Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[5-(2-Chlorophenyl)-5-hydroxy-3methyl-4,5-dihydro-1H-pyrazol-1-yl]ethanone

Sheng-Hai Guo, Ji-Liang Wang, Dong-Qiang Guo and Xin-Ying Zhang*

School of Chemistry and Environmental Science, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China

Correspondence e-mail: xyzh518@sohu.com

Received 15 February 2012; accepted 17 February 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.053; wR factor = 0.159; data-to-parameter ratio = 14.9.

The title compound, C₁₂H₁₃ClN₂O₂, crystallizes with two independent but very similar molecules (A and B) in the asymmetric unit. The pyrazole ring in each molecule has an envelope conformation. The dihedral angle between the pyrazole ring mean plane and the benzene ring is $86.07 (14)^{\circ}$ in A and 85.99 $(14)^{\circ}$ in B. In the crystal, the A and B molecules are linked via a pair of $O-H \cdots O$ hydrogen bonds, forming dimers. These dimers are further linked via C-H···O interactions to form -A-B-A-B- chains propagating along the *c*-axis direction.

Related literature

For the bioactivities of 5-hydroxypyrazolines, see: Sauzem et al. (2008); Zhao et al. (2009); Idrees et al. (2009). For the crystal structures of related 5-hydroxypyrazolines, see: Kargar, Kia, Froozandeh et al. (2011); Kargar, Kia, Moghadamm et al. (2011).

16979 measured reflections

 $R_{\rm int} = 0.038$

4663 independent reflections

3077 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{12}H_{13}CIN_2O_2$	$V = 2506.0 (12) \text{ Å}^3$
$M_r = 252.70$	Z = 8
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 10.320 (3) Å	$\mu = 0.30 \text{ mm}^{-1}$
b = 14.916 (4) Å	T = 296 K
c = 16.346 (4) Å	$0.39 \times 0.25 \times 0.15 \text{ mm}$
$\beta = 95.158 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\min} = 0.893, \ T_{\max} = 0.957$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	313 parameters
$wR(F^2) = 0.159$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
4663 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
O1−−H1···O4 ⁱ	0.82	1.97	2.748 (3)	159
$O3 - H3A \cdots O2^{ii}$	0.82	2.03	2.792 (3)	155
$C8 - H8B \cdot \cdot \cdot .03^{iii}$	0.97	2.53	3.410 (3)	151
$C20 - H20B \cdotsO1^{iv}$	0.97	2.50	3.354 (3)	147

Symmetry codes: (i) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) x + 1, y, z; (iv) x - 1, y, z

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant No. 21172057).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2378).

References

- Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Idrees, G. A., Aly, O. M., Abuo-Rahma, G. E.-D. A. A. & Radwan, M. F. (2009). Eur. J. Med. Chem. 44, 3973-3980.
- Kargar, H., Kia, R., Froozandeh, F., Hossaini Sadr, M. & Tahir, M. N. (2011). Acta Cryst. E67. 0209
- Kargar, H., Kia, R., Moghadamm, M. & Tahir, M. N. (2011). Acta Cryst. E67, 0367.
- Sauzem, P. D., Machado, P., Rubin, M. A., Sant'Anna, G. S., Faber, H. B., de Souza, A. H., Mello, C. F., Beck, P., Burrow, R. A., Bonacorso, H. G., Zanatta, N. & Martins, M. A. P. (2008). Eur. J. Med. Chem. 43, 1237-1247. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhao, Y., Bacher, A., Illarionov, B., Fischer, M., Georg, G., Ye, Q.-Z., Fanwick, P. E., Franzblau, S. G., Wan, B. & Cushman, M. (2009). J. Org. Chem. 74, 5297-5303.

supporting information

Acta Cryst. (2012). E68, o839 [doi:10.1107/S1600536812007283]

1-[5-(2-Chlorophenyl)-5-hydroxy-3-methyl-4,5-dihydro-1*H*-pyrazol-1yl]ethanone

Sheng-Hai Guo, Ji-Liang Wang, Dong-Qiang Guo and Xin-Ying Zhang

S1. Comment

5-Hydroxypyrazolines have drawn much attention due to their interesting biological properties such as anti-inflammatory, antibiotic, and hypolipidemic activities (Sauzem *et al.*, 2008; Zhao *et al.*, 2009; Idrees *et al.*, 2009). Crystal structures of some 5-hydroxypyrazoline derivatives have been reported (Kargar, Kia, Froozandeh *et al.*, 2011; Kargar, Kia, Moghadamm *et al.*, 2011). Herein, we report on the crystal structure of the new title 5-hydroxypyrazoline derivative.

