organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylate monohydrate

Rehana Yasmeen,^a Muhammad Zia-ur-Rehman,^b* Muhammad Azim Khattak,^a Muhammad Nadeem Arshad^c and Islam Ullah Khan^d

^aDepartment of Chemistry, Gomal University, Dera Ismail Khan, Pakistan, ^bApplied Chemistry Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore 54600, Pakistan, CDepartment of Chemistry, University of Gujrat 50781, Gujrat, Pakistan, and ^dMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan Correspondence e-mail: rehman_pcsir@hotmail.com

Received 29 January 2012; accepted 2 February 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.163; data-to-parameter ratio = 17.3.

In the structure of the title compound, $C_{13}H_{14}N_2O_3 \cdot H_2O$, all atoms of the organic molecule except the terminal methyl group of the ethyl group attached to the N atom of the pyridinone ring are roughly coplanar, with an r.m.s. deviation of 0.0897 Å. In the crystal, C-H···O contacts link pairs of naphthyridine molecules into head-to-tail dimers. These are joined by strong $O-H \cdots O$ hydrogen bonds from the water molecules into infinite chains along the *a* axis.

Related literature

For the coordination properties of 1,8-naphthyridine ligands, see: Gavrilova & Bosnich (2004); Mintert & Sheldrick (1995). For their biological activity, see: Chen et al. (2001); Ferrarini et al. (2000); Roma et al. (2000). For related structures, see: Deeba, Khan, Zia-ur-Rehman, Çaylak & Şahin (2009); Deeba, Khan, Zia-ur-Rehman, Şahin & Çaylak (2009). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

$C_{13}H_{14}N_2O_3 \cdot H_2O_3$	V = 1266.27 (6) Å ³
$M_r = 264.28$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 4.6989 (1) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 23.7246 (7) Å	T = 296 K
c = 11.3635 (3) Å	$0.19 \times 0.09 \times 0.07 \text{ mm}$
$\beta = 91.646 \ (1)^{\circ}$	

Data collection

Bruker Kappa APEXII CCD diffractometer

12165 measured reflections

Refinement

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

3128 independent reflections

 $R_{\rm int}=0.026$

2152 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H4B\cdotsO1^{i}$	1.01 (4)	2.02 (4)	2.994 (2)	163 (3)
$O4-H4A\cdots O1^{ii}$	0.84 (3)	2.09 (3)	2.928 (2)	176 (3)
$O4 - H4B \cdots O3^{i}$	1.01 (4)	2.56 (3)	3.224 (2)	124 (2)
C3−H3···O2 ⁱⁱⁱ	0.93	2.40	3.293 (2)	160
$C11 - H11C \cdots O4^{iv}$	0.96	2.59	3.539 (3)	168

Symmetry codes: (i) x - 1, y, z - 1; (ii) x, y, z - 1; (iii) -x + 2, -y + 1, -z + 1; (iv) $x, -y + \frac{1}{2}, z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors are grateful to the Higher Education Commission of Pakistan for the purchase of the X-ray Diffractometer at the Material Science Laboratories, Department of Chemistry, Government College University, Lahore, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5191).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem 44 2374-2378
- Deeba, F., Khan, M. A., Zia-ur-Rehman, M., Çaylak, N. & Şahin, E. (2009). Acta Cryst. E65, 0860-0861.
- Deeba, F., Khan, M. A., Zia-ur-Rehman, M., Şahin, E. & Çaylak, N. (2009). Acta Cryst. E65, o3152-o3153.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Ferrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Med. Chem. 35, 815-819.

Gavrilova, A. L. & Bosnich, B. (2004). *Chem. Rev.* **104**, 349–383. Mintert, M. & Sheldrick, W. S. (1995). *J. Chem. Soc. Dalton Trans.* pp. 2663– 2669.

Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o630-o631 [doi:10.1107/S1600536812004333]

Methyl 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylate monohydrate

Rehana Yasmeen, Muhammad Zia-ur-Rehman, Muhammad Azim Khattak, Muhammad Nadeem Arshad and Islam Ullah Khan

S1. Comment

1,8-Naphthyridines have been cited in the literature for their interesting complexation properties due to the possibility of their bonding with metals in several coordination modes. These include monodendate, chelating bidendate and dinuclear bridging coordination (Gavrilova & Bosnich, 2004; Mintert & Sheldrick, 1995). These compounds are also biologically active with anti-bacterial (Chen *et al.*, 2001), anti-hypertensive (Ferrarini *et al.*, 2000) and anti-inflammatory (Roma *et al.*, 2000) properties. In a continuation of our work on the synthesis, biological activity and crystal structures of various 1,8-naphthyridines (Deeba, Khan, Zia-ur-Rehman, Çaylak & Şahin, 2009; Deeba, Khan, Zia-ur-Rehman, Şahin & Çaylak, 2009), we herein report the synthesis and crystal structure of the title compound (I) (Fig. 1; Scheme 1).

The two fused aromatic rings (C1/C2/C3/N2/C4/C5) & (C4/C5/C6/C7/C8/N1) are co-planar with root mean square (r. m. s.) deviations of 0.0103 Å & 0.0023 Å and are twisted at a dihedral angle of 1.20 (10)°. The methyl ester unit attached to the pyridinone ring is also planar with an r. m. s. deviation of 0.0051 Å and oriented at dihedral angles of 10.97 (15)° & 11.41 (15)° with respect to the pyridinone and pyridine rings respectively. In addition, a solvent water molecule is also present and stabilizes the crystal structure through intermolecular hydrogen bonding interactions. The molecule exhibits C—H…O type weak intermolecular hydrogen bonding and forms dimers through the formation of ten membered ring motif $R_2^2(10)$ (Bernstein, *et al.*, 1995). These are further connected *via* water molecules along the *a* axis to form infinite chains. On the other hand, one of the hydrogen atoms of water molecule is also involved in the formation of six membered ring motif with O atoms of pyridinone ring and the ester (Fig. 2, Table. 1).

S2. Experimental

A mixture of 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid (100.0 mmol; 23.22 g) and thionyl chloride (50 ml) was refluxed for a period of 4 h followed by distillation (under reduced pressure) of the excess thionyl chloride. After complete removal of thionyl chloride, methanol (100 ml) was slowly added and stirred for two hours followed by the addition of ice cooled water (300 ml). The contents were washed with aqueous sodium carbonate (0.5 M) and water respectively followed by crystallization from methanol to give suitable crystals. Yield: 92%.

S3. Refinement

All C-bonded H-atoms were positioned in an idealized geometry, with C—H = 0.95Å for aromatic CH and C—H =0.98Å for the methyl group. U(H) was set to $1.2U_{eq}$ for all C_{aromatic} and $1.5U_{eq}$ for the C_{methyl} & oxygen atoms. The H atoms of the water molecule were located in a difference Fourier map and refined freely with U(H) = $1.5U_{eq}(O)$.

Figure 1 The structure of (**I**) with 50% displacement ellipsoids.

F(000) = 560

 $\theta = 2.5 - 27.9^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K

Needle, white

 $0.19 \times 0.09 \times 0.07 \text{ mm}$

 $D_x = 1.386 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3082 reflections

Figure 2

A crystal packing plot parallel to *a* with hydrogen bonds drawn as dashed lines.

