organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2-[(2-methylphenoxy)methyl]benzoate

Arun M. Isloor,^a U. Sankappa Rai,^b Prakash Shetty,^c Thomas Gerber,^d Eric Hosten^d and Richard Betz^d*

^aOrganic Electronics Division, Department of Chemistry, National Institute of Technology - Karnataka, Surathkal, Mangalore 575 025, India, ^bDepartment of Chemistry, Manipal Institute of Technology, Manipal University, Manipal, India, ^cDepartment of Printing Engineering, Manipal Institute of Technology, Manipal University, Manipal, India, and ^dNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa Correspondence e-mail: richard.betz@webmail.co.za

Received 7 February 2012; accepted 10 February 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.108; data-to-parameter ratio = 19.1.

In the title methylbenzoate compound, $C_{16}H_{16}O_3$, the molecule is essentially planar (r.m.s. of all fitted non-H atoms = 0.0370 Å); the dihedral angle between the phenyl rings is 2.30 (7)°. Apart from a C-H··· π interaction, no marked intermolecular contacts are obvious.

Related literature

For the pharmaceutical background to methylbenzoate derivatives, see: Orlek et al. (1991); Ankersen et al. (1997); Andersen et al. (1996).

Experimental

Crystal data $C_{16}H_{16}O_3$ $M_r = 256.29$ Monoclinic, C2/c a = 31.6873 (13) Å b = 6.5389 (2) Å c = 13.8746 (6) Å $\beta = 111.716 \ (2)^{\circ}$

 $V = 2670.79 (18) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 200 K $0.51 \times 0.12 \times 0.05 \ \mathrm{mm}$

Data collection

Bruker APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2010) $T_{\rm min} = 0.956, T_{\rm max} = 0.996$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	174 parameters
$wR(F^2) = 0.108$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
3320 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

12273 measured reflections

 $R_{\rm int} = 0.022$

3320 independent reflections

2295 reflections with $I > 2\sigma(I)$

Table 1

D

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C11-C16 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C25-H25\cdots Cg1^{i}$	0.95	2.72	3.5461 (15)	146
	. 1 . 3	1		

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{3}{2}, -z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

AMI is grateful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for a Young Scientist award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5056).

References

- Andersen, K. E., Lundt, B. F., Jørgensen, A. S. & Braestrup, C. (1996). Eur. J. Med. Chem. 31, 417-425.
- Ankersen, M., Peschke, B., Hansen, B. S. & Hansen, T. K. (1997). Bioorg. Med. Chem. Lett. 7, 1293-1298.
- Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Orlek, B. S., Balaney, F. E., Braun, F., Clark, M. S. G., Hadley, M. S., Hatcher, J., Riley, G. J., Rosenberg, H. E., Wadsworth, H. J. & Wyman, P. (1991). J. Med. Chem. 34, 2726-2735.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o728 [doi:10.1107/S1600536812005995]

Methyl 2-[(2-methylphenoxy)methyl]benzoate

Arun M. Isloor, U. Sankappa Rai, Prakash Shetty, Thomas Gerber, Eric Hosten and Richard Betz

S1. Comment

Methyl 3-[(2-methylphenoxy)methyl]benzoate derivatives are extensively studied in medicinal chemistry as they are important intermediates for many pharmaceutical products. Methyl 3-[(2-methylphenoxy)methyl]benzoate derivatives are mainly used as antifungal (Orlek *et al.*, 1991) and antimicrobial (Ankersen *et al.*, 1997), diuretic, anticancer and antianaphylactic (Andersen *et al.*, 1996) agents. In view of the biological importance of the benzoate derivatives, we hereby report the crystal structure of the title compound.

The central part of the molecule, which is comprised of two connected phenyl rings, is essentially planar (r.m.s. of all fitted non-H atoms = 0.0370 Å). The least-squares planes defined by the respective C atoms of the two phenyl groups enclose an angle of 2.30 (7)° (Fig. 1).

In the crystal, a C—H $\cdots\pi$ interaction is apparent whose metrical details are summarized in Table 1. No other interatomic contacts less than the sum of van der Waals radii are observed. A view of the crystal packing for the title compound is shown in Fig. 2.