The title compound crystallizes with two independent but very similar molecules (A and B) in the asymmetric unit (Fig. 1). All the bond lengths and bond angles are within normal ranges. The five-membered pyrazole rings have envelope conformations with atom C7 as the flap in molecule A, and atom C19 as the flap in molecule B. The dihedral angle between the pyrazole ring mean plane and the phenyl ring is 86.07 (14) $^{\circ}$ in A and 85.99 (14) $^{\circ}$ in B.

In the crystal, the A and B molecules are linked *via* a pair of O—H···O hydrogen bonds forming dimers. These dimers are further linked via C-H···O interactions to form -A-B-A-B- chains propagating along the c axis direction (Table 1 and Fig. 2).

S2. Experimental

1-(2-chlorophenyl)butane-1,3-dione (1.0 mmol), acetohydrazide (1.0 mmol), and a drop of concentrated H_2SO_4 were mixed and ground for 10 min in a mortar. Upon completion of the reaction, monitored by TLC, ethyl acetate and water were added to the reaction mixture. Then, the organic layer was washed with Na₂CO₃ solution and water, and dried over anhydrous Na₂SO₄. Ethyl acetate was removed under reduced pressure and the residue was purified by chromatography on silica-gel to provide the title product as a white solid. Colourless block-like crystals of the title compound, suitable for *X*-ray diffraction analysis, were obtained by slow evaporation of the solvent from a dichloromethane solution at room temperature.

S3. Refinement

The H atoms were included in calculated positions and were refined as riding atoms: O—H = 0.82 Å, and C—H = 0.93, 0.97, 0.96 Å for aromatic, methylene and methyl H atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(O,C)$, where k = 1.5 for OH and methyl H atoms, and k = 1.2 for all other H atoms.

Figure 1

Molecular structure of the two independent molecules (A right; B left) of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Crystal packing of the title compound, viewed along the *a* axis. The O—H…O hydrogen bonds and C-H…O interactions are shown as dashed lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).

1-[5-(2-Chlorophenyl)-5-hydroxy-3-methyl-4,5-dihydro-1*H*-pyrazol- 1-yl]ethanone

Crystal data	
$C_{12}H_{13}ClN_2O_2$	$V = 2506.0 (12) \text{ Å}^3$
$M_r = 252.70$	Z = 8
Monoclinic, $P2_1/c$	F(000) = 1056
Hall symbol: -P 2ybc	$D_{\rm x} = 1.340 {\rm ~Mg} {\rm ~m}^{-3}$
a = 10.320 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 14.916 (4) Å	Cell parameters from 3669 reflections
c = 16.346 (4) Å	$\theta = 2.4 - 25.9^{\circ}$
$\beta = 95.158 \ (3)^{\circ}$	$\mu=0.30~\mathrm{mm^{-1}}$

T = 296 KBlock, colourless

Data collection

Bruker SMART CCD area-detector diffractometer	
Radiation source: fine-focus sealed tube	
Graphite monochromator	
phi and ω scans	
Absorption correction: multi-scan	
(SADABS; Bruker, 2007)	
$T_{\min} = 0.893, \ T_{\max} = 0.957$	

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0804P)^2 + 0.8196P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.39 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

 $0.39 \times 0.25 \times 0.15 \text{ mm}$

 $R_{\rm int} = 0.038$

 $h = -12 \rightarrow 12$ $k = -18 \rightarrow 18$ $l = -19 \rightarrow 19$

16979 measured reflections 4663 independent reflections 3077 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.5236 (3)	0.2945 (2)	0.27457 (16)	0.0630 (8)	
C2	0.6517 (3)	0.32278 (17)	0.26911 (14)	0.0484 (6)	
C3	0.6858 (3)	0.40628 (19)	0.30087 (17)	0.0643 (8)	
Н3	0.7701	0.4272	0.2977	0.077*	
C4	0.5966 (5)	0.4597 (2)	0.3375 (2)	0.0904 (12)	
H4	0.6214	0.5154	0.3591	0.109*	
C5	0.4714 (5)	0.4294 (3)	0.3415 (2)	0.1025 (15)	
Н5	0.4112	0.4653	0.3650	0.123*	
C6	0.4349 (4)	0.3468 (3)	0.3110 (2)	0.0891 (12)	
H6	0.3506	0.3261	0.3148	0.107*	
C7	0.7497 (2)	0.27082 (16)	0.22292 (14)	0.0427 (6)	
C8	0.7104 (2)	0.26559 (16)	0.12996 (14)	0.0452 (6)	

