometer	4073 independent reflections
Absorption correction: multi-scan	2862 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2003)	$R_{\rm int} = 0.046$
$T_{\min} = 0.316, \ T_{\max} = 0.622$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 262 parameters $wR(F^2) = 0.121$ H-atom parameters constrained S = 1.09 $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^ \Delta \rho_{\rm min}$ = -0.22 e Å⁻³ 4073 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H6\cdots O4^{i}$ $O6-H3\cdots O8^{ii}$ $O7-H8\cdots O5^{iii}$	0.82 0.82 0.82	1.87 1.85 1.82	2.6919 (16) 2.6615 (18) 2.6307 (18)	176.4 169.9 167.2

Symmetry codes: (i) $-x, y, -z + \frac{1}{2}$; (ii) $x + 1, -y + 2, z + \frac{1}{2}$; (iii) $x - 1, -y + 2, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXP97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2343).

References

Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2003). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kitagawa, S., Kitaura, R. & Noro, S. (2001). Angew. Chem. Int. Ed. 43, 2334-2375.
- Lama, P., Aijaz, A., Sanudo, E. C. & Bharadwaj, P. K. (2010). Cryst. Growth Des. 10, 283-290.
- Lee, J. Y., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T. & Hupp, J. T. (2009). Chem. Soc. Rev. 38, 1450-1459.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
- Neogi, S., Sharma, M. K., Das, M. C. & Bharadwaj, P. K. (2009). Polyhedron, 28, 3923-3928.
- Pan, Z. R., Zheng, H. G., Wang, T. W., Song, Y., Li, Y. Z., GuoZ, J. & Batten, S. R. (2007). Inorg. Chem. 47, 9528-9536.
- Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $0.33 \times 0.29 \times 0.25 \text{ mm}$

 $I > 2\sigma(I)$

T = 293 K

supporting information

Acta Cryst. (2012). E68, o1243 [https://doi.org/10.1107/S1600536812012275] 4,4'-[(5-Carboxy-1,3-phenylene)bis(oxy)]dibenzoic acid

Chao Du, Wei Wu and Ge Tian

S1. Comment

As a new kind of functional molecular materials, metal-organic frameworks have received extensive attention for their potential applications in gas storage, catalysis, optoelectronics, sensors, magnetism, luminescence, porous materials and so on. (Moulton & Zaworotko, 2001; Kitagawa *et al.*, 2001; Lee *et al.*, 2009). Organic molecules with O– and N-donors can be used as organic linkers in these coordination polymers (Robin & Fromm, 2006). In fact, there are many organic ligands which are linked by ether bond (Lama *et al.* 2010; Pan *et al.*, 2007). Here, we report the crystal structure of the title compound.

In the crystal structure, two benzene rings, β (composed of C₈—C₁₃) and γ (composed of C₁₅—C₂₀) are connected to the center ring (α , composed of C₁—C₆) by ether bond. The dihedral angle between α and β is 77.8 (6)°, and between α and γ is 75.9 (5)° (Fig. 1). Strong intermolecular O—H···O hydrogen bonds are formed between the carboxylic acid groups of neighboring molecules (Table 1), which link the molecules to one-dimensional supra-molecular ladder (Fig. 2). The interpenetration among the one-dimensional molecular ladders which are parallel produce two-dimensional layer (Fig. 3).

S2. Experimental

The title compound was synthesized by a modified literature method (Neogi *et al*.2009). Methyl 3,5-dihydroxylbenzoate (1.68 g,10 mmol) was dissolved in DMF (50 ml). To this solution was added K_2CO_3 (7 g,51 mmol) and 4-fluorobenzonitrile (2.4 g,20 mmol). The mixture was heated under reflux for 2 days. The resulting solution was poured in 250 ml icecold water and kept over-night. The yellow compound was filtered and washed several times with water. The yellow compound (3.73 g, 10 mmol) was allowed to reflux with 6 N NaOH solution (50 ml) for 12 h, cooled to room temperature and acidified with HCl (6 N). Colorless crystalline product was obtained and isolated by filtration, washed with water and dried in vacuum. $Zn(NO_3)_2$ (0.075 g,0.25 mmol), 4,4'-(5-carboxy-1,3-phenylene)bis(oxy)dibenzoic acid (0.098 g,0.25 mmol), were mixed in water (5 ml). The mixture were placed in a 25 ml Teflon-lined stainless steel autoclave and heated autogenously under pressure for 2 d at 393 K. After cooling to room temperature, the block-shaped colourless crystals were obtained.