S2. Experimental

To a stirred solution of 2-methyphenol (1 g, 0.009 mol) in acetonitrile (20 ml) was added potassium carbonate (2.5 g, 0.018 mol) and methyl 3-(bromomethyl) benzoate (2.1 g, 0.009 mol) drop-wise. The reaction mixture was heated to reflux for 2 h. Mass analysis of the crude reaction mixture confirmed the completion of the reaction. Afterwards, the reaction mixture was concentrated and the residue was purified by column chromatography to get title compound, which was recrystallized using acetone to get single crystals. Yield: 88% (m.p. 412–414 K).

S3. Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms, C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$. The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density, with C—H = 0.98 Å and U(H) set to $1.5U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Figure 2

Molecular packing of the title compound, viewed along [010] (anisotropic displacement ellipsoids drawn at 50% probability level).

Methyl 2-[(2-methylphenoxy)methyl]benzoate

Crystal data	
$C_{16}H_{16}O_3$	F(000) = 1088
$M_r = 256.29$	$D_{\rm x} = 1.275 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Melting point = $412-414$ K
Hall symbol: -C 2yc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 31.6873 (13) Å	Cell parameters from 4067 reflections
b = 6.5389 (2) Å	$\theta = 2.8 - 28.1^{\circ}$
c = 13.8746 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 111.716 (2)^{\circ}$	T = 200 K
$V = 2670.79 (18) Å^3$	Platelet, colourless
Z = 8	$0.51 \times 0.12 \times 0.05 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2010) $T_{\min} = 0.956, T_{\max} = 0.996$ Refinement	12273 measured reflections 3320 independent reflections 2295 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 28.3^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -39 \rightarrow 42$ $k = -8 \rightarrow 7$ $l = -18 \rightarrow 18$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.108$	neighbouring sites
S = 1.03	H-atom parameters constrained
3320 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0475P)^2 + 1.0316P]$
174 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.21$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.19$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.10397 (3)	0.81204 (14)	0.13302 (7)	0.0379 (2)
02	0.18815 (3)	0.10731 (15)	0.06203 (7)	0.0413 (3)
O3	0.20550 (3)	0.42927 (15)	0.11449 (9)	0.0479 (3)
C1	0.04466 (5)	1.1075 (2)	0.14318 (12)	0.0452 (4)
H1A	0.0273	1.1996	0.1703	0.068*
H1B	0.0330	0.9679	0.1401	0.068*
H1C	0.0416	1.1517	0.0734	0.068*
C2	0.13423 (4)	0.6661 (2)	0.11746 (10)	0.0317 (3)
H2A	0.1505	0.5918	0.1830	0.038*
H2B	0.1570	0.7366	0.0962	0.038*
C3	0.17758 (4)	0.3033 (2)	0.06884 (9)	0.0305 (3)
C4	0.23538 (5)	0.0547 (3)	0.11380 (13)	0.0519 (4)
H4A	0.2394	-0.0923	0.1064	0.078*
H4B	0.2451	0.0893	0.1876	0.078*
H4C	0.2537	0.1312	0.0826	0.078*
C11	0.12341 (4)	0.96097 (19)	0.20588 (10)	0.0311 (3)
C12	0.09376 (5)	1.1127 (2)	0.21316 (10)	0.0331 (3)
C13	0.11164 (5)	1.2669 (2)	0.28589 (11)	0.0410 (3)
H13	0.0921	1.3722	0.2919	0.049*
C14	0.15703 (5)	1.2712 (2)	0.34969 (12)	0.0443 (4)
H14	0.1684	1.3778	0.3991	0.053*
C15	0.18555 (5)	1.1203 (2)	0.34109 (11)	0.0411 (3)
H15	0.2168	1.1230	0.3845	0.049*
C16	0.16901 (5)	0.9642 (2)	0.26944 (10)	0.0359 (3)
H16	0.1888	0.8597	0.2639	0.043*

