

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl N-({[2-(2-methoxyacetamido)-4-(phenylsulfanyl)phenyl]amino}-[(methoxycarbonyl)imino]methyl)carbamate

Hoong-Kun Fun,^a* + Madhukar Hemamalini,^a K. Divya,^b B. Narayana^b and B. K. Sarojini^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and CDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India Correspondence e-mail: hkfun@usm.my

Received 18 January 2012; accepted 22 January 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.001 Å; R factor = 0.033; wR factor = 0.097; data-to-parameter ratio = 20.8.

In the title compound, $C_{20}H_{22}N_4O_6S$, the phenyl and benzene rings form a dihedral angle of 58.75 (5)°. Intramolecular N- $H \cdots O$ and $N - H \cdots N$ hydrogen bonds generate two S(6) and one S(7) ring motif, respectively. In the crystal, molecules are linked via N-H···O, N-H···N, C-H···S and C-H···O hydrogen bonds, forming two-dimensional networks parallel to the *bc* plane.

Related literature

For the pharmacological properties of febantel, see: Wollweber et al. (1978); Delatour et al. (1982); Su et al. (2004). For a related structure, see: Yıldırım et al. (2007). For hydrogenbond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

0.29 mm

22847 measured reflections

 $R_{\rm int} = 0.023$

refinement $\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

6133 independent reflections

5455 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Experimental

Crystal data

V = 2101.1 (2) Å ³
Z = 4
Mo Ka radiation
$\mu = 0.20 \text{ mm}^{-1}$
T = 296 K
$0.54 \times 0.34 \times 0.29$

Data collection

Bruker APEXII DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.900, \ T_{\max} = 0.945$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.097$ S = 1.056133 reflections 295 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N4-H1N4\cdots N3$ $N1-H1N1\cdots O1$ $N1-H1N1\cdots O5^{i}$ $N2-H1N2\cdots O3$	0.867 (15) 0.848 (16) 0.848 (16) 0.869 (16)	2.104 (15) 2.058 (15) 2.425 (16) 1.879 (17)	2.8159 (12) 2.7224 (11) 3.1162 (11) 2.6002 (12)	138.9 (13) 134.7 (13) 139.2 (13) 139.3 (15)
$C9-H9A\cdots O3^{ii}$ $C13-H13A\cdots S1^{iii}$ $C14-H14B\cdots O1^{iv}$	0.96 0.97 0.96	2.38 2.80 2.52	3.2652 (15) 3.7678 (11) 3.3796 (14)	153 179 149

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) x, y - 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship. BN thanks the UGC, India, for financial assistance through SAP and a BSR one-time grant for the purchase of chemicals.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2701).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Delatour, P., Yoshimura, H., Garnier, F. & Benoit, E. (1982). Recl Med. Vet. 158, 369-373.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

organic compounds

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Su, S.-C., Chou, H.-H., Chang, P.-C., Liu, C.-H. & Chou, S.-S. (2004). J. Food Drug Anal. 12, 244–253.

Wollweber, H., Kölling, H., Widdig, H., Thomas, H., Schulz, H.-P. & Mürmann, P. (1978). Arzneim Forsch. (Drug. Res.), 28, 2193–2195.

Yıldırım, S. Ö., Akkurt, M., Jarrahpour, A. A., Rezaei, S. & Heinemann, F. W. (2007). Acta Cryst. E63, 03478–03479.

supporting information

Acta Cryst. (2012). E68, o581-o582 [doi:10.1107/S1600536812002760]

Methyl *N*-({[2-(2-methoxyacetamido)-4-(phenylsulfanyl)phenyl]amino}[(meth-oxycarbonyl)imino]methyl)carbamate

Hoong-Kun Fun, Madhukar Hemamalini, K. Divya, B. Narayana and B. K. Sarojini

S1. Comment

Febantel, *N*-{2-[2,3-bis-(methoxycarbonyl)-guanido]-5-(phenylthio)-phenyl}-2-methoxy acetamide, is used as an anthelmintic against gastrointestinal parasites in animals (Wollweber *et al.*, 1978; Su *et al.*, 2004). It is a pro-drug, which get converted into an active compound soon after administration (Delatour *et al.*, 1982). The metabolic pathway of febantel is converted directly to either fenbendazole or oxfendazole, which is achieved via febantel sulfoxide as an intermediate.

