

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

LiCe₉Mo₁₆O₃₅

Patrick Gougeon* and Philippe Gall

Sciences Chimiques de Rennes, UMR CNRS No. 6226, Université de Rennes I - INSA Rennes, Avenue du Général Leclerc, 35042 Rennes CEDEX, France Correspondence e-mail: Patrick.Gougeon@univ-rennes1.fr

Received 17 February 2012; accepted 22 February 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (Ce–O) = 0.002 Å; R factor = 0.016; wR factor = 0.033; data-to-parameter ratio = 22.2.

The structure of lithium nonacerium hexadecamolybdenum pentatridecaoxide, LiCe₉Mo₁₆O₃₅, is isotypic with LiNd₉Mo₁₆O₃₅ [Gougeon Gall, Cuny, Gautier, Le Polles, Delevoye & Trebosc (2011). Chem. Eur. J. 17, 13806-13813]. It is characterized by $Mo_{16}O_{26}{}^{i}O_{10}{}^{a}$ units (where i = inner and a =apical) containing Mo₁₆ clusters that share some of their O atoms to form infinite molybdenum cluster chains running parallel to the *b* axis and separated by Li^+ and Ce^{3+} cations. The Mo₁₆ cluster units are centred at Wyckoff positions 2c and have point-group symmetry 2/m. The Li⁺ atom, in a flattened octahedron of O atoms, is in a 2a Wyckoff position with 2/msymmetry. The Ce³⁺ cations have coordination numbers to the O atoms of 6, 9 or 10. Two Ce, two Mo and five O atoms lie on sites with *m* symmetry (Wyckoff site 4*i*), and one Ce and one O atom on sites with 2/m symmetry (Wyckoff sites 2b and 2d, respectively).

Related literature

For the crystal structure of the LiNd₉Mo₁₆O₃₅ compound, see: Gougeon *et al.* (2011). For details of the *i*- and *a*-type ligand notation, see: Schäfer & von Schnering (1964). For compounds containing Mo₁₀ clusters, see: Hibble *et al.* (1988); Dronskowski & Simon (1989); Gougeon *et al.* (1990, 1991, 2003, 2007); Dronskowski *et al.* (1991); Gall *et al.* (1993, 1995, 1999); Gall & Gougeon (1993, 1994*a*,*b*, 1998); Gougeon & Gall (2002). The oxidation states of the Mo, Ce and Li atoms were estimated using the data given by Brown & Wu (1976).

Experimental

Crystal data

LiCe₉Mo₁₆O₃₅ $M_r = 3363.06$ Monoclinic, C2/m a = 18.3000 (2) Å b = 8.6326 (1) Å c = 9.8172 (1) Å $\beta = 102.0953$ (7)° $V = 1516.46 (3) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 19.66 \text{ mm}^{-1}$ T = 293 K $0.15 \times 0.12 \times 0.06 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (*PLATON*; Spek, 2009) $T_{min} = 0.190, T_{max} = 0.418$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.016$ $wR(F^2) = 0.033$ S = 1.293511 reflections 21270 measured reflections 3511 independent reflections 3383 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

158 parameters $\Delta \rho_{\text{max}} = 1.13 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -1.33 \text{ e } \text{ Å}^{-3}$

Table 1 Selected bond lengths (Å).