C21	0.10746 (4)	0.51750 (19)	0.03453 (9)	0.0282 (3)	
C22	0.06136 (4)	0.5484 (2)	-0.02189 (10)	0.0339 (3)	
H22	0.0466	0.6644	-0.0074	0.041*	
C23	0.03669 (5)	0.4130 (2)	-0.09866 (10)	0.0385 (3)	
H23	0.0054	0.4375	-0.1368	0.046*	
C24	0.05731 (5)	0.2426 (2)	-0.12015 (10)	0.0390 (3)	
H24	0.0403	0.1505	-0.1733	0.047*	
C25	0.10285 (4)	0.2062 (2)	-0.06413 (10)	0.0337 (3)	
H25	0.1170	0.0877	-0.0781	0.040*	
C26	0.12814 (4)	0.34252 (19)	0.01282 (9)	0.0277 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
01	0.0334 (5)	0.0333 (5)	0.0417 (5)	0.0048 (4)	0.0079 (4)	-0.0104 (4)
O2	0.0333 (5)	0.0335 (5)	0.0489 (6)	0.0078 (4)	0.0056 (4)	-0.0051 (4)
O3	0.0302 (5)	0.0371 (6)	0.0677 (7)	-0.0025 (4)	0.0078 (5)	-0.0114 (5)
C1	0.0420 (8)	0.0468 (9)	0.0476 (9)	0.0138 (7)	0.0173 (7)	0.0052 (7)
C2	0.0307 (7)	0.0269 (7)	0.0362 (7)	0.0029 (5)	0.0110 (5)	-0.0033 (5)
C3	0.0329 (7)	0.0299 (7)	0.0300 (6)	0.0020 (6)	0.0130 (5)	0.0000 (5)
C4	0.0368 (8)	0.0470 (9)	0.0628 (10)	0.0142 (7)	0.0077 (7)	-0.0014 (8)
C11	0.0378 (7)	0.0256 (6)	0.0311 (7)	-0.0001 (5)	0.0143 (6)	-0.0008(5)
C12	0.0406 (7)	0.0290 (7)	0.0353 (7)	0.0037 (6)	0.0205 (6)	0.0058 (5)
C13	0.0552 (9)	0.0293 (7)	0.0485 (8)	0.0044 (7)	0.0308 (7)	-0.0012 (6)
C14	0.0562 (9)	0.0367 (8)	0.0461 (8)	-0.0092 (7)	0.0259 (7)	-0.0124 (6)
C15	0.0407 (8)	0.0407 (8)	0.0426 (8)	-0.0100 (7)	0.0164 (6)	-0.0080 (6)
C16	0.0365 (7)	0.0319 (7)	0.0401 (7)	0.0007 (6)	0.0149 (6)	-0.0037 (6)
C21	0.0310 (6)	0.0264 (6)	0.0275 (6)	-0.0008 (5)	0.0111 (5)	0.0021 (5)
C22	0.0329 (7)	0.0340 (7)	0.0348 (7)	0.0043 (6)	0.0127 (6)	-0.0004 (6)
C23	0.0277 (7)	0.0465 (9)	0.0370 (7)	0.0007 (6)	0.0070 (6)	-0.0014 (6)
C24	0.0355 (7)	0.0434 (8)	0.0345 (7)	-0.0056 (6)	0.0088 (6)	-0.0103 (6)
C25	0.0354 (7)	0.0325 (7)	0.0341 (7)	-0.0006 (6)	0.0140 (6)	-0.0050 (6)
C26	0.0293 (6)	0.0275 (6)	0.0273 (6)	-0.0014 (5)	0.0113 (5)	0.0010 (5)

Geometric parameters (Å, °)