The molecular structure of the title compound is shown in Fig. 1. Each of the two intramolecular N—H···O hydrogen bonds generates an S(6) ring motif and another intramolecular N—H···N hydrogen bond generates an S(7) ring motif (Bernstein *et al.*, 1995). The dihedral angle between the two benzene rings (C1–C6:C15–C20) is 58.75 (5)°. The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges and are comparable to a related structure (Yıldırım *et al.*, 2007).

In the crystal structure (Fig. 2), molecules are linked *via* N—H···O, N—H···N, C—H···S and C—H···O (Table 1) hydrogen bonds, forming two-dimensional networks parallel to the *bc* plane.

S2. Experimental

A febantel sample was obtained from CAD Pharma Ltd, Bangalore. Crystals of the title compound were obtained from ethanol by slow evaporation method (m.p. 392–395 K).

S3. Refinement

Atoms H1N1, H1N2 and H1N4 were located from a difference Fourier map and refined freely [N—H = 0.848 (16)– 0.868 (17) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93–0.97 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was applied to the methyl groups. One outliner, (011), was omitted in the final refinement.

Figure 1

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. Intramolecular hydrogen bonds shown by dashed lines.

Figure 2

The crystal packing of the title compound viewed along the *a* axis. H atoms not involved in intermolecular hydrogen bonds (dashed lines) are omitted.

Methyl N-({[2-(2-methoxyacetamido)-4- (phenylsulfanyl)phenyl]amino}

[(methoxycarbonyl)imino]methyl)carbamate

Crystal data C₂₀H₂₂N₄O₆S $M_r = 446.48$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.6975 (7) Å b = 10.6921 (7) Å c = 18.3732 (13) Å $\beta = 91.068$ (1)° V = 2101.1 (2) Å³ Z = 4

Data collection

Bruker APEXII DUO CCD area-detector	22847 measured reflections
diffractometer	6133 independent reflections
Radiation source: fine-focus sealed tube	5455 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.023$
φ and ω scans	$\theta_{\rm max} = 30.1^\circ, \theta_{\rm min} = 1.9^\circ$
Absorption correction: multi-scan	$h = -15 \rightarrow 15$
(SADABS; Bruker, 2009)	$k = -14 \rightarrow 15$
$T_{\min} = 0.900, \ T_{\max} = 0.945$	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.097$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
6133 reflections	and constrained refinement
295 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0543P)^2 + 0.5625P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.38 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

F(000) = 936

 $\theta = 2.7 - 30.1^{\circ}$

 $\mu = 0.20 \text{ mm}^{-1}$ T = 296 K

Block, colourless

 $0.54 \times 0.34 \times 0.29 \text{ mm}$

 $D_{\rm x} = 1.411 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9985 reflections

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinate	es and isotropic o	or eauivalent isotroi	pic displacement	parameters ((A^2)
				P	/

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.42127 (3)	0.88419 (2)	0.249402 (14)	0.02036 (7)	
01	0.77450 (7)	1.22767 (7)	0.60941 (4)	0.02052 (16)	

