Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*E*,6*E*)-2,6-Bis(2,6-dichlorobenzylidene)cyclohexanone

Gholam Hossein Mahdavinia,^a* Maryam Mirzazadeh,^a Vahid Amani^b and Behrouz Notash^c

^aDepartment of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran, ^bDepartment of Chemistry, Shahre-Rey Branch, Islamic Azad University, Tehran, Iran, and ^cDepartment of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran

Correspondence e-mail: hmahdavinia@gmail.com

Received 6 February 2012; accepted 14 February 2012

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.071; data-to-parameter ratio = 21.9.

The title compound, $C_{20}H_{14}Cl_4O$, was prepared by the reaction of 2,6-dichlorobenzaldehyde and cyclohexanone. In the molecule, the central cyclohexanone ring adopts an envelope conformation, while the terminal benzene rings make a dihedral angle of 57.87 (9)°.

Related literature

For background and applications of arylidene cycloalkanones, see: Deli *et al.* (1984); Nakano *et al.* (1987); Kawamata *et al.* (1996); Dimmock *et al.* (2003); Raj *et al.* (2003); Gangadhara (1995). For related structures, see: Yu *et al.* (2000); Zhou (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{20}H_{14}Cl_4O\\ M_r = 412.11\\ Orthorhombic, Pna2_1\\ a = 17.917 \ (4) \ \text{\AA}\\ b = 7.3094 \ (15) \ \text{\AA}\\ c = 14.093 \ (3) \ \text{\AA} \end{array}$

Data collection

Stoe IPDS 2T diffractometer 13510 measured reflections 4946 independent reflections

Refinement $R[F^2 > 2\sigma(F^2)] = 0.031$

 $wR(F^2) = 0.071$ S = 1.044946 reflections 226 parameters 1 restraint $0.6 \times 0.35 \times 0.33$ mm 4682 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$

V = 1845.7 (7) Å³

Mo $K\alpha$ radiation

 $\mu = 0.65 \text{ mm}^-$

T = 120 K

Z = 4

H-atom parameters constrained $\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.20 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 2369 Friedel pairs Flack parameter: 0.01 (4)

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the Islamic Azad University, Marvdasht Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5466).

References

Deli, J., Lorand, T., Szabo, D. & Foldesi, A. (1984). *Pharmazie*, **39**, 539–540. Dimmock, J. R., Padmanilayam, M. P., Zello, G. A., Nienaber, K. H., Allen,

T. M., Santos, C. L., Clercq, E. D., Balzarini, J., Manavathu, E. K. & Stables, J. P. (2003). *Eur. J. Med. Chem.* **38**, 169–177.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gangadhara, K. K. (1995). Polymer, 36, 1903-1910.
- Kawamata, J., Inoue, K., Inabe, T., Kiguchi, M., Kato, M. & Taniguchi, Y. (1996). Chem. Phys. Lett. 249, 29–34.
- Nakano, T., Irifune, S. & Inada, A. (1987). J. Org. Chem. 52, 2239-2244.
- Raj, A. A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). *Bioorg. Med. Chem.* 11, 407–419.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany Yu, R. C., Yakimansky, A. V., Kothe, H., Voigt-Martin, I. G., Schollmeyer, D., Jansen, J., Zandbergen, H. & Tenkovtsev, A. V. (2000). Acta Cryst. A56, 436–450.
- Zhou, L.-Y. (2007). Acta Cryst. E63, 03113.

supporting information

Acta Cryst. (2012). E68, o778 [doi:10.1107/S1600536812006629]

(2E,6E)-2,6-Bis(2,6-dichlorobenzylidene)cyclohexanone

Gholam Hossein Mahdavinia, Maryam Mirzazadeh, Vahid Amani and Behrouz Notash

S1. Comment

Cross-aldol condensation of aromatic aldehydes with cyclic ketones is an important protocol for the synthesis of arylidene cycloalkanones, which are very important precursors to potentially bioactive pyrimidine derivates (Deli *et al.*, 1984), intermediates for agrochemical, pharmaceuticals and perfumes (Nakano *et al.*, 1987), new organic material for nonlinear optical applications (Kawamata *et al.*, 1996), cytotoxic analogous (Dimmock *et al.*, 2003), bis-spiropyrrolidines (Raj *et al.*, 2003) and the units of liquid crystalline polymers (Gangadhara, 1995). Usually, this condensation process is catalyzed by strong acid or base.

