

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 4,4,5,5-Tetramethyl-2-[1,3,6,8-tetrabromo-7-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)pyren-2-yl]-1,3,2dioxaborolane

#### Ying Chen,<sup>a</sup> Wen-tao Yu,<sup>b</sup> Zhi-giang Liu<sup>b</sup> and Ping Yu<sup>a</sup>\*

<sup>a</sup>School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and <sup>b</sup>State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China Correspondence e-mail: yupping@sdu.edu.cn

Received 14 January 2012; accepted 11 February 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.035; wR factor = 0.109; data-to-parameter ratio = 19.0.

The complete molecule of the title compound, C<sub>28</sub>H<sub>28</sub>B<sub>2</sub>- $Br_4O_4$ , is generated by the application of a centre of inversion. In the molecule, the  $BO_2$  plane is perpendicular to that through the pyrene ring [dihedral angle =  $86.27 (13)^{\circ}$ ]. In the crystal, molecules stack into columns along the b axis, the closest contact between these being of the type  $C-Br\cdots\pi$ .

#### **Related literature**

For background to the reactions of pyrene, see: Miura & Yamano (1995). For the structure of the non-brominated derivative, see: Coventry et al. (2005).



#### **Experimental**

Crystal data C28H28B2Br4O4  $M_r = 769.76$ 

Monoclinic,  $P2_1/c$ a = 15.5047 (10) Å b = 7.5136(5) Å c = 13.9191 (9) Å  $\beta = 113.961 \ (1)^{\circ}$ V = 1481.78 (17) Å<sup>3</sup> Z = 2

#### Data collection

| Bruker APEXII CCD                      | 8745 measured reflections              |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 3344 independent reflections           |
| Absorption correction: multi-scan      | 2488 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2009)                 | $R_{\rm int} = 0.026$                  |
| $T_{\min} = 0.258, \ T_{\max} = 0.475$ |                                        |
| Refinement                             |                                        |

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.035 \\ wR(F^2) = 0.109 \end{array}$ 176 parameters H-atom parameters constrained S = 1.01 $\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.67 \text{ e} \text{ Å}^{-3}$ 3344 reflections

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C3-C5/C8/C9/C14 benzene ring.

| $D - H \cdots A$       | D-H                           | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|------------------------|-------------------------------|-------------------------|--------------|---------------------------|
| $C4-Br2\cdots Cg1^{i}$ | 1.90 (1)                      | 3.48 (1)                | 4.921 (3)    | 130 (1)                   |
| Symmetry code: (i) -   | $-x + 1, y - \frac{1}{2}, -z$ | $+\frac{3}{2}$          |              |                           |

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX-2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

We gratefully acknowledge financial support from the National Natural Science Foundation of China (grant Nos 20802026 and 50803033).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5049).

#### References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coventry, D. N., Batsanov, A. S., Goeta, A. E. H., Judith, A. K., Marder, T. B. & Perutz, R. N. (2005). Chem. Commun. pp. 2172-2174.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Miura, T. & Yamano, E. (1995), J. Org. Chem. 60, 1070-1073.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo  $K\alpha$  radiation

 $0.34 \times 0.24 \times 0.16 \text{ mm}$ 

 $\mu = 5.46 \text{ mm}^{-1}$ 

T = 296 K

# supporting information

Acta Cryst. (2012). E68, o771 [doi:10.1107/S1600536812006095]

# 4,4,5,5-Tetramethyl-2-[1,3,6,8-tetrabromo-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyren-2-yl]-1,3,2-dioxaborolane

### Ying Chen, Wen-tao Yu, Zhi-qiang Liu and Ping Yu

#### S1. Comment

The chemistry of pyrene is strongly position-dependent. For example, in the bromination reaction of 2,7-di-*t*-butylpyrene, the bromide atoms were connected at the 4,5,9,10-positions of pyrene (Miura & Yamano, 1995). However, to our surprise, when the *t*-butyl group is changed to pinacol boronate, the bromination reaction resulted in bromination at the 1,3,6,8-positions as confirmed by the crystal structure described herein.

The molecule, Fig. 1, is centrosymmetric. Before bromination, the two  $BO_2$  groups are nearly co-planar with the pyrene ring (Coventry *et al.*, 2005). However, they become nearly perpendicular after bromination (dihedral angle 86.27 (13)°).

