

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2-Bromophenyl)(4-hydroxy-1,1-dioxo-2H-1,2-benzothiazin-3-yl)methanone

Nazia Sattar,^a Hamid Latif Siddiqui,^a* Waseeq Ahmad Siddiqui,^b Muhammad Akram^c and Masood Parvez^d

^aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, ^bDepartment of Chemistry, University of Sargodha, Sargodha 40100, Pakistan, ^cDepartment of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Darul Ta'zim, Malaysia, and ^dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 Correspondence e-mail: waseeq786@gmail.com

Received 9 March 2012; accepted 27 March 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.006 Å; R factor = 0.048; wR factor = 0.106; data-to-parameter ratio = 16.4.

In the title molecule, $C_{15}H_{10}BrNO_4S$, the heterocyclic thiazine ring adopts a half-chair conformation, with the S and N atoms displaced by 0.554 (7) and 0.198 (8) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The molecular structure is consolidated by intramolecular $O-H\cdots O$ interactions and the crystal packing features $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds.

Related literature

For the first synthesis of benzothiazine, see: Braun (1923). For background information on the synthesis of related compounds, see: Siddiqui *et al.* (2007). For the biological activity of 1,2-benzothiazine derivatives, see: Lombardino & Wiseman (1972); Gupta *et al.* (1993, 2002); Zia-ur-Rehman *et al.* (2006); Ahmad *et al.* (2010). For related structures, see: Siddiqui *et al.* (2008).

Experimental

Crystal data

 $\begin{array}{l} C_{15}H_{10}BrNO_4S\\ M_r = 380.21\\ Monoclinic, P2_1/c\\ a = 12.0433 \; (4) ~\text{\AA}\\ b = 8.5491 \; (3) ~\text{\AA}\\ c = 14.7841 \; (5) ~\text{\AA}\\ \beta = 106.3950 \; (19)^\circ \end{array}$

 $V = 1460.27 (9) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 2.98 \text{ mm}^{-1}\) T = 173 K 0.14 \times 0.12 \times 0.08 \text{ mm}\) 6205 measured reflections

 $R_{\rm int} = 0.043$

3339 independent reflections

2528 reflections with $I > 2\sigma(I)$

Data collection

Nonius KappaCCD diffractometer
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
$T_{\min} = 0.681, T_{\max} = 0.797$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$ $vR(F^2) = 0.106$	H atoms treated by a mixture of independent and constrained
S = 1.10	refinement
203 parameters	$\Delta \rho_{\rm max} = 0.56 \text{ e A}$ $\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O4^{i}$	0.81 (5)	2.08 (5)	2.861 (4)	160 (4)
$C13 - H13 \cdots O2^{ii}$	0.95	2.59	3.305 (5)	132
$D3 - H3O \cdots O4$	0.84	1.80	2.530 (4)	145

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 1, -y + 1, -z + 2.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *SCALE-PACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2054).

References

- Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Braun, J. V. (1923). Berichte, 56, 2332.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002). Skin Pharmacol. Appl. Skin Physiol. 15, 105–111.
- Gupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anticancer Drugs, 4, 589–592.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Lombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848-849.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.
- Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, 04–06.
- Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.

supporting information

Acta Cryst. (2012). E68, o1247 [https://doi.org/10.1107/S1600536812013281]

(2-Bromophenyl)(4-hydroxy-1,1-dioxo-2*H*-1,2-benzothiazin-3-yl)methanone Nazia Sattar, Hamid Latif Siddiqui, Waseeq Ahmad Siddiqui, Muhammad Akram and Masood Parvez