In the molecule of the title compound, (Fig. 1), the bond lengths and angles are within normal ranges (Yu *et al.*, 2000; Zhou, 2007). A dihedral angle of 57.87 (9) A is found between the mean planes of the two benzene rings.

S2. Experimental

To a 10 ml solution of KOH (0.11 g) in ethanol at 313 K in a round bottom flask, cyclohexanone (5.0 mmol, 0.50 g) and 2,6-dichlorobenzaldehyde (10 mmol, 1.75 g) was added and the mixture was stirred for 2 min. The resulting product was then isolated by simple filtration from the reaction mixture and given washings with water to remove any trace of KOH remaining on the product. Yellow crystals, yield 97%, 1.98 g, m. p. 455–458 K.

S3. Refinement

All H atoms were positioned geometrically with C–H = 0.93–0.97 Å and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

(2E,6E)-2,6-Bis(2,6-dichlorobenzylidene)cyclohexanone

Crystal data

 $C_{20}H_{14}Cl_4O$ $M_r = 412.11$ Orthorhombic, *Pna2*₁ Hall symbol: P 2c -2n a = 17.917 (4) Å b = 7.3094 (15) Å c = 14.093 (3) Å V = 1845.7 (7) Å³ Z = 4

Data collection

Stoe IPDS 2T	4682 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.043$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 29.2^\circ, \ \theta_{\rm min} = 2.3^\circ$
Graphite monochromator	$h = -24 \rightarrow 24$
rotation method scans	$k = -8 \rightarrow 10$
13510 measured reflections	$l = -19 \rightarrow 19$
4946 independent reflections	

F(000) = 840

 $\theta = 2.3 - 29.2^{\circ}$

 $\mu = 0.65 \text{ mm}^{-1}$

Needle, vellow

 $0.6 \times 0.35 \times 0.33 \text{ mm}$

T = 120 K

 $D_{\rm x} = 1.483 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4949 reflections

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.071$	$w = 1/[\sigma^2(F_o^2) + (0.0318P)^2 + 0.5994P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4946 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
226 parameters	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2369 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.01 (4)
map	-

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	V	Ζ	$U_{\rm iso}^*/U_{\rm eg}$
Cl1	0.23181 (3)	1.40628 (7)	0.99333 (3)	0.03179 (11)
C13	-0.14648 (3)	0.88978 (7)	0.82912 (3)	0.03028 (10)
Cl4	0.05216 (3)	0.35099 (7)	0.89917 (4)	0.03460 (11)
Cl2	0.30403 (3)	0.77001 (7)	1.16748 (4)	0.03902 (13)