H8A	0.6204	0.2833	0.1172	0.054*
H8B	0.7656	0.3035	0.0997	0.054*
C9	0.7293 (2)	0.16951 (17)	0.11060 (15)	0.0470 (6)
C10	0.7195 (3)	0.1336 (2)	0.02506 (16)	0.0630 (8)
H10A	0.7276	0.0695	0.0267	0.094*
H10B	0.7879	0.1585	-0.0040	0.094*
H10C	0.6368	0.1497	-0.0026	0.094*
C11	0.7751 (3)	0.14051 (18)	0.32065 (16)	0.0514 (6)
C12	0.7807 (4)	0.0402 (2)	0.32863 (19)	0.0811 (10)
H12A	0.8560	0.0181	0.3047	0.122*
H12B	0.7038	0.0144	0.3006	0.122*
H12C	0.7857	0.0240	0.3857	0.122*
C13	0.3110 (3)	0.3263 (2)	-0.02266 (16)	0.0621 (8)
C14	0.1813 (3)	0.34881 (17)	-0.01755 (14)	0.0470 (6)
C15	0.1388 (3)	0.43010 (17)	-0.05224 (17)	0.0658 (8)
H15	0.0529	0.4476	-0.0491	0.079*
C16	0.2215 (5)	0.4854 (2)	-0.0913 (2)	0.0941 (13)
H16	0.1904	0.5387	-0.1151	0.113*
C17	0.3479 (5)	0.4620 (3)	-0.0950(2)	0.1070 (15)
H17	0.4032	0.4998	-0.1207	0.128*
C18	0.3958 (4)	0.3819 (3)	-0.0606(2)	0.0906 (12)
H18	0.4825	0.3659	-0.0628	0.109*
C19	0.0867 (2)	0.29137 (16)	0.02655 (14)	0.0427 (6)
C20	0.1250 (2)	0.27892 (16)	0.11897 (14)	0.0459 (6)
H20A	0.2142	0.2975	0.1335	0.055*
H20B	0.0680	0.3128	0.1515	0.055*
C21	0.1094 (2)	0.18061 (16)	0.13134 (15)	0.0457 (6)
C22	0.1166 (3)	0.13570 (19)	0.21316 (15)	0.0564 (7)
H22A	0.1115	0.0719	0.2057	0.085*
H22B	0.0455	0.1555	0.2427	0.085*
H22C	0.1974	0.1508	0.2438	0.085*
C23	0.0645(2)	0 16960 (16)	-0.07964(15)	0.0455(6)
C24	0.0633(3)	0.07144(18)	-0.09644(19)	0.0707(9)
H24A	0.0579	0.0615	-0.1547	0.106*
H24B	-0.0106	0.0447	-0.0742	0.106*
H24C	0 1417	0.0449	-0.0712	0.106*
Cl1	0.46874 (8)	0.0119 0.19108 (7)	0 23531 (5)	0.0841(3)
Cl2	0 37469 (8)	0.22580(7)	0.23031(5) 0.01857(5)	0.0865(3)
N1	0.7575 (2)	0.22300(1) 0.17426(13)	0.01097(9) 0.24382(12)	0.0005(5) 0.0457(5)
N2	0.7540(2)	0.11902(14)	0.17364(13)	0.0137(5) 0.0522(5)
N3	0.7340(2) 0.0850(2)	0.11902(14) 0.19699(13)	-0.00094(11)	0.0322(5) 0.0443(5)
N4	0.0897(2)	0.13575(14)	0.00094(11) 0.06455(12)	0.0443(3) 0.0508(5)
01	0.0077(2) 0.87374(17)	0.10975(14) 0.30941(12)	0.00455(12) 0.23266(10)	0.0500(5)
H1	0.07574 (17)	0.2968	0.23200 (10)	0.0525 (5)
02	0.7846 (2)	0.2700 0.10003 (13)	0.2702	0.079
03	-0.03048(17)	0.19093(13) 0.32648(13)	0.37903(11) 0.01884(10)	0.0021(3) 0.0548(5)
	-0.0705	0.32040 (13)	-0.0280	0.0040(0)
113A 04	-0.0703	0.3210 0.22575 (12)	-0.0209	0.062 (5)
04	0.04921(19)	0.22373(12)	-0.1340/(10)	0.0362 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0586 (18)	0.090 (2)	0.0407 (16)	0.0137 (15)	0.0055 (13)	0.0096 (14)