01—C11	1.3744 (15)	C12—C13	1.3901 (19)	
O1—C2	1.4251 (15)	C13—C14	1.382 (2)	
O2—C3	1.3367 (16)	C13—H13	0.9500	
O2—C4	1.4419 (16)	C14—C15	1.373 (2)	
O3—C3	1.2034 (15)	C14—H14	0.9500	
C1—C12	1.4988 (19)	C15—C16	1.3856 (19)	
C1—H1A	0.9800	C15—H15	0.9500	
C1—H1B	0.9800	C16—H16	0.9500	
C1—H1C	0.9800	C21—C22	1.3933 (17)	
C2—C21	1.5049 (17)	C21—C26	1.4054 (18)	
C2—H2A	0.9900	C22—C23	1.3836 (19)	
C2—H2B	0.9900	C22—H22	0.9500	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$?) 7) 5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$?) 7) })
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7) 5) 6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7) 5) 5)
C11—C121.3954 (18)C25—H250.9500C11—O1—C2116.26 (10)C14—C13—H13119.1C3—O2—C4115.77 (11)C12—C13—H13119.1C12—C1—H1A109.5C15—C14—C13119.48 (12)C12—C1—H1B109.5C15—C14—H14120.3H1A—C1—H1B109.5C13—C14—H14120.3C12—C1—H1C109.5C14—C15—H15119.8H1B—C1—H1C109.5C14—C15—H15119.8H1B—C1—H1C109.5C16—C15—H15119.8O1—C2—C21109.13 (10)C15—C16—C11119.72 (12)O1—C2—H2A109.9C15—C16—H16120.1C21—C2—H2A109.9C12—C1—C2120.87 (12)O1—C2—H2A109.9C12—C1—C2120.72 (12)O1—C2—H2B109.9C12—C12—C26118.21 (11)C21—C2—H2B109.9C22—C21—C26118.21 (12)O3—C3—O2122.60 (12)C23—C22—C21120.92 (11)O3—C3—O2122.60 (12)C23—C22—C21120.60 (12)O2—C4—H4A109.5C24—C23—H22119.5O2—C4—H4B109.5C24—C23—H23119.8H4A—C4—H4B109.5C24—C23—H23119.8H4A—C4—H4C109.5C23—C24—H24120.1H4B—C4—H4C109.5C23—C24—H24120.1H4B—C4—H4C109.5C23—C24—H24120.1H4B—C4—H4C109.5C23—C24—H24120.1H4B—C4—H4C109.5C23—C24—H24120.1H4B—C4—H4C109.5C23—C24—H24120.1	5) F)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5) F)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5) F)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5) 1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5) 1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.,
H1B 	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
C_{2} $H_{2}H_{1}$ H_{0} H_{0} C_{1} C_{1} C_{1} H_{1} H_{2} C_{2} $-C_{2}$ $H_{2}A$ H_{0} H_{0} C_{2} $-C_{1}$ C_{1} C_{2})