C12	0.04410 (0)	0.8210 (2)	0.01001 (11)	0.010(.(2))
01	0.04419(9)	0.8310(2)	0.91901(11)	0.0196(3)
	0.0440/(7)	0.94480 (19)	1.07009 (9)	0.0237(3)
C6	0.2/3/4 (10)	1.0891 (2)	1.07/95 (12)	0.0211 (3)
C13	0.07918 (9)	0.9234 (2)	1.00226 (12)	0.0185 (3)
C7	0.19499 (9)	1.0268 (2)	1.07289 (12)	0.0199 (3)
H7	0.1686	1.0178	1.1295	0.024*
C9	0.19554 (9)	0.9844 (3)	0.89597 (12)	0.0253 (3)
H9A	0.2490	0.9679	0.9032	0.030*
H9B	0.1872	1.1026	0.8666	0.030*
C15	-0.05043 (9)	0.6110 (2)	0.85940 (12)	0.0209 (3)
C5	0.32884 (10)	0.9818 (3)	1.12039 (12)	0.0252 (4)
C18	-0.11451 (11)	0.3989 (3)	0.71361 (15)	0.0317 (4)
H18	-0.1354	0.3295	0.6651	0.038*
C8	0.15938 (9)	0.9827 (2)	0.99274 (12)	0.0186 (3)
C1	0.29745 (11)	1.2584 (3)	1.04280 (12)	0.0253 (4)
C16	-0.02454 (10)	0.4355 (3)	0.83722 (14)	0.0246 (3)
C10	0.16500 (10)	0.8350 (3)	0.83127 (13)	0.0278 (4)
H10A	0.1873	0.8457	0.7688	0.033*
H10B	0.1777	0.7157	0.8568	0.033*
C19	-0.14239 (10)	0.5721 (3)	0.73292 (14)	0.0281 (4)
H19	-0.1820	0.6191	0.6979	0.034*
C11	0.08055 (10)	0.8530 (3)	0.82365 (12)	0.0260 (4)
H11A	0.0681	0.9721	0.7978	0.031*
H11B	0.0615	0.7605	0.7806	0.031*
C3	0.42366 (10)	1.2027 (3)	1.08876 (13)	0.0318 (4)
Н3	0.4733	1.2393	1.0916	0.038*
C14	-0.01489 (9)	0.7245 (2)	0.93404 (12)	0.0211 (3)
H14	-0.0350	0.7210	0.9948	0.025*
C20	-0.11038 (10)	0.6741 (3)	0.80531 (12)	0.0222 (3)
C17	-0.05563 (11)	0.3289 (3)	0.76625 (15)	0.0295 (4)
H17	-0.0373	0.2122	0.7541	0.035*
C4	0.40302 (11)	1.0347 (3)	1.12538 (14)	0.0296 (4)
H4	0.4384	0.9584	1.1530	0.036*
C2	0.37123 (11)	1.3166 (3)	1.04810 (13)	0.0298 (4)
H2	0.3850	1.4306	1.0246	0.036*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0347 (2)	0.0280 (2)	0.0326 (2)	-0.00606 (18)	-0.00506 (19)	0.0103 (2)
C13	0.0346 (2)	0.0290 (2)	0.0272 (2)	0.00852 (18)	-0.00735 (18)	-0.00764 (19)
Cl4	0.0329 (2)	0.0303 (2)	0.0406 (3)	0.00904 (18)	-0.0048 (2)	-0.0030 (2)
Cl2	0.0393 (2)	0.0295 (2)	0.0483 (3)	-0.0027 (2)	-0.0170 (2)	0.0103 (2)
C12	0.0205 (7)	0.0212 (8)	0.0172 (7)	0.0006 (6)	-0.0003 (6)	-0.0023 (6)
01	0.0229 (6)	0.0316 (7)	0.0167 (5)	-0.0022 (5)	0.0025 (4)	-0.0034 (5)
C6	0.0233 (7)	0.0252 (8)	0.0147 (6)	-0.0025 (6)	-0.0014 (6)	-0.0006 (6)
C13	0.0185 (7)	0.0214 (7)	0.0157 (7)	0.0020 (6)	0.0008 (6)	0.0017 (6)
C7	0.0214 (7)	0.0217 (7)	0.0166 (7)	-0.0015 (6)	-0.0011 (6)	0.0020 (6)

C9	0.0218 (8)	0.0344 (10)	0.0197 (7)	-0.0056 (7)	0.0038 (7)	-0.0032 (8)
C15	0.0188 (7)	0.0219 (8)	0.0219 (7)	-0.0041 (6)	0.0023 (6)	-0.0011 (6)
C5	0.0273 (9)	0.0279 (9)	0.0204 (8)	-0.0009 (7)	-0.0027 (7)	-0.0023 (7)
C18	0.0259 (9)	0.0345 (10)	0.0348 (10)	-0.0081 (8)	0.0025 (7)	-0.0151 (9)
C8	0.0196 (7)	0.0193 (7)	0.0169 (6)	-0.0001 (6)	0.0001 (6)	0.0010 (6)
C1	0.0267 (8)	0.0313 (9)	0.0179 (7)	-0.0039 (7)	-0.0008 (6)	0.0017 (7)
C16	0.0228 (7)	0.0228 (8)	0.0283 (9)	-0.0013 (6)	0.0026 (7)	-0.0026 (7)
C10	0.0276 (8)	0.0360 (10)	0.0197 (7)	-0.0038 (7)	0.0050 (7)	-0.0068 (8)
C19	0.0233 (8)	0.0340 (10)	0.0270 (9)	-0.0018 (7)	-0.0015 (7)	-0.0090 (8)
C11	0.0289 (8)	0.0331 (10)	0.0160 (7)	-0.0077 (7)	0.0011 (7)	-0.0018 (7)
C3	0.0220 (8)	0.0518 (12)	0.0216 (8)	-0.0093 (8)	0.0008 (7)	-0.0069 (8)
C14	0.0212 (7)	0.0233 (8)	0.0187 (7)	-0.0006 (7)	-0.0001 (6)	-0.0014 (6)
C20	0.0217 (8)	0.0232 (8)	0.0216 (8)	-0.0014 (7)	0.0017 (6)	-0.0040 (6)
C17	0.0281 (9)	0.0241 (9)	0.0362 (10)	-0.0048 (7)	0.0066 (8)	-0.0085 (8)
C4	0.0232 (8)	0.0412 (11)	0.0243 (8)	0.0021 (8)	-0.0063 (7)	-0.0062 (8)
C2	0.0299 (9)	0.0386 (10)	0.0210 (8)	-0.0137 (8)	0.0032 (7)	0.0017 (8)