02	0.91564 (7)	1.16372 (8)	0.69502 (4)	0.02151 (16)
O3	1.02647 (7)	0.84660 (8)	0.59724 (4)	0.02269 (16)
O4	0.99201 (7)	0.71932 (7)	0.50204 (4)	0.01985 (15)
05	0.42655 (7)	0.70638 (7)	0.50505 (4)	0.01913 (15)
O6	0.72299 (7)	0.63922 (7)	0.58737 (4)	0.02042 (16)
N1	0.72953 (7)	1.04818 (8)	0.50714 (4)	0.01405 (15)
N2	0.88185 (8)	1.04196 (8)	0.59968 (5)	0.01607 (16)
N3	0.86819 (7)	0.88433 (8)	0.50935 (5)	0.01461 (16)
N4	0.61754 (8)	0.80419 (8)	0.50169 (5)	0.01422 (16)
C1	0.59824 (8)	0.88924 (9)	0.44371 (5)	0.01307 (17)
C2	0.52211 (9)	0.85788 (9)	0.38387 (5)	0.01432 (17)
H2A	0.4786	0.7826	0.3835	0.017*
C3	0.51118 (9)	0.93868 (9)	0.32487 (5)	0.01544 (18)
C4	0.57771 (9)	1.05126 (10)	0.32423 (5)	0.01744 (19)
H4A	0.5725	1.1040	0.2840	0.021*
C5	0.65156 (9)	1.08331 (9)	0.38420 (5)	0.01613 (18)
H5A	0.6949	1.1587	0.3843	0.019*
C6	0.66180 (8)	1.00409 (9)	0.44448 (5)	0.01342 (17)
C7	0.82806 (8)	0.99016 (9)	0.53816 (5)	0.01355 (17)
C8	0.84971 (9)	1.15290 (10)	0.63288 (5)	0.01655 (18)
C9	0.89359 (11)	1.27827 (12)	0.73505 (7)	0.0272 (2)
H9A	0.9310	1.2718	0.7828	0.041*
H9B	0.8052	1.2914	0.7392	0.041*
H9C	0.9299	1.3474	0.7097	0.041*
C10	0.96600 (9)	0.82134 (9)	0.54164 (5)	0.01516 (18)
C11	1.09167 (10)	0.64191 (10)	0.53104 (6)	0.0216 (2)
H11A	1.0989	0.5678	0.5019	0.032*
H11B	1.0735	0.6189	0.5802	0.032*
H11C	1.1689	0.6875	0.5303	0.032*
C12	0.53768 (9)	0.71360 (9)	0.52285 (5)	0.01480 (17)
C13	0.59492 (9)	0.61584 (10)	0.57286 (6)	0.0188 (2)
H13A	0.5503	0.6150	0.6183	0.023*
H13B	0.5857	0.5340	0.5506	0.023*
C14	0.77597 (11)	0.54161 (11)	0.63081 (6)	0.0246 (2)
H14A	0.8636	0.5570	0.6384	0.037*
H14B	0.7646	0.4630	0.6063	0.037*
H14C	0.7353	0.5390	0.6769	0.037*
C15	0.33882 (9)	1.01680 (9)	0.21622 (5)	0.01638 (18)
C16	0.29868 (10)	1.11434 (11)	0.26040 (6)	0.0221 (2)
H16A	0.3188	1.1147	0.3099	0.026*
C17	0.22839 (11)	1.21108 (11)	0.22990 (7)	0.0276 (2)
H17A	0.2022	1.2765	0.2593	0.033*
C18	0.19673 (10)	1.21137 (11)	0.15617 (7)	0.0252 (2)
H18A	0.1502	1.2768	0.1362	0.030*
C19	0.23499 (9)	1.11348 (10)	0.11272 (6)	0.0201 (2)
H19A	0.2127	1.1124	0.0636	0.024*
C20	0.30667 (9)	1.01637 (10)	0.14207 (5)	0.01720 (18)
H20A	0.3331	0.9514	0.1124	0.021*