S3. Refinement

All hydrogen atoms bonded to O and C were fixed in ideal positions, with C—H = 0.93 (aromatic) and O—H = 0.82 Å, and treated as riding on their parent atoms with $U_{iso}(H)=0.08$ Å².

Figure 1

The molecular structure of the title compound with the atom-numbering scheme, with 50% probability displacement ellipsoids.

Figure 2

The packing of title compound, showing one ladder of molecules connected by O—H…O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 3

The interpenetration among the one-dimensional ladders, showing two-dimensional layer. H atoms not involved in hydrogen bonding have been omitted for clarity.

4,4'-[(5-Carboxy-1,3-phenylene)bis(oxy)]dibenzoic acid

Crystal data

 $C_{21}H_{14}O_8$ $M_r = 394.32$ Monoclinic, C2/c Hall symbol: -C 2yc a = 17.235 (3) Å b = 13.419 (3) Å c = 15.586 (3) Å $\beta = 96.24$ (3)° V = 3583.3 (12) Å³ Z = 8

Data collection

Bruker SMART CCD area-detector	16922 measured reflections
diffractometer	4073 independent reflections
Radiation source: fine-focus sealed tube	2862 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.046$
phi and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -22 \rightarrow 22$
(SADABS; Bruker, 2003)	$k = -17 \rightarrow 17$
$T_{\min} = 0.316, \ T_{\max} = 0.622$	$l = -19 \rightarrow 20$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0601P)^2 + 0.3436P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 1632

 $\theta = 3.0-27.5^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

Block. colourless

 $0.33 \times 0.29 \times 0.25 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.462 {\rm Mg} {\rm m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4073 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O1	0.16748 (7)	0.89288 (12)	-0.11510 (7)	0.0630 (4)
O2	-0.07879 (6)	0.73896 (9)	-0.14922 (7)	0.0404 (3)
O3	-0.06065 (6)	0.88133 (11)	0.15033 (7)	0.0503 (4)
Н6	-0.0624	0.8964	0.2011	0.080*