Geometric parameters (Å, °)

Cl1—C1	1.743 (2)	C5—C4	1.386 (3)	
Cl3—C20	1.7370 (19)	C18—C17	1.388 (3)	
Cl4—C16	1.7414 (19)	C18—C19	1.388 (3)	
Cl2—C5	1.742 (2)	C18—H18	0.9300	
C12—C14	1.331 (2)	C1—C2	1.391 (3)	
C12—C13	1.492 (2)	C16—C17	1.385 (3)	
C12—C11	1.502 (2)	C10—C11	1.523 (3)	
O1—C13	1.228 (2)	C10—H10A	0.9700	
C6—C5	1.396 (3)	C10—H10B	0.9700	
C6—C1	1.399 (3)	C19—C20	1.388 (2)	
C6—C7	1.484 (2)	C19—H19	0.9300	
С13—С8	1.507 (2)	C11—H11A	0.9700	
С7—С8	1.337 (2)	C11—H11B	0.9700	
С7—Н7	0.9300	C3—C2	1.380 (3)	
С9—С8	1.510(2)	C3—C4	1.382 (3)	
C9—C10	1.524 (3)	С3—Н3	0.9300	
С9—Н9А	0.9700	C14—H14	0.9300	
С9—Н9В	0.9700	C17—H17	0.9300	
C15—C20	1.396 (2)	C4—H4	0.9300	
C15—C16	1.399 (3)	C2—H2	0.9300	
C15—C14	1.483 (2)			
C14—C12—C13	118.29 (15)	C15—C16—Cl4	118.34 (14)	
C14—C12—C11	123.35 (15)	C11—C10—C9	109.69 (15)	
C13—C12—C11	118.23 (14)	C11-C10-H10A	109.7	
C5—C6—C1	115.73 (17)	C9—C10—H10A	109.7	
С5—С6—С7	121.37 (17)	C11-C10-H10B	109.7	
C1—C6—C7	122.89 (16)	C9—C10—H10B	109.7	
O1—C13—C12	121.19 (15)	H10A—C10—H10B	108.2	