C2	0.0569 (16)	0.0557 (16)	0.0319 (13)	0.0083 (12)	0.0006 (11)	0.0080 (11)
C3	0.092 (2)	0.0540 (17)	0.0465 (16)	0.0113 (15)	0.0059 (15)	0.0048 (13)
C4	0.148 (4)	0.068 (2)	0.056 (2)	0.040 (2)	0.015 (2)	0.0058 (17)
C5	0.125 (4)	0.124 (4)	0.061 (2)	0.076 (3)	0.025 (2)	0.014 (2)
C6	0.072 (2)	0.133 (3)	0.064 (2)	0.037 (2)	0.0174 (17)	0.017 (2)
C7	0.0456 (14)	0.0472 (14)	0.0348 (13)	-0.0022 (10)	0.0012 (10)	0.0062 (10)
C8	0.0484 (14)	0.0532 (15)	0.0333 (13)	-0.0031 (11)	0.0005 (10)	0.0055 (11)
C9	0.0489 (15)	0.0547 (15)	0.0366 (13)	-0.0019 (11)	0.0000 (11)	0.0008 (11)
C10	0.077 (2)	0.0695 (18)	0.0415 (15)	0.0044 (15)	-0.0013 (14)	-0.0070 (13)
C11	0.0562 (16)	0.0556 (16)	0.0412 (15)	-0.0062 (12)	-0.0019 (12)	0.0097 (12)
C12	0.123 (3)	0.0602 (19)	0.0563 (18)	-0.0050 (18)	-0.0099 (19)	0.0154 (15)
C13	0.0633 (19)	0.084 (2)	0.0388 (15)	-0.0168 (15)	0.0021 (13)	-0.0014 (14)
C14	0.0620 (17)	0.0494 (15)	0.0295 (12)	-0.0092 (12)	0.0039 (11)	-0.0054 (10)
C15	0.103 (2)	0.0453 (16)	0.0503 (17)	-0.0065 (15)	0.0106 (16)	-0.0037 (13)
C16	0.161 (4)	0.057 (2)	0.067 (2)	-0.032 (2)	0.019 (2)	0.0005 (16)
C17	0.145 (4)	0.108 (3)	0.072 (2)	-0.068 (3)	0.029 (3)	0.000 (2)
C18	0.080(2)	0.133 (3)	0.061 (2)	-0.039 (2)	0.0171 (18)	-0.007 (2)
C19	0.0475 (14)	0.0461 (13)	0.0340 (13)	0.0015 (10)	0.0010 (10)	-0.0024 (10)
C20	0.0494 (15)	0.0553 (15)	0.0323 (13)	-0.0012 (11)	0.0003 (11)	-0.0026 (11)
C21	0.0447 (14)	0.0539 (15)	0.0383 (14)	0.0022 (11)	0.0022 (11)	0.0031 (11)
C22	0.0665 (18)	0.0631 (17)	0.0398 (14)	0.0044 (14)	0.0052 (12)	0.0092 (12)
C23	0.0493 (15)	0.0513 (14)	0.0355 (13)	0.0007 (11)	0.0009 (11)	-0.0032 (11)
C24	0.109 (3)	0.0518 (17)	0.0513 (17)	0.0034 (16)	0.0051 (16)	-0.0105 (13)
Cl1	0.0578 (5)	0.1235 (8)	0.0712 (6)	-0.0265 (4)	0.0062 (4)	-0.0022 (5)
Cl2	0.0548 (5)	0.1328 (8)	0.0718 (6)	0.0203 (5)	0.0049 (4)	0.0159 (5)
N1	0.0562 (13)	0.0474 (12)	0.0329 (11)	-0.0004 (9)	-0.0002 (9)	0.0033 (9)
N2	0.0632 (14)	0.0517 (13)	0.0409 (12)	-0.0004 (10)	0.0007 (10)	-0.0042 (10)
N3	0.0593 (13)	0.0433 (11)	0.0297 (10)	-0.0032 (9)	0.0010 (9)	0.0015 (8)
N4	0.0657 (14)	0.0487 (12)	0.0375 (12)	-0.0013 (10)	0.0016 (10)	0.0055 (10)
01	0.0500 (11)	0.0672 (12)	0.0394 (10)	-0.0108 (8)	-0.0015 (8)	0.0060 (8)
O2	0.0814 (14)	0.0671 (12)	0.0357 (10)	-0.0027 (10)	-0.0057 (9)	0.0036 (9)
O3	0.0541 (11)	0.0728 (12)	0.0372 (10)	0.0132 (9)	0.0018 (8)	-0.0012 (9)
O4	0.0762 (13)	0.0562 (11)	0.0345 (10)	-0.0032 (9)	-0.0052 (9)	0.0011 (8)