O4	0.06498 (6)	0.92236 (9)	0.18120 (7)	0.0386 (3)
05	0.44526 (7)	1.12170 (10)	0.10342 (8)	0.0533 (3)
O6	0.48890 (7)	0.96517 (11)	0.10924 (10)	0.0622 (4)
Н3	0.5260	0.9916	0.1379	0.080*
O7	-0.42509 (6)	0.81151 (10)	-0.31119 (8)	0.0517 (3)
H8	-0.4653	0.8389	-0.3320	0.080*
08	-0.38899 (7)	0.96958 (10)	-0.28672 (8)	0.0510 (3)
C1	0.10101 (8)	0.87058 (14)	-0.07678 (10)	0.0383 (4)
C2	0.04339 (9)	0.82152 (13)	-0.12950 (10)	0.0389 (4)
H11A	0.0509	0.8057	-0.1861	0.080*
C3	-0.02518 (8)	0.79647 (12)	-0.09712 (10)	0.0335 (4)
C4	-0.03815 (8)	0.82052 (12)	-0.01343 (10)	0.0338 (4)
H9A	-0.0852	0.8047	0.0074	0.080*
C5	0.02053 (8)	0.86866 (12)	0.03845 (9)	0.0305 (3)
C6	0.09117 (8)	0.89385 (12)	0.00791 (9)	0.0340 (4)
H13A	0.1305	0.9254	0.0435	0.080*
C7	0.01100 (8)	0.89365 (12)	0.13006 (10)	0.0318 (3)
C8	0.23310 (9)	0.92824 (16)	-0.06384 (10)	0.0457 (5)
C9	0.24061 (9)	1.02836 (17)	-0.04567 (12)	0.0520 (5)
H3A	0.2011	1.0727	-0.0652	0.080*
C10	0.30817 (10)	1.06221 (15)	0.00240 (12)	0.0475 (4)
H2A	0.3139	1.1296	0.0154	0.080*
C11	0.36696 (8)	0.99590 (14)	0.03100 (10)	0.0379 (4)
C12	0.35866 (10)	0.89573 (15)	0.01005 (12)	0.0491 (5)
H6A	0.3984	0.8512	0.0282	0.080*
C13	0.29151 (10)	0.86173 (16)	-0.03783 (11)	0.0510 (5)
H5A	0.2860	0.7946	-0.0522	0.080*
C14	0.43795 (9)	1.03153 (14)	0.08419 (11)	0.0393 (4)
C15	-0.15218 (8)	0.77687 (12)	-0.17470 (9)	0.0310 (3)
C16	-0.20659 (9)	0.70800 (13)	-0.21092 (11)	0.0396 (4)
H17A	-0.1938	0.6408	-0.2131	0.080*
C17	-0.27973 (9)	0.74089 (13)	-0.24351 (11)	0.0407 (4)
H16A	-0.3166	0.6952	-0.2673	0.080*
C18	-0.29914 (8)	0.84138 (13)	-0.24126 (10)	0.0340 (4)
C19	-0.24389 (9)	0.90878 (13)	-0.20428 (10)	0.0380 (4)
H20A	-0.2565	0.9761	-0.2023	0.080*
C20	-0.17048 (9)	0.87698 (13)	-0.17049 (10)	0.0367 (4)
H19A	-0.1340	0.9223	-0.1453	0.080*
C21	-0.37538 (9)	0.87785 (13)	-0.28147 (10)	0.0376 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0313 (6)	0.1242 (13)	0.0339 (6)	-0.0307 (7)	0.0050 (5)	-0.0151 (7)
O2	0.0226 (5)	0.0450 (7)	0.0501 (7)	0.0008 (5)	-0.0117 (5)	-0.0106 (5)
03	0.0275 (6)	0.0879 (10)	0.0359 (6)	-0.0055 (6)	0.0051 (5)	-0.0026 (6)
O4	0.0332 (6)	0.0474 (7)	0.0347 (6)	-0.0087(5)	0.0009 (5)	-0.0024 (5)
O5	0.0394 (7)	0.0487 (9)	0.0676 (9)	-0.0075 (6)	-0.0131 (6)	-0.0023 (6)