S1. Comment

Since the time first benzothiazine was synthesized (Braun, 1923), thousands of its derivatives have been prepared to determine their pharmacological and other commercial uses. Among nine isomers, the 1,2-benzothiazine 1,1-dioxide nuclei possess dynamic structural features and exhibit a wide range of biological activities, *e.g.*, anti-inflammatory (Lombardino & Wiseman, 1972), analgesic (Gupta *et al.*, 2002), anticancer (Gupta *et al.*, 1993) and antibacterial (Zia-ur-Rehman *et al.*, 2006). In continuation of our research on the synthesis of biologically active benzothiazine derivatives (Siddiqui *et al.*, 2007; Ahmad *et al.*, 2010) herein, we report the synthesis and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui *et al.*, 2008). The heterocyclic thiazine ring adopts a half chair conformation with atoms N1 and S1 displaced by 0.198 (8) and 0.554 (7) Å, respectively, on the opposite sides from the mean plane formed by the remaining ring atoms. The molecular structure is stabilized by intramolecular hydrogen bonds O3–H3O···O4 and the crystal packing is consolidated by N1—H1N···O4 and C13—H13···O2 intermolecular hydrogen bonds (Fig. 2 and Table 1).

S2. Experimental

A mixture of 2-[2-(*o*-bromophenyl)-20x0ethyl]-1,2-benzisothiazol-3(2*H*)-one 1,1-dioxide (1.8 g, 4.7 mmol) and sodium methoxide (1.9 g, 34.8 mmol) in freshly dried methanol (20 ml) was subjected to reflux for 30 minutes. The reaction was quenched with ice-cold water and acidified to pH = 3 with dilute HCl. The precipitate was filtered, washed with water and ethanol (25 ml, each) to get yellow powder of the title compound (1.3 g, 72%). The crystals suitable for X-ray crystallographic analysis were grown from a mixture of solvents chloroform and methanol (1:2) by slow evaporation at room temperature (m.p. 432–434 K).

S3. Refinement

The H atoms bonded to C and O atoms were positioned geometrically and refined using a riding model, with O—H and C—H = 0.84 and 0.95 Å, respectively. The amino H-atom was allowed to refine freely. The U_{iso} (H) were set at $1.2U_{eq}$ (parent atom).

supporting information

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

A part of the unit cell showing intermolecular and intramoilecular hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.

(2-Bromophenyl)(4-hydroxy-1,1-dioxo-2H-1,2-benzothiazin-3-yl)methanone

Crystal data $C_{15}H_{10}BrNO_4S$ $M_r = 380.21$

Monoclinic, *P*2₁/*c* Hall symbol: -P 2ybc Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 1.0-27.5^{\circ}$

 $\mu = 2.98 \text{ mm}^{-1}$

Prism, pale yellow

 $0.14 \times 0.12 \times 0.08 \text{ mm}$

T = 173 K

Cell parameters from 3429 reflections

a = 12.0433 (4) Å b = 8.5491 (3) Å c = 14.7841 (5) Å $\beta = 106.3950 (19)^{\circ}$ $V = 1460.27 (9) \text{ Å}^{3}$ Z = 4 F(000) = 760 $D_{x} = 1.729 \text{ Mg m}^{-3}$

Data collection

6205 measured reflections
3339 independent reflections
2528 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.043$
$\theta_{\rm max} = 27.6^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$
$h = -15 \rightarrow 15$
$k = -11 \rightarrow 10$
$l = -19 \longrightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.106$	neighbouring sites
S = 1.10	H atoms treated by a mixture of independent
3339 reflections	and constrained refinement
203 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0181P)^2 + 4.4694P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{ m max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.61 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.27922 (4)	0.40093 (6)	0.66394 (3)	0.03958 (14)	
S 1	0.81353 (8)	0.40492 (13)	0.89491 (6)	0.0277 (2)	
01	0.8507 (2)	0.2475 (4)	0.9213 (2)	0.0365 (7)	
O2	0.8381 (2)	0.5262 (4)	0.9640 (2)	0.0398 (7)	
03	0.6691 (2)	0.2135 (4)	0.62289 (19)	0.0340 (7)	
H3O	0.6030	0.1754	0.6166	0.041*	
04	0.4885 (2)	0.1511 (3)	0.67117 (19)	0.0317 (6)	
N1	0.6746 (3)	0.4016 (4)	0.8466 (2)	0.0269 (7)	