Geometric parameters (Å, °)

C1—C6	1.378 (4)	C13—Cl2	1.748 (3)
C1—C2	1.398 (4)	C14—C15	1.393 (4)
C1—Cl1	1.746 (3)	C14—C19	1.527 (3)
С2—С3	1.383 (4)	C15—C16	1.383 (5)
С2—С7	1.527 (3)	C15—H15	0.9300
C3—C4	1.393 (5)	C16—C17	1.357 (6)
С3—Н3	0.9300	C16—H16	0.9300
C4—C5	1.375 (6)	C17—C18	1.391 (6)

C4—H4	0.9300	С17—Н17	0.9300
C5—C6	1.369 (6)	C18—H18	0.9300
С5—Н5	0.9300	C19—O3	1.399 (3)
С6—Н6	0.9300	C19—N3	1.477 (3)
C7—O1	1.400 (3)	C19—C20	1.538 (3)
C7—N1	1.481 (3)	C20—C21	1.491 (3)
C7—C8	1.539 (3)	C20—H20A	0.9700
C8—C9	1 484 (4)	C20—H20B	0 9700
C8—H8A	0.9700	C_{21} N4	1 281 (3)
C8—H8B	0.9700	C_{21} C_{22}	1.201(3) 1 492(3)
$C_0 N_2$	1 283 (3)	C22 H22A	0.9600
C_{2}	1.203(3)	C22—1122A C22 H22B	0.9600
C10U10A	1.492(3)	C22—H22B	0.9000
CIO-HIOA	0.9600	C22—H22C	0.9000
CIO—HIOB	0.9600	C23—04	1.229 (3)
CI0—HIOC	0.9600	C23—N3	1.348 (3)
C11—02	1.220 (3)	C23—C24	1.490 (4)
C11—N1	1.350 (3)	C24—H24A	0.9600
C11—C12	1.503 (4)	C24—H24B	0.9600
C12—H12A	0.9600	C24—H24C	0.9600
C12—H12B	0.9600	N1—N2	1.410 (3)
C12—H12C	0.9600	N3—N4	1.405 (3)
C13—C14	1.389 (4)	O1—H1	0.8200
C13—C18	1.391 (4)	ОЗ—НЗА	0.8200
C6—C1—C2	121.7 (3)	C15—C14—C19	119.3 (3)
C6-C1-Cl1	116.9 (3)	C16—C15—C14	121.5 (4)
C2-C1-Cl1	121.3 (2)	C16—C15—H15	119.3
$C_3 - C_2 - C_1$	1172(3)	C14-C15-H15	119.3
C_{3} $-C_{2}$ $-C_{7}$	1190(2)	C17 - C16 - C15	120.2(4)
$C_1 - C_2 - C_7$	117.0(2) 123 4 (2)	C17 - C16 - H16	110.0
$C_1 C_2 C_3 C_4$	123.4(2) 121.4(3)	C15 C16 H16	110.0
$C_2 = C_3 = C_4$	121.4 (3)	$C_{15} = C_{10} = 110$	119.9 120.7(2)
$C_2 = C_3 = H_3$	119.5	C1(-C17-C18)	120.7 (5)
	119.5	С10—С17—Н17	119.0
C_{3}	119.5 (4)	C18 - C17 - H17	119.6
C5—C4—H4	120.3		118.5 (4)
C3—C4—H4	120.3	С13—С18—Н18	120.8
C6—C5—C4	120.5 (3)	C17—C18—H18	120.8
С6—С5—Н5	119.7	O3—C19—N3	110.10 (19)
С4—С5—Н5	119.7	O3—C19—C14	112.1 (2)
C5—C6—C1	119.6 (4)	N3—C19—C14	112.44 (19)
С5—С6—Н6	120.2	O3—C19—C20	106.78 (19)
С1—С6—Н6	120.2	N3—C19—C20	100.30 (18)
O1—C7—N1	110.09 (19)	C14—C19—C20	114.4 (2)
O1—C7—C2	112.0 (2)	C21—C20—C19	103.33 (19)
N1—C7—C2	113.86 (19)	C21—C20—H20A	111.1
O1—C7—C8	106.87 (19)	C19—C20—H20A	111.1
N1—C7—C8	100.51 (18)	C21—C20—H20B	111.1
C2—C7—C8	112.74 (19)	C19—C20—H20B	111.1