supporting information

H1N4	0.6939 (14)	0.7947 (14)	0.5174 (8)	0.026 (4)*
H1N1	0.7094 (14)	1.1187 (15)	0.5245 (8)	0.024 (4)*
H1N2	0.9432 (15)	0.9972 (16)	0.6171 (9)	0.032 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.03029 (14)	0.01510 (12)	0.01531 (13)	-0.00098 (9)	-0.00951 (9)	0.00060 (9)
01	0.0204 (3)	0.0201 (4)	0.0209 (4)	0.0025 (3)	-0.0047 (3)	-0.0038 (3)
O2	0.0242 (4)	0.0229 (4)	0.0172 (4)	0.0013 (3)	-0.0074 (3)	-0.0051 (3)
03	0.0247 (4)	0.0224 (4)	0.0206 (4)	0.0052 (3)	-0.0102 (3)	-0.0019 (3)
O4	0.0179 (3)	0.0178 (3)	0.0236 (4)	0.0047 (3)	-0.0061 (3)	-0.0035 (3)
05	0.0155 (3)	0.0220 (4)	0.0199 (4)	-0.0032 (3)	-0.0014 (3)	0.0031 (3)
O6	0.0190 (3)	0.0193 (4)	0.0227 (4)	-0.0005 (3)	-0.0054 (3)	0.0077 (3)
N1	0.0145 (3)	0.0132 (4)	0.0144 (4)	0.0004 (3)	-0.0033 (3)	-0.0013 (3)
N2	0.0169 (4)	0.0161 (4)	0.0150 (4)	0.0008 (3)	-0.0050 (3)	-0.0008(3)
N3	0.0136 (3)	0.0148 (4)	0.0153 (4)	0.0004 (3)	-0.0029 (3)	0.0000 (3)
N4	0.0137 (3)	0.0146 (4)	0.0142 (4)	-0.0011 (3)	-0.0032 (3)	0.0035 (3)
C1	0.0130 (4)	0.0134 (4)	0.0127 (4)	0.0007 (3)	-0.0009 (3)	0.0016 (3)
C2	0.0150 (4)	0.0139 (4)	0.0140 (4)	-0.0010 (3)	-0.0017 (3)	0.0003 (3)
C3	0.0174 (4)	0.0157 (4)	0.0131 (4)	0.0002 (3)	-0.0031 (3)	-0.0003 (3)
C4	0.0214 (4)	0.0167 (4)	0.0141 (4)	-0.0013 (3)	-0.0031 (3)	0.0034 (3)
C5	0.0177 (4)	0.0139 (4)	0.0167 (4)	-0.0017 (3)	-0.0020 (3)	0.0015 (3)
C6	0.0127 (4)	0.0140 (4)	0.0134 (4)	0.0008 (3)	-0.0020 (3)	-0.0004 (3)
C7	0.0131 (4)	0.0145 (4)	0.0130 (4)	-0.0024 (3)	-0.0011 (3)	0.0018 (3)
C8	0.0159 (4)	0.0187 (4)	0.0150 (4)	-0.0031 (3)	-0.0018 (3)	-0.0013 (4)
C9	0.0285 (5)	0.0294 (6)	0.0234 (5)	0.0021 (4)	-0.0071 (4)	-0.0124 (5)
C10	0.0141 (4)	0.0151 (4)	0.0162 (4)	-0.0011 (3)	-0.0011 (3)	0.0015 (3)
C11	0.0178 (4)	0.0182 (5)	0.0287 (6)	0.0046 (4)	-0.0034 (4)	0.0016 (4)
C12	0.0178 (4)	0.0139 (4)	0.0127 (4)	-0.0013 (3)	-0.0003 (3)	0.0005 (3)
C13	0.0197 (4)	0.0176 (5)	0.0189 (5)	-0.0037 (3)	-0.0035 (3)	0.0052 (4)
C14	0.0290 (5)	0.0211 (5)	0.0236 (5)	0.0070 (4)	-0.0038 (4)	0.0050 (4)
C15	0.0159 (4)	0.0175 (4)	0.0156 (4)	-0.0018 (3)	-0.0024 (3)	0.0016 (3)
C16	0.0223 (5)	0.0263 (5)	0.0176 (5)	-0.0002 (4)	-0.0012 (4)	-0.0036 (4)
C17	0.0246 (5)	0.0254 (5)	0.0328 (6)	0.0050 (4)	-0.0005 (4)	-0.0077 (5)
C18	0.0192 (5)	0.0223 (5)	0.0338 (6)	0.0023 (4)	-0.0049 (4)	0.0036 (4)
C19	0.0171 (4)	0.0236 (5)	0.0195 (5)	-0.0022 (4)	-0.0049 (3)	0.0055 (4)
C20	0.0166 (4)	0.0194 (5)	0.0156 (4)	-0.0014 (3)	-0.0024 (3)	0.0004 (4)

Geometric parameters (Å, °)

S1—C3	1.7712 (10)	C4—C5	1.3868 (14)	
S1-C15	1.7720 (10)	C4—H4A	0.9300	
O1—C8	1.2081 (13)	C5—C6	1.3971 (13)	
O2—C8	1.3357 (12)	C5—H5A	0.9300	
О2—С9	1.4502 (14)	С9—Н9А	0.9600	
O3—C10	1.2289 (12)	С9—Н9В	0.9600	
O4—C10	1.3433 (12)	С9—Н9С	0.9600	