H1N	0.642 (4)	0.484 (5)	0.848 (3)	0.032*
C1	0.8650 (3)	0.4564 (5)	0.7985 (3)	0.0273 (8)
C2	0.9651 (3)	0.5437 (5)	0.8102 (3)	0.0367 (10)
H2	1.0047	0.5867	0.8698	0.044*
C3	1.0058 (4)	0.5666 (6)	0.7323 (3)	0.0415 (11)
H3	1.0734	0.6279	0.7387	0.050*
C4	0.9504 (4)	0.5020 (5)	0.6459 (3)	0.0385 (10)
H4	0.9810	0.5178	0.5940	0.046*
C5	0.8507 (3)	0.4147 (5)	0.6341 (3)	0.0330 (9)
H5	0.8129	0.3709	0.5742	0.040*
C6	0.8057 (3)	0.3911 (5)	0.7107 (3)	0.0264 (8)
C7	0.6983 (3)	0.3029 (5)	0.6993 (3)	0.0241 (8)
C8	0.6335 (3)	0.3124 (5)	0.7626 (3)	0.0249 (8)
C9	0.5241 (3)	0.2322 (5)	0.7435 (3)	0.0262 (8)
C10	0.4524 (3)	0.2456 (5)	0.8110 (3)	0.0262 (8)
C11	0.3407 (3)	0.3076 (5)	0.7837 (3)	0.0267 (8)
C12	0.2732 (4)	0.3111 (5)	0.8461 (3)	0.0374 (10)
H12	0.1979	0.3557	0.8274	0.045*
C13	0.3164 (4)	0.2495 (5)	0.9352 (3)	0.0359 (10)
H13	0.2704	0.2511	0.9779	0.043*
C14	0.4255 (4)	0.1857 (5)	0.9630(3)	0.0368 (10)
H14	0.4540	0.1419	1.0242	0.044*
C15	0.4942 (4)	0.1852 (5)	0.9020 (3)	0.0328 (9)
H15	0.5703	0.1433	0.9222	0.039*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0341 (2)	0.0479 (3)	0.0371 (2)	0.0063 (2)	0.01057 (18)	0.0086 (2)
0.0245 (5)	0.0325 (5)	0.0260 (4)	0.0008 (4)	0.0069 (4)	-0.0029 (4)
0.0378 (16)	0.0376 (17)	0.0352 (15)	0.0096 (14)	0.0120 (13)	0.0072 (14)
0.0340 (16)	0.0465 (19)	0.0389 (16)	-0.0021 (14)	0.0102 (13)	-0.0163 (15)
0.0296 (15)	0.0432 (18)	0.0324 (14)	-0.0100 (13)	0.0142 (12)	-0.0119 (14)
0.0300 (14)	0.0371 (17)	0.0300 (14)	-0.0073 (13)	0.0116 (12)	-0.0035 (13)
0.0249 (16)	0.0263 (17)	0.0310 (16)	0.0043 (15)	0.0102 (13)	-0.0028 (15)
0.0242 (18)	0.027 (2)	0.033 (2)	0.0018 (16)	0.0134 (16)	0.0010 (17)
0.029 (2)	0.038 (2)	0.043 (2)	-0.0072 (19)	0.0109 (18)	-0.008(2)
0.032 (2)	0.042 (3)	0.057 (3)	-0.008 (2)	0.022 (2)	0.000 (2)
0.035 (2)	0.044 (3)	0.042 (2)	-0.005 (2)	0.020 (2)	0.005 (2)
0.032 (2)	0.036 (2)	0.035 (2)	0.0042 (19)	0.0151 (17)	0.0026 (19)
0.0224 (17)	0.025 (2)	0.033 (2)	0.0017 (16)	0.0107 (15)	0.0007 (17)
0.0236 (18)	0.025 (2)	0.0237 (17)	0.0011 (16)	0.0063 (14)	-0.0008 (16)
0.0224 (18)	0.027 (2)	0.0261 (18)	0.0001 (16)	0.0083 (15)	0.0007 (16)
0.0261 (19)	0.026 (2)	0.0285 (18)	0.0013 (16)	0.0102 (15)	0.0036 (17)
0.0230 (18)	0.026 (2)	0.0315 (19)	-0.0055 (16)	0.0100 (15)	-0.0056 (17)
0.0279 (19)	0.025 (2)	0.0281 (19)	-0.0016 (16)	0.0098 (16)	-0.0036 (16)
0.032 (2)	0.036 (2)	0.050 (3)	0.000 (2)	0.021 (2)	-0.005 (2)
0.040 (2)	0.036 (2)	0.038 (2)	-0.004 (2)	0.0227 (19)	-0.005 (2)