The molecules pack into columns along the *b* axis, Fig. 2. The most prominent contacts in the structure appear to be of the type C—Br $\cdot\cdot\cdot\pi$ , Table 1.

#### S2. Experimental

The title compound was synthesized *via* a one-step bromination reaction. The precursor compound, 2,7-di-Bpinpyrene (pin =  $O_2C_2Me_4$ ) was prepared using the method of Ir-catalyzed borylation (Coventry *et al.*, 2005). To a stirred mixture of 1.36 g (3.0 mmol) of 2,7-di-Bpinpyrene and a small amount of Fe powder (*ca* 0.10 g) in 80 ml of CCl<sub>4</sub> was added dropwise a solution of 2.88 g (0.78 mL, 18 mmol) of bromine in 20 ml of CCl<sub>4</sub> at room temperature. After stirring for 5 h, the mixture was slowly poured into ice water. Then the organic layer was collected and washed with aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and dried over MgSO<sub>4</sub>. After evaporation, the residue was crystallized from hexane, giving 1.80 g (78% yield) of gray powdered product. Crystals were grown by slow evaporation from its hexane/dichloromethane solution.

#### **S3. Refinement**

Carbon-bound H-atoms were placed in calculated positions [C—H 0.93–0.96 Å,  $U_{iso}$ (H) 1.2–1.5 $U_{eq}$ (C)] and were included in the refinement in the riding model approximation.



#### Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at 50% probability level.



#### Figure 2

The packing in the title molecules in crystal viewed approximately down the b axis. Intermolecular Br…C (3.414 (3) Å) contacts, being representative of the Br $\cdot\cdot\cdot\pi$  contacts are shown as dashed lines.

# 4,4,5,5-Tetramethyl-2-[1,3,6,8-tetrabromo-7-(4,4,5,5-tetramethyl-1,3,2- dioxaborolan-2-yl)pyren-2-yl]-1,3,2dioxaborolane