supporting information

06	0.0382 (7)	0.0610 (10)	0.0805 (9)	0.0024 (7)	-0.0247 (6)	-0.0065 (7)
07	0.0291 (6)	0.0479 (8)	0.0730 (9)	0.0008 (5)	-0.0179 (6)	-0.0011 (6)
08	0.0401 (7)	0.0423 (8)	0.0657 (8)	0.0062 (6)	-0.0167 (6)	-0.0016 (6)
C1	0.0226 (7)	0.0587 (12)	0.0329 (8)	-0.0054 (7)	0.0002 (6)	0.0002 (8)
C2	0.0266 (8)	0.0567 (12)	0.0317 (8)	-0.0007 (7)	-0.0045 (6)	-0.0038 (7)
C3	0.0207 (7)	0.0385 (9)	0.0386 (8)	0.0009 (6)	-0.0088 (6)	-0.0009 (7)
C4	0.0215 (7)	0.0412 (10)	0.0378 (8)	-0.0012 (6)	-0.0016 (6)	0.0027 (7)
C5	0.0242 (7)	0.0348 (9)	0.0316 (7)	0.0010 (6)	-0.0014 (6)	0.0048 (6)
C6	0.0242 (7)	0.0442 (10)	0.0320 (8)	-0.0050(7)	-0.0036 (6)	0.0010 (7)
C7	0.0254 (7)	0.0353 (9)	0.0340 (8)	0.0012 (6)	0.0000 (6)	0.0043 (6)
C8	0.0257 (8)	0.0812 (15)	0.0303 (8)	-0.0177 (9)	0.0038 (7)	-0.0046 (9)
C9	0.0272 (8)	0.0777 (15)	0.0488 (10)	0.0032 (9)	-0.0062 (7)	0.0007 (10)
C10	0.0311 (9)	0.0559 (12)	0.0537 (11)	-0.0020 (8)	-0.0039 (8)	-0.0007 (9)
C11	0.0259 (8)	0.0483 (11)	0.0383 (8)	-0.0064 (7)	-0.0018 (6)	0.0044 (8)
C12	0.0402 (9)	0.0508 (12)	0.0537 (11)	-0.0071 (8)	-0.0072 (8)	0.0019 (9)
C13	0.0452 (10)	0.0584 (13)	0.0481 (10)	-0.0179 (9)	-0.0011 (9)	-0.0028 (9)
C14	0.0264 (8)	0.0454 (11)	0.0444 (9)	-0.0010 (7)	-0.0031 (7)	0.0028 (8)
C15	0.0211 (7)	0.0401 (9)	0.0307 (7)	-0.0023 (6)	-0.0026 (6)	0.0010 (7)
C16	0.0287 (8)	0.0352 (10)	0.0518 (10)	-0.0024 (7)	-0.0098 (7)	-0.0023 (7)
C17	0.0260 (8)	0.0401 (10)	0.0526 (10)	-0.0063 (7)	-0.0106 (7)	-0.0001 (8)
C18	0.0246 (7)	0.0408 (10)	0.0353 (8)	-0.0009 (7)	-0.0033 (6)	0.0021 (7)
C19	0.0325 (8)	0.0379 (10)	0.0412 (9)	0.0015 (7)	-0.0065 (7)	0.0004 (7)
C20	0.0289 (8)	0.0396 (10)	0.0394 (8)	-0.0070 (7)	-0.0065 (7)	-0.0021 (7)
C21	0.0265 (8)	0.0438 (11)	0.0406 (9)	-0.0007 (7)	-0.0043 (7)	-0.0004 (7)

Geometric parameters (Å, °)

01—C1	1.3811 (18)	C8—C13	1.373 (3)
O1—C8	1.395 (2)	C8—C9	1.376 (3)
O2—C15	1.3810 (17)	C9—C10	1.391 (2)
O2—C3	1.3949 (18)	С9—НЗА	0.9300
O3—C7	1.3179 (17)	C10—C11	1.385 (2)
O3—H6	0.8200	C10—H2A	0.9300
O4—C7	1.2199 (19)	C11—C12	1.387 (3)
O5—C14	1.250 (2)	C11—C14	1.481 (2)
O6—C14	1.281 (2)	C12—C13	1.384 (2)
O6—H3	0.8200	С12—Н6А	0.9300
O7—C21	1.286 (2)	C13—H5A	0.9300
O7—H8	0.8200	C15—C20	1.383 (2)
O8—C21	1.254 (2)	C15—C16	1.392 (2)
C1—C6	1.385 (2)	C16—C17	1.379 (2)
C1—C2	1.385 (2)	C16—H17A	0.9300
C2—C3	1.376 (2)	C17—C18	1.391 (2)
C2—H11A	0.9300	C17—H16A	0.9300
C3—C4	1.385 (2)	C18—C19	1.392 (2)
C4—C5	1.384 (2)	C18—C21	1.476 (2)
C4—H9A	0.9300	C19—C20	1.384 (2)
C5—C6	1.396 (2)	C19—H20A	0.9300