	$\begin{array}{c} U^{11} \\ \hline 0.0341 (2) \\ 0.0245 (5) \\ 0.0378 (16) \\ 0.0340 (16) \\ 0.0296 (15) \\ 0.0300 (14) \\ 0.0249 (16) \\ 0.0242 (18) \\ 0.029 (2) \\ 0.032 (2) \\ 0.035 (2) \\ 0.035 (2) \\ 0.0224 (17) \\ 0.0236 (18) \\ 0.0224 (18) \\ 0.0261 (19) \\ 0.0230 (18) \\ 0.0279 (19) \\ 0.032 (2) \\ 0.040 (2) \end{array}$	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.0341\ (2) & 0.0479\ (3) \\ \hline 0.0245\ (5) & 0.0325\ (5) \\ \hline 0.0378\ (16) & 0.0376\ (17) \\ \hline 0.0340\ (16) & 0.0465\ (19) \\ \hline 0.0296\ (15) & 0.0432\ (18) \\ \hline 0.0300\ (14) & 0.0371\ (17) \\ \hline 0.0249\ (16) & 0.0263\ (17) \\ \hline 0.0242\ (18) & 0.027\ (2) \\ \hline 0.029\ (2) & 0.038\ (2) \\ \hline 0.032\ (2) & 0.042\ (3) \\ \hline 0.035\ (2) & 0.044\ (3) \\ \hline 0.025\ (2) \\ \hline 0.0224\ (17) & 0.025\ (2) \\ \hline 0.0224\ (18) & 0.027\ (2) \\ \hline 0.0224\ (18) & 0.025\ (2) \\ \hline 0.0224\ (18) & 0.025\ (2) \\ \hline 0.0224\ (19) & 0.026\ (2) \\ \hline 0.0230\ (18) & 0.026\ (2) \\ \hline 0.0279\ (19) & 0.025\ (2) \\ \hline 0.032\ (2) & 0.036\ (2) \\ \hline 0.040\ (2) & 0.036\ (2) \\ \hline \end{array}$	U^{11} U^{22} U^{33} $0.0341(2)$ $0.0479(3)$ $0.0371(2)$ $0.0245(5)$ $0.0325(5)$ $0.0260(4)$ $0.0378(16)$ $0.0376(17)$ $0.0352(15)$ $0.0340(16)$ $0.0465(19)$ $0.0389(16)$ $0.0296(15)$ $0.0432(18)$ $0.0324(14)$ $0.0300(14)$ $0.0371(17)$ $0.0300(14)$ $0.0249(16)$ $0.0263(17)$ $0.0310(16)$ $0.0242(18)$ $0.027(2)$ $0.033(2)$ $0.029(2)$ $0.038(2)$ $0.043(2)$ $0.032(2)$ $0.042(3)$ $0.057(3)$ $0.035(2)$ $0.044(3)$ $0.042(2)$ $0.0224(17)$ $0.025(2)$ $0.033(2)$ $0.0236(18)$ $0.027(2)$ $0.0237(17)$ $0.024(18)$ $0.027(2)$ $0.0285(18)$ $0.0216(19)$ $0.026(2)$ $0.0285(18)$ $0.0230(18)$ $0.026(2)$ $0.0281(19)$ $0.0279(19)$ $0.025(2)$ $0.0281(19)$ $0.032(2)$ $0.036(2)$ $0.038(2)$	U^{11} U^{22} U^{33} U^{12} 0.0341 (2)0.0479 (3)0.0371 (2)0.0063 (2)0.0245 (5)0.0325 (5)0.0260 (4)0.0008 (4)0.0378 (16)0.0376 (17)0.0352 (15)0.0096 (14)0.0340 (16)0.0465 (19)0.0389 (16) -0.0021 (14)0.0296 (15)0.0432 (18)0.0324 (14) -0.0100 (13)0.0300 (14)0.0371 (17)0.0300 (14) -0.0073 (13)0.0249 (16)0.0263 (17)0.0310 (16)0.0043 (15)0.0242 (18)0.027 (2)0.033 (2) -0.0072 (19)0.032 (2)0.042 (3) 0.057 (3) -0.008 (2)0.035 (2)0.044 (3) 0.042 (2) -0.005 (2)0.032 (2)0.036 (2) 0.033 (2) 0.0017 (16)0.0224 (17) 0.025 (2) 0.0237 (17) 0.0011 (16)0.0236 (18) 0.026 (2) 0.0285 (18) 0.0013 (16)0.0230 (18) 0.026 (2) 0.0281 (19) -0.0055 (16) 0.0279 (19) 0.025 (2) 0.0281 (19) -0.0016 (16) 0.0220 (19) 0.025 (2) 0.0281 (19) -0.0016 (16) 0.0220 (18) 0.036 (2) 0.0281 (19) -0.0016 (16)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