$C_{21} - C_{2} - H_{2R}$ 109.9 $C_{11} - C_{10} - H_{110}$ 120.1 $O_{1} - C_{2} - H_{2B}$ 109.9 $C_{22} - C_{21} - C_{26}$ $118.21 (1)$ $C_{21} - C_{2} - H_{2B}$ 109.9 $C_{22} - C_{21} - C_{2}$ $120.87 (1)$ $H_{2A} - C_{2} - H_{2B}$ 108.3 $C_{26} - C_{21} - C_{2}$ $120.92 (1)$ $O_{3} - C_{3} - O_{2}$ $122.60 (12)$ $C_{23} - C_{22} - C_{21}$ $121.06 (1)$ $O_{3} - C_{3} - C_{26}$ $125.65 (12)$ $C_{23} - C_{22} - H_{22}$ 119.5 $O_{2} - C_{4} - H_{4A}$ 109.5 $C_{24} - C_{23} - C_{22}$ $120.37 (1)$ $O_{2} - C_{4} - H_{4B}$ 109.5 $C_{24} - C_{23} - H_{23}$ 119.8 $H_{4A} - C_{4} - H_{4B}$ 109.5 $C_{23} - C_{24} - H_{23}$ $119.8 (1)$ $O_{2} - C_{4} - H_{4C}$ 109.5 $C_{23} - C_{24} - H_{23}$ $119.8 (1)$ $H_{4A} - C_{4} - H_{4C}$ 109.5 $C_{23} - C_{24} - H_{24}$ 120.1 $H_{4B} - C_{4} - H_{4C}$ 109.5 $C_{23} - C_{24} - H_{24}$ 120.1 $H_{4B} - C_{4} - H_{4C}$ 109.5 $C_{23} - C_{24} - H_{24}$ 120.1 $H_{4B} - C_{4} - H_{4C}$ 109.5 $C_{23} - C_{24} - H_{24}$ 120.1 $O_{1} - C_{11} - C_{16}$ $123.80 (12)$ $C_{24} - C_{25} - C_{26}$ $120.31 (1)$	
C_{2} — C_{2} — $H_{2}B$ 109.9 C_{22} — $C_{2}1$ — $C_{2}0$ 118.21 (1 $C_{2}1$ — C_{2} — $H_{2}B$ 109.9 C_{22} — $C_{2}1$ — C_{2} 120.87 (1) $H_{2}A$ — C_{2} — $H_{2}B$ 108.3 $C_{2}6$ — $C_{2}1$ — C_{2} 120.92 (1 O_{3} — C_{3} — O_{2} 122.60 (12) $C_{2}3$ — $C_{2}2$ — $C_{2}1$ 121.06 (1) O_{3} — C_{3} — $C_{2}6$ 125.65 (12) $C_{2}3$ — $C_{2}2$ — $H_{2}2$ 119.5 O_{2} — C_{4} —H4A 109.5 $C_{2}4$ — $C_{2}3$ — $C_{2}2$ 120.37 (1) O_{2} — C_{4} —H4B 109.5 $C_{2}4$ — $C_{2}3$ —H23 119.8 $H_{4}A$ — C_{4} —H4B 109.5 $C_{2}3$ — $C_{2}4$ — $C_{2}5$ 119.80 (1) O_{2} — C_{4} —H4C 109.5 $C_{2}3$ — $C_{2}4$ — $C_{2}5$ 119.80 (1) $H_{4}A$ — C_{4} —H4C 109.5 $C_{2}3$ — $C_{2}4$ — $H_{2}4$ 120.1 $H_{4}B$ — C_{4} —H4C 109.5 $C_{2}3$ — $C_{2}4$ —H24 120.1 $H_{4}B$ — C_{4} —H4C 109.5 $C_{2}5$ — $C_{2}4$ —H24 120.1 O_{1} — C_{11} — C_{16} 123.80 (12) $C_{2}4$ — $C_{2}5$ — $C_{2}6$ 120.31 (1))
$C_{21} - C_{2} - H_{2B}$ 109.9 $C_{22} - C_{21} - C_{2}$ $120.87 (1.1)$ $H_{2A} - C_{2} - H_{2B}$ 108.3 $C_{26} - C_{21} - C_{2}$ $120.92 (1.1)$ $O_{3} - C_{3} - O_{2}$ $122.60 (12)$ $C_{23} - C_{22} - C_{21}$ $121.06 (1.1)$ $O_{3} - C_{3} - C_{26}$ $125.65 (12)$ $C_{23} - C_{22} - H_{22}$ 119.5 $O_{2} - C_{4} - H_{4A}$ 109.5 $C_{24} - C_{23} - C_{22}$ $120.37 (1.1)$ $O_{2} - C_{4} - H_{4B}$ 109.5 $C_{24} - C_{23} - H_{23}$ 119.8 $H_{4A} - C_{4} - H_{4B}$ 109.5 $C_{22} - C_{23} - H_{23}$ $119.8 (1.1)$ $O_{2} - C_{4} - H_{4C}$ 109.5 $C_{23} - C_{24} - C_{25}$ $119.80 (1.1)$ $H_{4A} - C_{4} - H_{4C}$ 109.5 $C_{23} - C_{24} - H_{24}$ 120.1 $H_{4B} - C_{4} - H_{4C}$ 109.5 $C_{23} - C_{24} - H_{24}$ 120.1 $H_{4B} - C_{4} - H_{4C}$ 109.5 $C_{25} - C_{24} - H_{24}$ 120.1 $O_{1} - C_{11} - C_{16}$ $123.80 (12)$ $C_{24} - C_{25} - C_{26}$ $120.31 (11)$) N