C9—C8—C7	103.38 (19)	H20A—C20—H20B	109.1
С9—С8—Н8А	111.1	N4—C21—C20	114.1 (2)
С7—С8—Н8А	111.1	N4—C21—C22	121.4 (2)
С9—С8—Н8В	111.1	C20—C21—C22	124.5 (2)
С7—С8—Н8В	111.1	C21—C22—H22A	109.5
H8A—C8—H8B	109.1	C21—C22—H22B	109.5
N2—C9—C8	114.6 (2)	H22A—C22—H22B	109.5
N2-C9-C10	122.3 (2)	C21—C22—H22C	109.5
C8—C9—C10	123.2 (2)	H22A—C22—H22C	109.5
C9-C10-H10A	109.5	H22B—C22—H22C	109.5
C9-C10-H10B	109.5	04—C23—N3	119.4 (2)
H10A—C10—H10B	109.5	$04-C_{23}-C_{24}$	122.5(2)
C9-C10-H10C	109.5	N3-C23-C24	1182(2)
H10A—C10—H10C	109.5	C23—C24—H24A	109.5
H10B-C10-H10C	109.5	C_{23} C_{24} H_{24B}	109.5
Ω^2 —C11—N1	120.0(2)	$H_{24} = C_{24} = H_{24}B$	109.5
02 - C11 - C12	123.1(2)	C_{23} C_{24} H_{24C}	109.5
N1_C11_C12	125.1(2) 116.9(2)	$H_{24} = C_{24} = H_{24} C_{24}$	109.5
$C_{11} = C_{12} = C_{12}$	100.5	$H_{24R} = C_{24} = H_{24C}$	109.5
C11 C12 H12R	109.5	1124D - 024 - 1124C	109.5 122.0(2)
H_{12} H_{12} H_{12} H_{12}	109.5	$C_{11} = N_1 = N_2$	122.0(2) 125.3(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$N_2 N_1 C_7$	123.3(2) 112.58(18)
$H_{12} = H_{12} = H_{12} C$	109.5	$N_2 - N_1 - C_7$	112.36(10) 107.4(2)
H12A - C12 - H12C	109.5	$C_{2} = N_{2} = N_{4}$	107.4(2)
H12D - C12 - H12C	109.5	C_{23} N2 C_{10}	121.4(2)
C14 - C13 - C18	122.1(3)	123 - 103 - 100	125.1(2)
C14 - C13 - C12	121.0 (2)	N4 - N3 - C19	112.90 (18)
C18 - C13 - C12	116.9 (3)	$C_{21} = N_{4} = N_{3}$	107.6 (2)
C13 - C14 - C15	117.1(3)	C/—OI—HI	109.5
C13—C14—C19	123.6 (2)	С19—03—НЗА	109.5
C6 - C1 - C2 - C3	-0.8(4)	C15_C14_C19_N3	130.6(2)
$C_1 = C_1 = C_2 = C_3$	179 10 (19)	C_{13} C_{14} C_{19} C_{20}	615(3)
C6-C1-C2-C7	-174.6(2)	$C_{15} = C_{14} = C_{15} = C_{20}$	-1159(3)
$C_1 = C_1 = C_2 = C_7$	5 4 (3)	C_{13}^{-} C_{14}^{-} C_{15}^{-} C_{20}^{-} C_{21}^{-}	102.6(2)
$C_1 = C_2 = C_1^2$	0.6(4)	$N_{3} = C_{19} = C_{20} = C_{21}$	-12.3(2)
$C_1 - C_2 - C_3 - C_4$	174.6(2)	$C_{14} = C_{19} = C_{20} = C_{21}$	-132.8(2)
$C_{1}^{2} = C_{2}^{2} = C_{4}^{2} = C_{4}^{2}$	-0.7(5)	$C_{14} = C_{19} = C_{20} = C_{21}$	132.8(2)
$C_2 = C_3 = C_4 = C_5$	0.7(5)	$C_{19} = C_{20} = C_{21} = N_{4}$	-170.0(2)
$C_{3} - C_{4} - C_{5} - C_{6}$	1.1(3)	C19 - C20 - C21 - C22	-170.9(2)
$C_{4} = C_{5} = C_{6} = C_{1}$	1.4(5)	$C_1 = C_1 = N_1 = N_2$	-4.6(4)
$C_2 - C_1 - C_0 - C_3$	1.2(3)	C12 - C11 - N1 - N2	-4.0(4)
$C_1 = C_1 = C_0 = C_3$	-1/8.7(3)	02-C11-N1-C7	0.7(4)
$C_{1} = C_{2} = C_{1} = C_{1}$	11.4(3) 1750(2)	C_{12} C_{11} N_{11} C_{11}	-1/9.8(3)
$C_1 - C_2 - C_7 - O_1$	-1/5.0(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.2(3)
$C_{1} = C_{2} = C_{7} = N_{1}$	137.2(2)	$C_2 = C_1 $	-31.3(3)
$C_1 - C_2 - C_1 - N_1$	-49.2(3)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-1/2.3(2)
-12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	-109.1(2)	$U_1 - U_1 - N_1 - N_2$	-100.4(2)
C1 - C2 - C7 - C8	64.5 (3)	$C_2 - C_1 - N_1 - N_2$	132.8 (2)
UI-C7/-C8-C9	103.5 (2)	C8—C7—N1—N2	12.0 (2)