supporting information

C14	0.046 (2)	0.040 (3)	0.026 (2)	-0.002(2)	0.0127 (18)	0.0008 (19)
C15	0.030 (2)	0.039 (2)	0.030 (2)	0.0002 (19)	0.0095 (17)	-0.0010 (19)

Geometric parameters (Å, °)

Br1—C11	1.892 (4)	C4—H4	0.9500	
S1—O2	1.427 (3)	C5—C6	1.401 (5)	
S1—O1	1.437 (3)	С5—Н5	0.9500	
S1—N1	1.623 (3)	C6—C7	1.466 (5)	
S1—C1	1.763 (4)	C7—C8	1.378 (5)	
O3—C7	1.327 (4)	C8—C9	1.441 (5)	
O3—H3O	0.8400	C9—C10	1.498 (5)	
O4—C9	1.245 (5)	C10—C11	1.395 (5)	
N1—C8	1.423 (5)	C10—C15	1.395 (5)	
N1—H1N	0.81 (5)	C11—C12	1.392 (5)	
C1—C2	1.387 (5)	C12—C13	1.378 (6)	
C1—C6	1.409 (5)	C12—H12	0.9500	
C2—C3	1.386 (6)	C13—C14	1.374 (6)	
C2—H2	0.9500	C13—H13	0.9500	
C3—C4	1.379 (6)	C14—C15	1.385 (5)	
С3—Н3	0.9500	C14—H14	0.9500	
C4—C5	1.382 (6)	C15—H15	0.9500	
02 81 01	120.01 (10)	02 07 08	122 1 (2)	
02 = S1 = 01	120.01(19)	03 - 07 - 08	125.1(3)	
02 = SI = NI	107.91 (18)	03 - 07 - 00	114.0 (3)	
OI = SI = NI	107.86 (19)	$C_{8} - C_{7} - C_{6}$	122.8 (3)	
02 = S1 = C1	110.4(2)	C/=C8=N1	120.0 (3)	
	107.41 (18)	C/=C8=C9	120.0 (3)	
NI = SI = CI	101./3 (18)	NI = C8 = C9	119.9 (3)	
C/-03-H30	109.5	04 - 09 - 08	120.5 (3)	
C8—NI—SI	117.0(3)	04 - 09 - 010	119.4 (3)	
C8—NI—HIN	116 (3)	C8 - C9 - C10	120.0(3)	
SI—NI—HIN	114 (3)		118.4 (3)	
$C_2 = C_1 = C_6$	121.6 (4)	C11 = C10 = C9	121.8 (3)	
$C_2 = C_1 = S_1$	121.7(3)	C15-C10-C9	119.7 (3)	
C_{0}	116.4 (3)	C12— $C11$ — $C10$	120.8 (4)	
$C_3 = C_2 = C_1$	118.1 (4)	CI2—CII—Bri	117.6 (3)	
$C_3 = C_2 = H_2$	120.9	Clo—Cli—Bri	121.5 (3)	
CI = C2 = H2	120.9		119.5 (4)	
C4 - C3 - C2	121.4 (4)	C13—C12—H12	120.3	
C4—C3—H3	119.3	C11—C12—H12	120.3	
C2—C3—H3	119.3	C14-C13-C12	120.6 (4)	
$C_{3} - C_{4} - C_{5}$	120.7 (4)	C14—C13—H13	119.7	
C3—C4—H4	119.7	C12—C13—H13	119.7	
C5-C4-H4	119.7	C13— $C14$ — $C15$	120.2 (4)	
C4 - C5 - C6	119.7 (4)	C13—C14—H14	119.9	
C4—C5—H5	120.2	C15—C14—H14	119.9	
С6—С5—Н5	120.2	C14—C15—C10	120.5 (4)	