H2A - C2 - H2B 108.5 $C20 - C21 - C2$ 120.92 (1 $O3 - C3 - O2$ 122.60 (12) $C23 - C22 - C21$ 121.06 (1. $O3 - C3 - C26$ 125.65 (12) $C23 - C22 - H22$ 119.5 $O2 - C3 - C26$ 111.75 (11) $C21 - C22 - H22$ 119.5 $O2 - C4 - H4A$ 109.5 $C24 - C23 - C22$ 120.37 (1.) $O2 - C4 - H4B$ 109.5 $C24 - C23 - H23$ 119.8 $H4A - C4 - H4B$ 109.5 $C22 - C23 - H23$ 119.8 $O2 - C4 - H4C$ 109.5 $C23 - C24 - C25$ 119.80 (12) $H4A - C4 - H4C$ 109.5 $C23 - C24 - C25$ 119.80 (12) $H4B - C4 - H4C$ 109.5 $C23 - C24 - H24$ 120.1 $H4B - C4 - H4C$ 109.5 $C25 - C24 - H24$ 120.1 $O1 - C11 - C16$ 123.80 (12) $C24 - C25 - C26$ 120.31 (12)	5) D
03-C3-02 $122.00(12)$ $C23-C22-C21$ $121.06(12)$ $03-C3-C26$ $125.65(12)$ $C23-C22-H22$ 119.5 $02-C3-C26$ $111.75(11)$ $C21-C22-H22$ 119.5 $02-C4-H4A$ 109.5 $C24-C23-C22$ $120.37(12)$ $02-C4-H4B$ 109.5 $C24-C23-H23$ 119.8 $H4A-C4-H4B$ 109.5 $C22-C23-H23$ 119.8 $02-C4-H4C$ 109.5 $C23-C24-C25$ $119.80(12)$ $H4A-C4-H4C$ 109.5 $C23-C24-H24$ 120.1 $H4B-C4-H4C$ 109.5 $C25-C24-H24$ 120.1 $H4B-C4-H4C$ 109.5 $C25-C24-H24$ 120.1 $01-C11-C16$ $123.80(12)$ $C24-C25-C26$ $120.31(12)$.) N
03-C3-C26 $123.05(12)$ $C23-C22-H22$ 119.5 $02-C3-C26$ $111.75(11)$ $C21-C22-H22$ 119.5 $02-C4-H4A$ 109.5 $C24-C23-C22$ $120.37(12)$ $02-C4-H4B$ 109.5 $C24-C23-H23$ 119.8 $H4A-C4-H4B$ 109.5 $C22-C23-H23$ 119.8 $02-C4-H4C$ 109.5 $C23-C24-C25$ $119.80(12)$ $H4A-C4-H4C$ 109.5 $C23-C24-H24$ 120.1 $H4B-C4-H4C$ 109.5 $C25-C24-H24$ 120.1 $H4B-C4-H4C$ 109.5 $C25-C24-H24$ 120.1 $01-C11-C16$ $123.80(12)$ $C24-C25-C26$ $120.31(12)$,)
02-C3-C26 $111.75 (11)$ $C21-C22-H22$ 119.5 $02-C4-H4A$ 109.5 $C24-C23-C22$ $120.37 (1.0)$ $02-C4-H4B$ 109.5 $C24-C23-H23$ 119.8 $H4A-C4-H4B$ 109.5 $C22-C23-H23$ 119.8 $02-C4-H4C$ 109.5 $C23-C24-C25$ $119.80 (12)$ $H4A-C4-H4C$ 109.5 $C23-C24-H24$ 120.1 $H4B-C4-H4C$ 109.5 $C25-C24-H24$ 120.1 $H4B-C4-H4C$ 109.5 $C25-C24-H24$ 120.1 $01-C11-C16$ $123.80 (12)$ $C24-C25-C26$ $120.31 (12)$	
O2-C4-H4A 109.5 $C24-C23-C22$ 120.37 (1) $O2-C4-H4B$ 109.5 $C24-C23-H23$ 119.8 $H4A-C4-H4B$ 109.5 $C22-C23-H23$ 119.8 $O2-C4-H4C$ 109.5 $C23-C24-C25$ 119.80 (12) $H4A-C4-H4C$ 109.5 $C23-C24-H24$ 120.1 $H4B-C4-H4C$ 109.5 $C25-C24-H24$ 120.1 $O1-C11-C16$ 123.80 (12) $C24-C25-C26$ 120.31 (12)	