O4—C11	1.4438 (12)	C11—H11A	0.9600
O5—C12	1.2296 (12)	C11—H11B	0.9600
O6—C13	1.4132 (12)	C11—H11C	0.9600
O6—C14	1.4249 (13)	C12—C13	1.5136 (14)
N1—C7	1.3410 (12)	C13—H13A	0.9700
N1—C6	1.4288 (12)	C13—H13B	0.9700
N1—H1N1	0.848 (16)	C14—H14A	0.9600
N2—C7	1.3752 (12)	C14—H14B	0.9600
N2—C8	1.3803 (13)	C14—H14C	0.9600
N2—H1N2	0.868 (17)	C15—C16	1.3943 (15)
N3—C7	1 3241 (12)	C_{15} C_{20}	1 3989 (14)
N3—C10	1.3702(12)	$C_{16} - C_{17}$	1 3905 (16)
N4—C12	1.3702(12) 1 3533(12)	C16—H16A	0.9300
N4—C1	1.33339(12) 1 4129(12)	C17— $C18$	1 3903 (17)
N4—H1N4	0.867(15)	C17—H17A	0.9300
C1-C2	1 3968 (13)	C18-C19	1,3830(17)
C1 - C6	1.5900(13) 1.4036(13)	C_{18} H_{18A}	0.9300
$C_1 = C_0$	1.4030(13) 1 3804(13)	C_{10} C_{20}	1.3033(14)
$C_2 = H_2 \Lambda$	0.0300	C19 H19A	0.0300
$C_2 = M_2 M_1$	1 3086 (14)	C_{20} H_{20A}	0.9300
05-04	1.5900 (14)	C20—1120/Y	0.9300
C3—S1—C15	105.41 (5)	H9B—C9—H9C	109.5
C8	114.73 (9)	O3-C10-O4	121.17 (9)
C10-04-C11	115.12 (8)	O3—C10—N3	129.63 (9)
$C_{13} - O_{6} - C_{14}$	110 50 (8)	04-C10-N3	109 19 (8)
C7-N1-C6	124 93 (8)	O4-C11-H11A	109.19 (0)
C7—N1—H1N1	1171(10)	04—C11—H11B	109.5
C6—N1—H1N1	117.9 (10)	H11A—C11—H11B	109.5
C7-N2-C8	127 26 (9)	04— $C11$ — $H11C$	109.5
C7 - N2 - H1N2	127.20(5) 1124(11)	H11A—C11—H11C	109.5
C8—N2—H1N2	120.3(11)	H11B-C11-H11C	109.5
C7-N3-C10	119 84 (8)	05-C12-N4	125 52 (9)
$C_{12} - N_{4} - C_{1}$	126 38 (8)	05-C12-C13	119 76 (9)
C12 $N4$ $H1N4$	120.50(0) 1146(10)	N4-C12-C13	114 73 (8)
C1—N4—H1N4	1167(10)	06-C13-C12	111 85 (8)
$C^2 - C^1 - C^6$	119 55 (9)	06-C13-H13A	109.2
$C_2 - C_1 - N_4$	120.92 (8)	C12—C13—H13A	109.2
C6-C1-N4	119 44 (8)	06-C13-H13B	109.2
$C_{3}-C_{2}-C_{1}$	120 28 (9)	C12—C13—H13B	109.2
$C_3 - C_2 - H_2 A$	119.9	H_{13A} $-C_{13}$ $-H_{13B}$	107.9
C1 - C2 - H2A	119.9	06-C14-H14A	109.5
$C_2 - C_3 - C_4$	120 42 (9)	O6-C14-H14B	109.5
$C_2 = C_3 = S_1$	116 29 (7)	H14A - C14 - H14B	109.5
C4-C3-S1	123.06 (8)	06-C14-H14C	109.5
C_{5} C_{4} C_{3}	119 24 (9)	H14A - C14 - H14C	109.5
$C_{2} = C_{1} = C_{2}$	120.4	H14B $C14$ $H14C$	109.5
C_{3} C_{4} H_{4}	120.4	C_{16} C_{15} C_{20}	119 78 (0)
$C_4 - C_5 - C_6$	120.7	$C_{10} = C_{10} = -C_{20}$	123 70 (8)
	121.01 (7)	010 013 01	123.10 (0)