C5—C6—C1	118.5 (4)	C14—C15—H15	119.8
C5—C6—C7	120.8 (4)	C10-C15-H15	119.8
C1—C6—C7	120.7 (3)		
O2—S1—N1—C8	167.0 (3)	C6—C7—C8—N1	-4.8 (6)
O1—S1—N1—C8	-61.9 (3)	O3—C7—C8—C9	-4.8 (6)
C1—S1—N1—C8	50.9 (3)	C6—C7—C8—C9	175.2 (4)
O2—S1—C1—C2	34.0 (4)	S1—N1—C8—C7	-34.1 (5)
O1—S1—C1—C2	-98.5 (4)	S1—N1—C8—C9	145.9 (3)
N1—S1—C1—C2	148.3 (4)	C7—C8—C9—O4	1.6 (6)
O2—S1—C1—C6	-152.1 (3)	N1	-178.4 (4)
O1—S1—C1—C6	75.4 (3)	C7—C8—C9—C10	-178.5 (4)
N1—S1—C1—C6	-37.7 (3)	N1	1.4 (6)
C6—C1—C2—C3	0.3 (6)	O4—C9—C10—C11	-60.3 (5)
S1—C1—C2—C3	173.9 (3)	C8-C9-C10-C11	119.8 (4)
C1—C2—C3—C4	-1.3 (7)	O4—C9—C10—C15	115.1 (4)
C2—C3—C4—C5	1.2 (7)	C8—C9—C10—C15	-64.7 (5)
C3—C4—C5—C6	-0.2 (7)	C15-C10-C11-C12	0.9 (6)
C4—C5—C6—C1	-0.7 (6)	C9-C10-C11-C12	176.4 (4)
C4—C5—C6—C7	178.2 (4)	C15-C10-C11-Br1	177.0 (3)
C2-C1-C6-C5	0.7 (6)	C9-C10-C11-Br1	-7.5 (5)
S1—C1—C6—C5	-173.3 (3)	C10-C11-C12-C13	-1.4 (6)
C2-C1-C6-C7	-178.2 (4)	Br1-C11-C12-C13	-177.7 (3)
S1—C1—C6—C7	7.8 (5)	C11—C12—C13—C14	0.4 (7)
C5—C6—C7—O3	18.6 (5)	C12-C13-C14-C15	1.1 (7)
C1—C6—C7—O3	-162.5 (4)	C13—C14—C15—C10	-1.6 (7)
C5—C6—C7—C8	-161.3 (4)	C11—C10—C15—C14	0.6 (6)
C1—C6—C7—C8	17.5 (6)	C9-C10-C15-C14	-175.0 (4)
O3—C7—C8—N1	175.3 (4)		

Hydrogen-bond geometry (Å, °)

HA	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>N</i> ····O4 ⁱ	0.81 (5)	2.08 (5)	2.861 (4)	160 (4)
С13—Н13…О2 ^{іі}	0.95	2.59	3.305 (5)	132
O3—H3 <i>O</i> …O4	0.84	1.80	2.530 (4)	145

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x+1, -y+1, -z+2.