Methyl 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylate monohydrate

Crystal data

C₁₃H₁₄N₂O₃·H₂O $M_r = 264.28$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 4.6989 (1) Å b = 23.7246 (7) Å c = 11.3635 (3) Å $\beta = 91.646$ (1)° V = 1266.27 (6) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD	2152 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.026$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 28.3^{\circ}, \theta_{\rm min} = 1.7^{\circ}$
Graphite monochromator	$h = -6 \rightarrow 6$
φ and ω scans	$k = -29 \rightarrow 31$
12165 measured reflections	$l = -14 \rightarrow 15$
3128 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.163$	neighbouring sites
S = 0.98	H atoms treated by a mixture of independent
3128 reflections	and constrained refinement
181 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0956P)^2 + 0.2245P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.6664 (3)	0.38694 (7)	0.77501 (14)	0.0320 (4)
C2	0.7843 (3)	0.42644 (7)	0.69281 (14)	0.0309 (4)
C3	0.6891 (3)	0.42666 (7)	0.57746 (15)	0.0328 (4)
H3	0.7687	0.4530	0.5274	0.039*
C4	0.3706 (3)	0.35103 (7)	0.60267 (14)	0.0307 (4)
C5	0.4552 (3)	0.34821 (7)	0.72122 (14)	0.0310 (4)
C6	0.3282 (4)	0.30618 (7)	0.78758 (16)	0.0381 (4)
H6	0.3764	0.3023	0.8671	0.046*
C7	0.1332 (4)	0.27070 (7)	0.73569 (16)	0.0398 (4)
H7	0.0481	0.2426	0.7796	0.048*
C8	0.0627 (3)	0.27700 (7)	0.61615 (15)	0.0349 (4)
C9	1.0005 (3)	0.46984 (7)	0.72231 (14)	0.0330 (4)
C10	1.2543 (4)	0.51876 (9)	0.87123 (18)	0.0525 (5)
H10A	1.4364	0.5102	0.8395	0.079*
H10B	1.2713	0.5202	0.9556	0.079*
H10C	1.1896	0.5546	0.8418	0.079*
C11	-0.1477 (4)	0.23821 (8)	0.55685 (18)	0.0448 (4)
H11A	-0.2117	0.2543	0.4833	0.067*
H11B	-0.3074	0.2329	0.6065	0.067*
H11C	-0.0590	0.2025	0.5428	0.067*
C12	0.3991 (4)	0.39784 (8)	0.40625 (15)	0.0421 (4)
H12A	0.4415	0.4358	0.3801	0.051*
H12B	0.1945	0.3926	0.3994	0.051*
C13	0.5409 (5)	0.35647 (9)	0.32742 (18)	0.0560 (6)