supporting information

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—С7	1.493 (2)	C20—H19A	0.9300
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C6—H13A	0.9300		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—O1—C8	119.01 (12)	C9—C10—H2A	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—O2—C3	119.45 (12)	C10-C11-C12	119.59 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—О3—Н6	109.5	C10-C11-C14	120.24 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С14—О6—Н3	109.5	C12—C11—C14	120.17 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С21—О7—Н8	109.5	C13—C12—C11	120.33 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C1—C6	123.82 (14)	С13—С12—Н6А	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C1—C2	114.92 (13)	С11—С12—Н6А	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1—C2	121.25 (14)	C8—C13—C12	119.21 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C1	119.18 (14)	С8—С13—Н5А	120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—H11A	120.4	С12—С13—Н5А	120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—H11A	120.4	O5—C14—O6	123.49 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4	121.42 (14)	O5—C14—C11	120.18 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—O2	117.55 (13)	O6—C14—C11	116.32 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—O2	120.84 (13)	O2—C15—C20	123.41 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—C3	118.45 (13)	O2—C15—C16	115.32 (14)
C3—C4—H9A120.8C17—C16—C15119.03 (16)C4—C5—C6121.50 (14)C17—C16—H17A120.5C4—C5—C7120.94 (13)C15—C16—H17A120.92 (15)C6—C5—C7117.54 (14)C16—C17—C18120.92 (15)C1—C6—C5118.17 (14)C16—C17—H16A119.5C5—C6—H13A120.9C18—C17—H16A119.5C5—C6—H13A120.9C17—C18—C19119.00 (14)O4—C7—O3123.42 (14)C17—C18—C21121.08 (14)O4—C7—C5122.71 (13)C19—C18—C21119.84 (15)O3—C7—C5113.86 (13)C20—C19—C18120.88 (16)C13—C8—O1118.08 (19)C18—C19—H20A119.6C9—C8—O1120.15 (18)C15—C20—C19119.02 (15)C8—C9—H3A120.5C19—C20—H19A120.5C13—C9—H3A120.5C19—C20—H19A120.5C10—C9—H3A120.5O8—C21—O7122.91 (15)C11—C10—C9120.25 (19)O8—C21—C18120.30 (14)	С5—С4—Н9А	120.8	C20—C15—C16	121.14 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—С4—Н9А	120.8	C17—C16—C15	119.03 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6	121.50 (14)	C17—C16—H17A	120.5
C6-C5-C7 $117.54(14)$ $C16-C17-C18$ $120.92(15)$ $C1-C6-C5$ $118.17(14)$ $C16-C17-H16A$ 119.5 $C1-C6-H13A$ 120.9 $C18-C17-H16A$ 119.5 $C5-C6-H13A$ 120.9 $C17-C18-C19$ $119.00(14)$ $O4-C7-O3$ $123.42(14)$ $C17-C18-C21$ $121.08(14)$ $O4-C7-C5$ $122.71(13)$ $C19-C18-C21$ $119.84(15)$ $O3-C7-C5$ $113.86(13)$ $C20-C19-C18$ $120.88(16)$ $C13-C8-C9$ $121.61(16)$ $C20-C19-H20A$ 119.6 $C13-C8-O1$ $118.08(19)$ $C15-C20-C19$ $119.02(15)$ $C8-C9-C10$ $118.97(17)$ $C15-C20-H19A$ 120.5 $C8-C9-H3A$ 120.5 $C19-C20-H19A$ 120.5 $C10-C9-H3A$ $120.5(19)$ $O8-C21-C18$ $120.30(14)$	C4—C5—C7	120.94 (13)	C15—C16—H17A	120.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C5—C7	117.54 (14)	C16—C17—C18	120.92 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6—C5	118.17 (14)	C16—C17—H16A	119.5