| Crystal data                             |                                                                    |
|------------------------------------------|--------------------------------------------------------------------|
| $C_{28}H_{28}B_2Br_4O_4$                 | F(000) = 756                                                       |
| $M_r = 769.76$                           | $D_{\rm x} = 1.725 {\rm Mg} {\rm m}^{-3}$                          |
| Monoclinic, $P2_1/c$                     | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å                     |
| Hall symbol: -P 2ybc                     | Cell parameters from 3344 reflections                              |
| a = 15.5047 (10)  Å                      | $\theta = 2.9 - 27.4^{\circ}$                                      |
| b = 7.5136(5) Å                          | $\mu = 5.46 \text{ mm}^{-1}$                                       |
| c = 13.9191(9)  Å                        | T = 296  K                                                         |
| $\beta = 113.961 (1)^{\circ}$            | Pod, colourless                                                    |
| V = 1481.78 (17) Å <sup>3</sup>          | $0.34 \times 0.24 \times 0.16 \text{ mm}$                          |
| Z = 2                                    |                                                                    |
| Data collection                          |                                                                    |
| Bruker APEXII CCD                        | 8745 measured reflections                                          |
| diffractometer                           | 3344 independent reflections                                       |
| Radiation source: fine-focus sealed tube | 2488 reflections with i > $2\sigma(I)$                             |
| Graphite monochromator                   | $R_{\rm int} = 0.026$                                              |
| $\varphi$ and $\omega$ scans             | $\theta_{\rm max} = 27.5^{\circ},  \theta_{\rm min} = 2.9^{\circ}$ |
| Absorption correction: multi-scan        | $h = -20 \rightarrow 18$                                           |
| (SADABS; Bruker, 2009)                   | $k = -9 \longrightarrow 9$                                         |
| $T_{\min} = 0.258, \ T_{\max} = 0.475$   | $l = -9 \rightarrow 18$                                            |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.035$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.109$                               | neighbouring sites                                         |
| S = 1.01                                        | H-atom parameters constrained                              |
| 3344 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0653P)^2 + 0.4343P]$          |
| 176 parameters                                  | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                     |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.007$                        |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$  |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$ |
|                                                 |                                                            |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|-------------|--------------|-----------------------------|
| Br1  | 0.77662 (3)  | 0.70726 (6) | 0.97202 (4)  | 0.07199 (18)                |
| Br2  | 0.58141 (3)  | 0.07842 (5) | 0.79828 (3)  | 0.06680 (17)                |
| 01   | 0.73711 (17) | 0.4128 (3)  | 0.75325 (18) | 0.0521 (6)                  |
| O2   | 0.81831 (17) | 0.2540 (4)  | 0.89972 (18) | 0.0603 (7)                  |
| C1   | 0.8075 (4)   | 0.3192 (8)  | 0.6352 (3)   | 0.0949 (17)                 |
| H1A  | 0.7619       | 0.2248      | 0.6114       | 0.142*                      |
| H1B  | 0.8652       | 0.2812      | 0.6316       | 0.142*                      |
| H1C  | 0.7835       | 0.4218      | 0.5914       | 0.142*                      |
| C2   | 0.8258 (2)   | 0.3653 (5)  | 0.7461 (3)   | 0.0537 (9)                  |
| C3   | 0.6666 (2)   | 0.4017 (4)  | 0.8923 (2)   | 0.0380 (6)                  |
| C4   | 0.5917 (2)   | 0.2876 (4)  | 0.8788 (2)   | 0.0395 (7)                  |
| C5   | 0.5247 (2)   | 0.3199 (4)  | 0.9201 (2)   | 0.0377 (6)                  |
| C6   | 0.4480 (2)   | 0.2033 (4)  | 0.9060 (3)   | 0.0503 (8)                  |
| H6   | 0.4417       | 0.0985      | 0.8681       | 0.060*                      |
| C7   | 0.3844 (2)   | 0.2413 (5)  | 0.9460 (3)   | 0.0522 (9)                  |
| H7   | 0.3348       | 0.1628      | 0.9345       | 0.063*                      |
| C8   | 0.6087 (2)   | 0.6003 (4)  | 0.9941 (2)   | 0.0404 (7)                  |
| C9   | 0.6728 (2)   | 0.5543 (4)  | 0.9499 (3)   | 0.0424 (7)                  |
| C10  | 0.8662 (3)   | 0.2212 (5)  | 0.8302 (3)   | 0.0588 (10)                 |
| C11  | 0.8343 (5)   | 0.0358 (6)  | 0.7828 (6)   | 0.119 (2)                   |
| H11A | 0.8451       | -0.0486     | 0.8382       | 0.178*                      |
| H11B | 0.8697       | 0.0015      | 0.7429       | 0.178*                      |
| H11C | 0.7683       | 0.0387      | 0.7375       | 0.178*                      |
| C12  | 0.8844 (4)   | 0.5382 (7)  | 0.7748 (5)   | 0.0971 (17)                 |
| H12A | 0.8460       | 0.6359      | 0.7364       | 0.146*                      |