C4—C5—H5A	119.5	C20—C15—S1	116.38 (8)
С6—С5—Н5А	119.5	C17—C16—C15	119.46 (10)
C5—C6—C1	119.45 (9)	C17—C16—H16A	120.3
C5—C6—N1	118.02 (8)	C15—C16—H16A	120.3
C1—C6—N1	122.35 (9)	C18—C17—C16	120.96 (11)
N3—C7—N1	118.91 (9)	С18—С17—Н17А	119.5
N3—C7—N2	122.61 (9)	С16—С17—Н17А	119.5
N1—C7—N2	118.46 (9)	C19—C18—C17	119.43 (10)
O1—C8—O2	125.82 (10)	C19—C18—H18A	120.3
O1—C8—N2	125.50 (9)	C17—C18—H18A	120.3
O2—C8—N2	108.68 (9)	C18—C19—C20	120.48 (10)
O2—C9—H9A	109.5	C18—C19—H19A	119.8
O2—C9—H9B	109.5	С20—С19—Н19А	119.8
H9A—C9—H9B	109.5	C19—C20—C15	119.87 (10)
O2—C9—H9C	109.5	C19—C20—H20A	120.1
H9A—C9—H9C	109.5	C15—C20—H20A	120.1
C12—N4—C1—C2	-27.56 (14)	C8—N2—C7—N1	-3.23 (15)
C12—N4—C1—C6	155.89 (9)	C9—O2—C8—O1	-1.40 (15)
C6—C1—C2—C3	1.22 (14)	C9—O2—C8—N2	178.50 (9)
N4—C1—C2—C3	-175.32 (9)	C7—N2—C8—O1	-6.22 (17)
C1—C2—C3—C4	1.01 (15)	C7—N2—C8—O2	173.88 (9)
C1—C2—C3—S1	175.56 (7)	C11—O4—C10—O3	1.94 (14)
C15—S1—C3—C2	142.14 (8)	C11—O4—C10—N3	-178.42 (8)
C15—S1—C3—C4	-43.47 (10)	C7—N3—C10—O3	1.18 (16)
C2—C3—C4—C5	-2.11 (15)	C7—N3—C10—O4	-178.42 (8)
S1—C3—C4—C5	-176.27 (8)	C1—N4—C12—O5	-15.45 (16)
C3—C4—C5—C6	0.98 (15)	C1—N4—C12—C13	164.86 (9)
C4—C5—C6—C1	1.23 (14)	C14—O6—C13—C12	-176.40 (9)
C4—C5—C6—N1	-174.02 (9)	O5—C12—C13—O6	-179.96 (9)
C2-C1-C6-C5	-2.32 (14)	N4—C12—C13—O6	-0.25 (13)
N4—C1—C6—C5	174.27 (9)	C3—S1—C15—C16	-31.93 (10)
C2-C1-C6-N1	172.71 (8)	C3—S1—C15—C20	152.41 (8)
N4—C1—C6—N1	-10.69 (13)	C20-C15-C16-C17	-0.84 (16)
C7—N1—C6—C5	-123.35 (10)	S1-C15-C16-C17	-176.36 (9)
C7—N1—C6—C1	61.54 (13)	C15-C16-C17-C18	0.54 (17)
C10—N3—C7—N1	-177.78 (8)	C16—C17—C18—C19	0.49 (18)
C10—N3—C7—N2	0.88 (14)	C17—C18—C19—C20	-1.21 (16)
C6—N1—C7—N3	0.55 (14)	C18—C19—C20—C15	0.90 (15)
C6—N1—C7—N2	-178.17 (8)	C16—C15—C20—C19	0.14 (15)
C8—N2—C7—N3	178.10 (9)	S1—C15—C20—C19	175.98 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H…A
N4—H1 <i>N</i> 4…N3	0.867 (15)	2.104 (15)	2.8159 (12)	138.9 (13)
N1—H1 <i>N</i> 1…O1	0.848 (16)	2.058 (15)	2.7224 (11)	134.7 (13)
N1— $H1N1$ ···O5 ⁱ	0.848 (16)	2.425 (16)	3.1162 (11)	139.2 (13)

supporting information

N2—H1 <i>N</i> 2···O3	0.869 (16)	1.879 (17)	2.6002 (12)	139.3 (15)
С9—Н9А…ОЗ ^{іі}	0.96	2.38	3.2652 (15)	153
C13—H13A····S1 ⁱⁱⁱ	0.97	2.80	3.7678 (11)	179
C14—H14 B ····O1 ^{iv}	0.96	2.52	3.3796 (14)	149

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, y+1/2, -z+3/2; (iii) x, -y+3/2, z+1/2; (iv) x, y-1, z.