O2-C4-H4B 109.5 $C24-C23-H23$ 119.8 $H4A-C4-H4B$ 109.5 $C22-C23-H23$ 119.8 $O2-C4-H4C$ 109.5 $C23-C24-C25$ 119.80 (12) $H4A-C4-H4C$ 109.5 $C23-C24-H24$ 120.1 $H4B-C4-H4C$ 109.5 $C25-C24-H24$ 120.1 $O1-C11-C16$ 123.80 (12) $C24-C25-C26$ 120.31 (12)	2)
H4A-C4-H4B109.5 $C22-C23-H23$ 119.8 $O2-C4-H4C$ 109.5 $C23-C24-C25$ 119.80 (12) $H4A-C4-H4C$ 109.5 $C23-C24-H24$ 120.1 $H4B-C4-H4C$ 109.5 $C25-C24-H24$ 120.1 $O1-C11-C16$ 123.80 (12) $C24-C25-C26$ 120.31 (12)	
O2-C4-H4C109.5 $C23-C24-C25$ 119.80 (12) $H4A-C4-H4C$ 109.5 $C23-C24-H24$ 120.1 $H4B-C4-H4C$ 109.5 $C25-C24-H24$ 120.1 $O1-C11-C16$ 123.80 (12) $C24-C25-C26$ 120.31 (12)	
H4A—C4—H4C 109.5 C23—C24—H24 120.1 H4B—C4—H4C 109.5 C25—C24—H24 120.1 O1—C11—C16 123.80 (12) C24—C25—C26 120.31 (12)	2)
H4B—C4—H4C 109.5 C25—C24—H24 120.1 O1—C11—C16 123.80 (12) C24—C25—C26 120.31 (17)	
01-C11-C16 123 80 (12) C24-C25-C26 120 31 (1)	
125.00(12) $027 025 020$ $120.01(1.)$	\$)
O1—C11—C12 115.25 (12) C24—C25—H25 119.8	
C16—C11—C12 120.95 (12) C26—C25—H25 119.8	
C13—C12—C11 117.63 (13) C25—C26—C21 120.22 (1	.)
C13—C12—C1 122.21 (13) C25—C26—C3 118.98 (12))
C11—C12—C1 120.15 (12) C21—C26—C3 120.77 (1	.)
C14—C13—C12 121.85 (13)	
C11—O1—C2—C21 -179.15 (10) O1—C2—C21—C26 -172.01 (l1)
C4—O2—C3—O3 0.5 (2) C26—C21—C22—C23 -1.23 (19)
C4—O2—C3—C26 179.87 (12) C2—C21—C22—C23 179.57 (12)	2)
C2	
C2-01-C11-C12 174.45 (11) C22-C23-C24-C25 0.5 (2)	
O1—C11—C12—C13 179.82 (11) C23—C24—C25—C26 -1.0 (2)	
C16—C11—C12—C13 0.3 (2) C24—C25—C26—C21 0.4 (2)	
O1—C11—C12—C1 -0.95 (18) C24—C25—C26—C3 -177.54 (
C16—C11—C12—C1 179.49 (13) C22—C21—C26—C25 0.69 (18)	2)
C11—C12—C13—C14 -0.4 (2) C2—C21—C26—C25 179.89 (12)	(2)

	120 52 (12)		
C1 - C12 - C13 - C14	-179.57(13)	C22-C21-C26-C3	178.60 (11)
C12—C13—C14—C15	0.4 (2)	C2-C21-C26-C3	-2.21 (18)
C13—C14—C15—C16	-0.3 (2)	O3—C3—C26—C25	158.37 (14)
C14—C15—C16—C11	0.2 (2)	O2—C3—C26—C25	-20.99 (16)
O1-C11-C16-C15	-179.72 (12)	O3—C3—C26—C21	-19.6 (2)
C12-C11-C16-C15	-0.2 (2)	O2—C3—C26—C21	161.08 (11)
O1—C2—C21—C22	7.17 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	D····A	<i>D</i> —H…A
C25—H25···Cg1 ⁱ	0.95	2.72	3.5461 (15)	146

Symmetry code: (i) -x+1/2, y+3/2, -z-1/2.