C5—C6—H13A120.9C17—C18—C19119.00 (14)O4—C7—O3123.42 (14)C17—C18—C21121.08 (14)O4—C7—C5122.71 (13)C19—C18—C21119.84 (15)O3—C7—C5113.86 (13)C20—C19—C18120.88 (16)C13—C8—C9121.61 (16)C20—C19—H20A119.6C13—C8—O1118.08 (19)C18—C19—H20A119.6C9—C8—O1120.15 (18)C15—C20—C19119.02 (15)C8—C9—H3A120.5C19—C20—H19A120.5C10—C9—H3A120.5O8—C21—O7122.91 (15)C11—C10—C9120.25 (19)O8—C21—C18120.30 (14)	C1—C6—H13A	120.9	C18—C17—H16A	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—С6—Н13А	120.9	C17—C18—C19	119.00 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—C7—O3	123.42 (14)	C17—C18—C21	121.08 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—C7—C5	122.71 (13)	C19—C18—C21	119.84 (15)
C13—C8—C9121.61 (16)C20—C19—H20A119.6C13—C8—O1118.08 (19)C18—C19—H20A119.6C9—C8—O1120.15 (18)C15—C20—C19119.02 (15)C8—C9—C10118.97 (17)C15—C20—H19A120.5C8—C9—H3A120.5C19—C20—H19A120.5C10—C9—H3A120.5O8—C21—O7122.91 (15)C11—C10—C9120.25 (19)O8—C21—C18120.30 (14)	O3—C7—C5	113.86 (13)	C20—C19—C18	120.88 (16)
C13—C8—O1118.08 (19)C18—C19—H20A119.6C9—C8—O1120.15 (18)C15—C20—C19119.02 (15)C8—C9—C10118.97 (17)C15—C20—H19A120.5C8—C9—H3A120.5C19—C20—H19A120.5C10—C9—H3A120.5O8—C21—O7122.91 (15)C11—C10—C9120.25 (19)O8—C21—C18120.30 (14)	C13—C8—C9	121.61 (16)	С20—С19—Н20А	119.6
C9—C8—O1120.15 (18)C15—C20—C19119.02 (15)C8—C9—C10118.97 (17)C15—C20—H19A120.5C8—C9—H3A120.5C19—C20—H19A120.5C10—C9—H3A120.5O8—C21—O7122.91 (15)C11—C10—C9120.25 (19)O8—C21—C18120.30 (14)	C13—C8—O1	118.08 (19)	C18—C19—H20A	119.6
C8—C9—C10118.97 (17)C15—C20—H19A120.5C8—C9—H3A120.5C19—C20—H19A120.5C10—C9—H3A120.5O8—C21—O7122.91 (15)C11—C10—C9120.25 (19)O8—C21—C18120.30 (14)	C9—C8—O1	120.15 (18)	C15—C20—C19	119.02 (15)
C8—C9—H3A120.5C19—C20—H19A120.5C10—C9—H3A120.5O8—C21—O7122.91 (15)C11—C10—C9120.25 (19)O8—C21—C18120.30 (14)	C8—C9—C10	118.97 (17)	С15—С20—Н19А	120.5
C10—C9—H3A120.5O8—C21—O7122.91 (15)C11—C10—C9120.25 (19)O8—C21—C18120.30 (14)	С8—С9—НЗА	120.5	С19—С20—Н19А	120.5
C11—C10—C9 120.25 (19) O8—C21—C18 120.30 (14)	С10—С9—НЗА	120.5	O8—C21—O7	122.91 (15)
	C11—C10—C9	120.25 (19)	O8—C21—C18	120.30 (14)
C11—C10—H2A 119.9 O7—C21—C18 116.78 (15)	C11—C10—H2A	119.9	O7—C21—C18	116.78 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H6…O4 ⁱ	0.82	1.87	2.6919 (16)	176.4
O6—H3…O8 ⁱⁱ	0.82	1.85	2.6615 (18)	169.9
O7—H8…O5 ⁱⁱⁱ	0.82	1.82	2.6307 (18)	167.2

Symmetry codes: (i) -*x*, *y*, -*z*+1/2; (ii) *x*+1, -*y*+2, *z*+1/2; (iii) *x*-1, -*y*+2, *z*-1/2.