H19A	0.4711	0.3616	0.2479	0.084*	
H19B	0.4995	0.3188	0.3527	0.084*	
H19C	0.7430	0.3625	0.3311	0.084*	
N1	0.1777 (3)	0.31671 (6)	0.55030 (12)	0.0346 (3)	
N2	0.4905 (3)	0.39199 (6)	0.53125 (12)	0.0331 (3)	
01	0.7306 (3)	0.38354 (6)	0.88110 (11)	0.0449 (4)	
O2	1.1179 (3)	0.49770 (6)	0.64973 (12)	0.0529 (4)	
03	1.0520 (3)	0.47558 (6)	0.83641 (11)	0.0483 (4)	
O4	0.2506 (4)	0.38795 (8)	0.03949 (15)	0.0678 (5)	
H4B	0.099 (7)	0.3912 (13)	-0.025 (3)	0.102*	
H4A	0.394 (7)	0.3865 (14)	-0.003 (3)	0.102*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0303 (8)	0.0350 (9)	0.0306 (8)	0.0031 (6)	-0.0017 (6)	0.0001 (7)
C2	0.0285 (8)	0.0320 (8)	0.0322 (8)	0.0010 (6)	-0.0005 (6)	-0.0023 (7)
C3	0.0334 (8)	0.0311 (8)	0.0339 (9)	-0.0009 (6)	0.0000 (6)	0.0004 (7)
C4	0.0294 (8)	0.0304 (8)	0.0321 (8)	0.0033 (6)	-0.0007 (6)	-0.0006 (6)
C5	0.0301 (8)	0.0305 (8)	0.0324 (8)	0.0020 (6)	0.0002 (6)	0.0006 (7)
C6	0.0403 (9)	0.0399 (10)	0.0341 (9)	-0.0007 (7)	0.0005 (7)	0.0025 (7)
C7	0.0406 (9)	0.0368 (9)	0.0421 (10)	-0.0045 (7)	0.0036 (7)	0.0030 (8)
C8	0.0291 (8)	0.0325 (8)	0.0433 (9)	0.0011 (6)	0.0029 (7)	-0.0062 (7)
C9	0.0301 (8)	0.0349 (9)	0.0338 (9)	0.0015 (7)	-0.0019 (6)	-0.0006 (7)
C10	0.0581 (12)	0.0563 (12)	0.0427 (11)	-0.0220 (10)	-0.0066 (9)	-0.0083 (9)
C11	0.0428 (10)	0.0412 (10)	0.0505 (11)	-0.0069 (8)	0.0010 (8)	-0.0079 (8)
C12	0.0480 (10)	0.0434 (10)	0.0342 (9)	-0.0084(8)	-0.0126 (8)	0.0078 (8)
C13	0.0709 (14)	0.0609 (13)	0.0361 (10)	-0.0118 (11)	-0.0036 (9)	-0.0068 (9)
N1	0.0317 (7)	0.0341 (7)	0.0377 (8)	-0.0003 (6)	-0.0017 (6)	-0.0028 (6)
N2	0.0348 (7)	0.0347 (8)	0.0296 (7)	-0.0011 (6)	-0.0041 (5)	0.0011 (6)
01	0.0472 (7)	0.0558 (8)	0.0313 (7)	-0.0130 (6)	-0.0069 (5)	0.0055 (6)
O2	0.0583 (8)	0.0615 (9)	0.0388 (7)	-0.0266 (7)	-0.0020 (6)	0.0047 (6)
O3	0.0571 (8)	0.0544 (8)	0.0331 (7)	-0.0227 (6)	-0.0046 (6)	-0.0034 (6)
04	0.0642 (10)	0.0912 (13)	0.0477 (9)	-0.0087 (9)	-0.0003 (8)	0.0004 (8)

Geometric parameters (Å, °)

C1-01	1.237 (2)	С9—03	1.319 (2)	
C1—C2	1.445 (2)	C10—O3	1.445 (2)	
C1—C5	1.472 (2)	C10—H10A	0.9600	
C2—C3	1.373 (2)	C10—H10B	0.9600	
С2—С9	1.478 (2)	C10—H10C	0.9600	
C3—N2	1.340 (2)	C11—H11A	0.9600	
С3—Н3	0.9300	C11—H11B	0.9600	
C4—N1	1.344 (2)	C11—H11C	0.9600	
C4—N2	1.395 (2)	C12—N2	1.479 (2)	
C4—C5	1.395 (2)	C12—C13	1.498 (3)	
С5—С6	1.395 (2)	C12—H12A	0.9700	