| H12B | 0.9378       | 0.5261      | 0.7571     | 0.146*     |  |
|------|--------------|-------------|------------|------------|--|
| H12C | 0.9059       | 0.5600      | 0.8489     | 0.146*     |  |
| C13  | 0.9711 (3)   | 0.2251 (10) | 0.8940 (4) | 0.113 (2)  |  |
| H13A | 0.9882       | 0.3348      | 0.9325     | 0.169*     |  |
| H13B | 1.0032       | 0.2160      | 0.8479     | 0.169*     |  |
| H13C | 0.9889       | 0.1269      | 0.9423     | 0.169*     |  |
| C14  | 0.53370 (18) | 0.4799 (4)  | 0.9788 (2) | 0.0340 (6) |  |
| B1   | 0.7425 (2)   | 0.3542 (5)  | 0.8473 (3) | 0.0397 (7) |  |
|      |              |             |            |            |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$    | U <sup>23</sup> |
|-----|-------------|-------------|-------------|---------------|-------------|-----------------|
| Br1 | 0.0592 (3)  | 0.0748 (3)  | 0.1085 (4)  | -0.02956 (19) | 0.0614 (3)  | -0.0371 (2)     |
| Br2 | 0.0623 (3)  | 0.0677 (3)  | 0.0883 (3)  | -0.01639 (18) | 0.0490 (2)  | -0.0388 (2)     |
| 01  | 0.0482 (13) | 0.0696 (15) | 0.0472 (13) | 0.0173 (11)   | 0.0281 (11) | 0.0108 (11)     |
| O2  | 0.0525 (14) | 0.0954 (19) | 0.0458 (13) | 0.0283 (13)   | 0.0331 (12) | 0.0213 (13)     |
| C1  | 0.124 (4)   | 0.122 (4)   | 0.058 (3)   | 0.044 (4)     | 0.056 (3)   | 0.016 (3)       |
| C2  | 0.053 (2)   | 0.070 (2)   | 0.0533 (19) | 0.0117 (17)   | 0.0365 (17) | 0.0064 (17)     |
| C3  | 0.0304 (14) | 0.0502 (17) | 0.0361 (15) | 0.0019 (12)   | 0.0164 (12) | -0.0025 (13)    |
| C4  | 0.0353 (15) | 0.0459 (16) | 0.0396 (15) | 0.0015 (12)   | 0.0175 (13) | -0.0087 (13)    |
| C5  | 0.0303 (14) | 0.0468 (16) | 0.0389 (15) | -0.0028 (12)  | 0.0171 (13) | -0.0058 (13)    |
| C6  | 0.0470 (18) | 0.0480 (19) | 0.066 (2)   | -0.0136 (14)  | 0.0337 (17) | -0.0207 (16)    |
| C7  | 0.0449 (18) | 0.0520 (19) | 0.072 (2)   | -0.0169 (15)  | 0.0358 (18) | -0.0202 (17)    |
| C8  | 0.0342 (15) | 0.0481 (17) | 0.0442 (16) | -0.0061 (13)  | 0.0213 (13) | -0.0086 (13)    |
| C9  | 0.0312 (15) | 0.0519 (18) | 0.0493 (18) | -0.0071 (13)  | 0.0218 (14) | -0.0045 (14)    |
| C10 | 0.054 (2)   | 0.073 (2)   | 0.070(2)    | 0.0207 (18)   | 0.0466 (19) | 0.0189 (19)     |
| C11 | 0.192 (7)   | 0.055 (3)   | 0.183 (6)   | 0.007 (3)     | 0.153 (6)   | 0.004 (3)       |
| C12 | 0.103 (4)   | 0.078 (3)   | 0.144 (5)   | -0.016 (3)    | 0.086 (4)   | -0.003 (3)      |
| C13 | 0.057 (3)   | 0.197 (7)   | 0.090 (4)   | 0.045 (4)     | 0.035 (3)   | 0.029 (4)       |
| C14 | 0.0288 (13) | 0.0408 (15) | 0.0354 (15) | -0.0024 (11)  | 0.0162 (12) | -0.0050 (12)    |
| B1  | 0.0338 (17) | 0.0473 (19) | 0.0427 (19) | 0.0011 (14)   | 0.0204 (15) | -0.0029 (15)    |

## Geometric parameters (Å, °)

| Br1—C9 | 1.899 (3) | С6—Н6              | 0.9300    |
|--------|-----------|--------------------|-----------|
| Br2—C4 | 1.899 (3) | C7—C8 <sup>i</sup> | 1.432 (4) |
| 01—B1  | 1.351 (4) | С7—Н7              | 0.9300    |
| O1—C2  | 1.463 (4) | C8—C9              | 1.408 (4) |
| O2—B1  | 1.336 (4) | C8—C14             | 1.419 (4) |
| O2—C10 | 1.460 (4) | C8—C7 <sup>i</sup> | 1.432 (4) |
| C1—C2  | 1.492 (5) | C10—C13            | 1.504 (6) |
| C1—H1A | 0.9600    | C10—C11            | 1.535 (7) |
| C1—H1B | 0.9600    | C11—H11A           | 0.9600    |
| C1—H1C | 0.9600    | C11—H11B           | 0.9600    |
| C2-C10 | 1.530 (5) | C11—H11C           | 0.9600    |
| C2—C12 | 1.542 (6) | C12—H12A           | 0.9600    |
| С3—С9  | 1.380 (4) | C12—H12B           | 0.9600    |
| C3—C4  | 1.394 (4) | C12—H12C           | 0.9600    |
|        |           |                    |           |