O1—C13—C8	121.32 (16)	C18—C19—C20	119.04 (18)
C12—C13—C8	117.45 (14)	C18—C19—H19	120.5
C8—C7—C6	124.63 (15)	С20—С19—Н19	120.5
С8—С7—Н7	117.7	C12—C11—C10	111.02 (15)
С6—С7—Н7	117.7	C12—C11—H11A	109.4
C8—C9—C10	112.35 (15)	C10—C11—H11A	109.4
C8—C9—H9A	109.1	C12—C11—H11B	109.4
C10-C9-H9A	109.1	C10-C11-H11B	109.4
C8-C9-H9B	109.1	H11A_C11_H11B	108.0
C10-C9-H9B	109.1	$C_2 C_3 C_4$	120.58 (18)
	107.0	$C_2 = C_3 = C_4$	120.30 (10)
$119A - C_{3} - 119B$	107.3	$C_2 = C_3 = H_3$	119.7
$C_{20} = C_{13} = C_{10}$	113.03(10) 122.20(16)	$C_{4} = C_{5} = H_{5}$	119.7 122.77(15)
$C_{20} = C_{13} = C_{14}$	122.20(10) 121.02(10)	C12 - C14 - C13	123.77 (13)
	121.93 (10)	C12—C14—H14	118.1
C4 - C5 - C6	122.88 (19)	C15—C14—H14	118.1
C4—C5—C12	118.28 (15)	019-020-015	122.83 (18)
C6—C5—C12	118.83 (14)	C19—C20—C13	118.41 (14)
C17—C18—C19	120.36 (18)	C15—C20—Cl3	118.76 (13)
C17—C18—H18	119.8	C16—C17—C18	118.97 (18)
C19—C18—H18	119.8	С16—С17—Н17	120.5
C7—C8—C13	116.69 (15)	C18—C17—H17	120.5
C7—C8—C9	123.82 (15)	C3—C4—C5	119.07 (19)
C13—C8—C9	119.47 (14)	C3—C4—H4	120.5
C2—C1—C6	122.69 (18)	C5—C4—H4	120.5
C2—C1—Cl1	118.25 (16)	C3—C2—C1	119.02 (19)
C6—C1—Cl1	119.03 (14)	С3—С2—Н2	120.5
C17—C16—C15	122.94 (18)	C1—C2—H2	120.5
C17—C16—Cl4	118.69 (15)		
C14—C12—C13—O1	-20.1(3)	C14—C15—C16—Cl4	-0.5(2)
C11—C12—C13—O1	163.96 (17)	C8—C9—C10—C11	55.7 (2)
C14—C12—C13—C8	157.57 (16)	C17—C18—C19—C20	0.2(3)
$C_{11} - C_{12} - C_{13} - C_{8}$	-18.4(2)	C14-C12-C11-C10	-132.96(18)
C_{5} C_{6} C_{7} C_{8}	-1125(2)	C_{13} C_{12} C_{11} C_{10}	42 8 (2)
C1 - C6 - C7 - C8	68 8 (3)	C9-C10-C11-C12	-612(2)
C1 - C6 - C5 - C4	-20(3)	C_{13} C_{12} C_{14} C_{15}	-173.89(16)
C7 - C6 - C5 - C4	$179\ 24\ (17)$	$C_{11} - C_{12} - C_{14} - C_{15}$	18(3)
$C_1 C_2 C_3 C_4$	179.24(17) 170.18(13)	$C_{12}^{(1)} = C_{12}^{(1)} = C_{14}^{(1)} = C_{12}^{(1)}$	-020(2)
$C_1 = C_0 = C_2 = C_{12}$	1/9.10(13) 0 4 (2)	$C_{20} = C_{15} = C_{14} = C_{12}$	92.9(2)
$C_{1} = C_{1} = C_{1} = C_{1}$	-170.65.(16)	C10 - C13 - C14 - C12	0.7(2)
$C_{0} - C_{1} - C_{0} - C_{13}$	-1/9.03(10)	$C_{10} = C_{10} = C_{20} = C_{13}$	0.7(3)
$C_0 - C_1 - C_0 - C_9$	2.1(3)	C16 - C19 - C20 - C13	-1/9.49(13)
01 - 013 - 00 - 07	12.3(2)	C10-C13-C20-C19	-0.8(3)
$U_{12} - U_{13} - U_{8} - U_{7}$	-105.39 (16)	C14 - C15 - C20 - C19	1//.55(1/)
$\bigcup_{i=1}^{i} \bigcup_{j=1}^{i} \bigcup_{i=1}^{i} \bigcup_{j=1}^{i} \bigcup_{j$	-109.41 (17)	C10-C15-C20-C13	1/9.3/(13)
C12 - C13 - C8 - C9	12.9 (2)	C14 - C15 - C20 - C13	-2.3(2)
C10—C9—C8—C7	146.11 (18)	C15—C16—C17—C18	0.8 (3)
C10—C9—C8—C13	-32.1 (2)	Cl4—C16—C17—C18	-176.99 (15)
C5—C6—C1—C2	0.9 (3)	C19—C18—C17—C16	-0.9(3)

C7—C6—C1—C2	179.69 (17)	C2—C3—C4—C5	0.2 (3)
C5—C6—C1—C11	-177.17 (13)	C6—C5—C4—C3	1.4 (3)
C7—C6—C1—Cl1	1.6 (2)	Cl2—C5—C4—C3	-179.70 (14)
C20-C15-C16-C17	0.1 (3)	C4—C3—C2—C1	-1.2 (3)
C14—C15—C16—C17	-178.32 (17)	C6-C1-C2-C3	0.6 (3)
C20-C15-C16-Cl4	177.86 (13)	Cl1—C1—C2—C3	178.73 (14)