C6—C7	1.366 (2)	C12—H12B	0.9700
С6—Н6	0.9300	C13—H19A	0.9600
С7—С8	1.397 (2)	С13—Н19В	0.9600
С7—Н7	0.9300	С13—Н19С	0.9600
C8—N1	1.328 (2)	O4—H4B	1.01 (4)
C8—C11	1.497 (2)	O4—H4A	0.84 (3)
C9—O2	1.203 (2)		
O1—C1—C2	125.82 (15)	H10A—C10—H10B	109.5
O1—C1—C5	120.43 (15)	O3—C10—H10C	109.5
C2—C1—C5	113.75 (14)	H10A—C10—H10C	109.5
C3—C2—C1	119.95 (14)	H10B-C10-H10C	109.5
C3—C2—C9	114.64 (14)	C8—C11—H11A	109.5
C1—C2—C9	125.38 (14)	C8—C11—H11B	109.5
N2—C3—C2	125.18 (15)	H11A—C11—H11B	109.5
N2—C3—H3	117.4	C8—C11—H11C	109.5
С2—С3—Н3	117.4	H11A—C11—H11C	109.5
N1—C4—N2	116.27 (14)	H11B—C11—H11C	109.5
N1—C4—C5	124.62 (15)	N2—C12—C13	113.02 (16)
N2—C4—C5	119.10 (14)	N2—C12—H12A	109.0
C6—C5—C4	116.23 (15)	C13—C12—H12A	109.0
C6—C5—C1	121.03 (15)	N2—C12—H12B	109.0
C4—C5—C1	122.75 (14)	C13—C12—H12B	109.0
C7—C6—C5	119.97 (16)	H12A—C12—H12B	107.8
С7—С6—Н6	120.0	С12—С13—Н19А	109.5
С5—С6—Н6	120.0	C12—C13—H19B	109.5
C6—C7—C8	119.43 (16)	H19A—C13—H19B	109.5
С6—С7—Н7	120.3	С12—С13—Н19С	109.5
С8—С7—Н7	120.3	H19A—C13—H19C	109.5
N1—C8—C7	122.34 (15)	H19B—C13—H19C	109.5
N1—C8—C11	117.19 (16)	C8—N1—C4	117.42 (14)
C7—C8—C11	120.48 (16)	C3—N2—C4	119.21 (14)
O2—C9—O3	122.85 (15)	C3—N2—C12	119.92 (14)
O2—C9—C2	123.56 (15)	C4—N2—C12	120.87 (13)
O3—C9—C2	113.58 (14)	C9—O3—C10	116.29 (14)
O3—C10—H10A	109.5	H4B—O4—H4A	99 (3)
O3—C10—H10B	109.5		
O1—C1—C2—C3	-178.42 (16)	C3—C2—C9—O2	-10.8 (2)
C5-C1-C2-C3	2.3 (2)	C1—C2—C9—O2	171.14 (17)
O1—C1—C2—C9	-0.5 (3)	C3—C2—C9—O3	168.67 (15)
C5-C1-C2-C9	-179.75 (14)	C1—C2—C9—O3	-9.3 (2)
C1—C2—C3—N2	-0.6 (2)	C7—C8—N1—C4	0.8 (2)
C9—C2—C3—N2	-178.77 (15)	C11—C8—N1—C4	-178.85 (14)
N1-C4-C5-C6	0.4 (2)	N2-C4-N1-C8	179.33 (14)
N2-C4-C5-C6	-179.72 (14)	C5—C4—N1—C8	-0.8 (2)
N1-C4-C5-C1	-179.66 (14)	C2—C3—N2—C4	-1.5 (2)
N2—C4—C5—C1	0.2 (2)	C2—C3—N2—C12	177.86 (16)
			× /

O1—C1—C5—C6	-1.5 (2)	N1—C4—N2—C3	-178.45 (14)
C2-C1-C5-C6	177.77 (14)	C5—C4—N2—C3	1.7 (2)
O1—C1—C5—C4	178.56 (15)	N1-C4-N2-C12	2.2 (2)
C2-C1-C5-C4	-2.1 (2)	C5-C4-N2-C12	-177.68 (15)
C4—C5—C6—C7	0.0 (2)	C13—C12—N2—C3	99.01 (19)
C1—C5—C6—C7	-179.89 (16)	C13—C12—N2—C4	-81.6 (2)
C5—C6—C7—C8	0.0 (3)	O2—C9—O3—C10	1.6 (3)
C6—C7—C8—N1	-0.4 (3)	C2—C9—O3—C10	-177.90 (15)
C6—C7—C8—C11	179.24 (16)		

Hydrogen-bond geometry (Å, °)

$D \cdots A$ $D \longrightarrow H \cdots A$
4) 2.994 (2) 163 (3)
3) 2.928 (2) 176 (3)
3) 3.224 (2) 124 (2)
3.293 (2) 160
3.539 (3) 168
-1 3 3

Symmetry codes: (i) *x*-1, *y*, *z*-1; (ii) *x*, *y*, *z*-1; (iii) –*x*+2, –*y*+1, –*z*+1; (iv) *x*, –*y*+1/2, *z*+1/2.