| C3—B1                  | 1.583 (4) | C13—H13A                 | 0.9600    |
|------------------------|-----------|--------------------------|-----------|
| C4—C5                  | 1.397 (4) | C13—H13B                 | 0.9600    |
| C5—C6                  | 1.425 (4) | C13—H13C                 | 0.9600    |
| C5—C14                 | 1.428 (4) | $C14$ — $C14^{i}$        | 1.426 (5) |
| C6—C7                  | 1.345 (4) |                          | 11.20 (0) |
|                        |           |                          |           |
| B1—O1—C2               | 107.2 (3) | C3—C9—Br1                | 116.9 (2) |
| B1                     | 107.7 (2) | C8—C9—Br1                | 118.9 (2) |
| C2—C1—H1A              | 109.5     | O2-C10-C13               | 109.0 (3) |
| C2—C1—H1B              | 109.5     | O2—C10—C2                | 103.1 (2) |
| H1A—C1—H1B             | 109.5     | C13—C10—C2               | 116.5 (4) |
| C2—C1—H1C              | 109.5     | O2—C10—C11               | 106.1 (3) |
| H1A—C1—H1C             | 109.5     | C13—C10—C11              | 110.7 (5) |
| H1B—C1—H1C             | 109.5     | C2-C10-C11               | 110.7 (4) |
| O1—C2—C1               | 109.7 (3) | C10-C11-H11A             | 109.5     |
| O1—C2—C10              | 103.0 (2) | C10-C11-H11B             | 109.5     |
| C1—C2—C10              | 118.3 (4) | H11A—C11—H11B            | 109.5     |
| O1—C2—C12              | 104.4 (3) | C10-C11-H11C             | 109.5     |
| C1—C2—C12              | 108.0 (4) | H11A—C11—H11C            | 109.5     |
| C10—C2—C12             | 112.5 (4) | H11B—C11—H11C            | 109.5     |
| C9—C3—C4               | 116.6 (3) | C2—C12—H12A              | 109.5     |
| C9—C3—B1               | 122.0 (3) | C2—C12—H12B              | 109.5     |
| C4—C3—B1               | 121.4 (3) | H12A—C12—H12B            | 109.5     |
| C3—C4—C5               | 123.7 (3) | C2—C12—H12C              | 109.5     |
| C3—C4—Br2              | 117.0 (2) | H12A—C12—H12C            | 109.5     |
| C5—C4—Br2              | 119.2 (2) | H12B—C12—H12C            | 109.5     |
| C4—C5—C6               | 123.7 (3) | C10-C13-H13A             | 109.5     |
| C4—C5—C14              | 117.7 (2) | C10-C13-H13B             | 109.5     |
| C6—C5—C14              | 118.6 (2) | H13A—C13—H13B            | 109.5     |
| C7—C6—C5               | 121.6 (3) | C10—C13—H13C             | 109.5     |
| С7—С6—Н6               | 119.2     | H13A—C13—H13C            | 109.5     |
| С5—С6—Н6               | 119.2     | H13B—C13—H13C            | 109.5     |
| C6C7C8 <sup>i</sup>    | 121.6 (3) | C8-C14-C14 <sup>i</sup>  | 119.8 (3) |
| С6—С7—Н7               | 119.2     | C8—C14—C5                | 120.4 (2) |
| C8 <sup>i</sup> —C7—H7 | 119.2     | C14 <sup>i</sup> —C14—C5 | 119.8 (3) |
| C9—C8—C14              | 117.3 (3) | O2—B1—O1                 | 114.1 (3) |
| C9C8C7 <sup>i</sup>    | 124.0 (3) | O2—B1—C3                 | 122.8 (3) |
| C14—C8—C7 <sup>i</sup> | 118.6 (3) | O1—B1—C3                 | 123.1 (3) |
| C3—C9—C8               | 124.2 (3) |                          | ` '       |

Symmetry code: (i) -x+1, -y+1, -z+2.

# Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C5/C8/C9/C14 benzene ring.

| HA                         | D—H      | Н…А      | D····A    | D—H···A |
|----------------------------|----------|----------|-----------|---------|
| C4—Br2···Cg1 <sup>ii</sup> | 1.90 (1) | 3.48 (1) | 4.921 (3) | 130 (1) |

Symmetry code: (ii) –*x*+1, *y*–1/2, –*z*+3/2.