N1—C7—C8—C9	-11.4 (2)	C8—C9—N2—N1	-1.1 (3)
C2—C7—C8—C9	-133.0 (2)	C10—C9—N2—N1	179.5 (2)
C7—C8—C9—N2	8.5 (3)	C11—N1—N2—C9	176.7 (2)
C7—C8—C9—C10	-172.0 (2)	C7—N1—N2—C9	-7.5 (3)
C18—C13—C14—C15	0.0 (4)	O4—C23—N3—N4	173.4 (2)
Cl2—C13—C14—C15	-179.9 (2)	C24—C23—N3—N4	-7.5 (4)
C18—C13—C14—C19	-177.4 (3)	O4—C23—N3—C19	2.1 (4)
Cl2—C13—C14—C19	2.7 (3)	C24—C23—N3—C19	-178.8 (2)
C13—C14—C15—C16	1.0 (4)	O3—C19—N3—C23	72.1 (3)
C19—C14—C15—C16	178.6 (3)	C14—C19—N3—C23	-53.7 (3)
C14—C15—C16—C17	-1.4 (5)	C20—C19—N3—C23	-175.6 (2)
C15—C16—C17—C18	0.8 (6)	O3—C19—N3—N4	-99.7 (2)
C14—C13—C18—C17	-0.7 (5)	C14—C19—N3—N4	134.4 (2)
Cl2—C13—C18—C17	179.2 (3)	C20—C19—N3—N4	12.5 (3)
C16—C17—C18—C13	0.3 (6)	C20-C21-N4-N3	-1.9 (3)
C13—C14—C19—O3	-176.7 (2)	C22-C21-N4-N3	178.6 (2)
C15—C14—C19—O3	5.9 (3)	C23—N3—N4—C21	-179.6 (2)
C13-C14-C19-N3	-52.0 (3)	C19—N3—N4—C21	-7.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D··· A	D—H···A	
01H104 ⁱ	0.82	1.97	2.748 (3)	159	
O3—H3 <i>A</i> O2 ⁱⁱ	0.82	2.03	2.792 (3)	155	
C8—H8 <i>B</i> O3 ⁱⁱⁱ	0.97	2.53	3.410 (3)	151	
C20—H20 <i>B</i> O1 ^{iv}	0.97	2.50	3.354 (3)	147	

Symmetry codes: (i) *x*+1, -*y*+1/2, *z*+1/2; (ii) *x*-1, -*y*+1/2, *z*-1/2; (iii) *x*+1, *y*, *z*; (iv) *x*-1, *y*, *z*.