Li-O7	1.861 (3)	Mo1-O2	1.9759 (16)
Li-O10	2.4135 (16)	Mo1-O2 ^v	1.9759 (16)
Ce1-O3 ⁱ	2.3603 (16)	Mo1-O4 ^v	2.0332 (17)
Ce1-O12	2.3916 (16)	Mo1-O4	2.0332 (17)
Ce1-O1 ⁱⁱ	2.4055 (5)	Mo1-O1	2.045 (3)
Ce1-O8	2.4159 (16)	Mo1-Mo3	2.7003 (3)
Ce1-O10 ⁱⁱⁱ	2.5499 (19)	Mo1-Mo2	2.7129 (3)
Ce1-O4 ⁱⁱ	2.7161 (18)	Mo2-O3 ^{ix}	2.0277 (16)
Ce1-O2 ⁱⁱ	2.874 (2)	Mo2-O2	2.077 (2)
Ce1-O11	2.8865 (16)	Mo2-O7	2.0773 (16)
Ce1-O7 ^{iv}	2.8959 (17)	Mo2-O5	2.0985 (16)
Ce2-O12	2.337 (3)	Mo2-O10	2.0997 (19)
Ce2-O3 ^v	2.3829 (19)	Mo2-Mo4 ⁱⁱ	2.6412 (3)
Ce2-O3	2.3829 (19)	Mo2-Mo5 ^{xii}	2.7691 (3)
Ce2-O1 ^{iv}	2.622 (2)	Mo2-Mo3	2.7739 (2)
Ce2-O2 ^{vi}	2.6352 (17)	Mo2-Mo2 ^v	2.7851 (4)
Ce2-O2 ^{iv}	2.6352 (17)	Mo3-O8	2.0315 (16)
Ce2-O5 ⁱⁱ	2.8054 (16)	Mo3-O5	2.0688 (16)
Ce2-O5 ^{vii}	2.8054 (16)	Mo3-O11	2.0795 (16)
Ce2-O2 ^{vii}	2.9625 (17)	Mo3-O4	2.0860 (19)
Ce2-O2 ⁱⁱ	2.9625 (17)	Mo3-Mo3 ^v	2.7338 (4)
Ce3-O8	2.3670 (17)	Mo3-Mo4 ⁱⁱ	2.7375 (3)
Ce3-O8 ^{viii}	2.3670 (17)	Mo3-Mo5	2.7405 (3)
Ce3-O4 ⁱⁱ	2.5309 (18)	Mo3-Mo4xiii	2.8391 (3)
Ce3-O4 ^{ix}	2.5309 (18)	Mo3-Mo5 ^{xii}	2.8928 (3)
Ce3-O5 ^{viii}	2.7980 (17)	Mo4-O6	2.0145 (14)
Ce3-O5	2.7980 (17)	Mo4-O8xiv	2.0758 (19)
Ce3-O4 ^{viii}	3.0001 (17)	Mo4-O5 ⁱⁱ	2.0797 (19)
Ce3-O4	3.0001 (17)	Mo4-O10 ⁱⁱ	2.0857 (16)
Ce3-O11 ⁱⁱ	3.089 (3)	Mo4-O9	2.1141 (2)
Ce4-O6 ^x	2.280 (2)	Mo4-Mo4 ^{xv}	2.7958 (3)
Ce4-O6	2.280 (2)	Mo5-O11	2.078 (3)
Ce4-O3	2.4244 (19)	Mo5-O10 ^{xii}	2.0950 (16)
Ce4–O3 ^x	2.4244 (19)	Mo5-O10 ⁱⁱⁱ	2.0950 (16)
Ce4-O3 ^v	2.4244 (19)	Mo5-Mo5 ^{xii}	2.9030 (5)
Ce4-O3 ^{xi}	2.4244 (19)		
Ce4-O3 ^v Ce4-O3 ^{xi}	2.4244 (19) 2.4244 (19)	Mo5–Mo5 ^{xii}	2.9030 (:

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *COLLECT*; data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Bergerhoff, 1996); software used to prepare material for publication: *SHELXL97*.

Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system of the 'Centre de diffractométrie de l'Université de Rennes I'.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2029).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.
- Brown, I. D. & Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.
- Dronskowski, R. & Simon, A. (1989). Angew. Chem. Int. Ed. Engl. 28, 758– 760.
- Dronskowski, R., Simon, A. & Mertin, W. (1991). Z. Anorg. Allg. Chem. 602, 49–63.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Gall, P., Gautier, R., Halet, J.-F. & Gougeon, P. (1999). Inorg. Chem. 38, 4455–4461.
- Gall, P. & Gougeon, P. (1993). Acta Cryst. C49, 659-663.
- Gall, P. & Gougeon, P. (1994a). Acta Cryst. C50, 7-9.
- Gall, P. & Gougeon, P. (1994b). Acta Cryst. C50, 1183-1185.

Gall, P. & Gougeon, P. (1998). Z. Kristallogr. New Cryst. Struct. 213, 1-2. Gall, P., Gougeon, P., Greenblatt, M., Jones, E. B., Mc Carroll, W. H. &

- Ramanujachary, K. V. (1995). Croat. Chem. Acta, 68, 849–860.
- Gall, P., Noel, H. & Gougeon, P. (1993). Mater. Res. Bull. 28, 1225-1231.
- Gougeon, P. & Gall, P. (2002). Acta Cryst. E58, i65-i67.
- Gougeon, P., Gall, P., Cuny, J., Gautier, R., Le Polles, L., Delevoye, L. & Trebosc, J. (2011). Chem. Eur. J. 17, 13806–13813.
- Gougeon, P., Gall, P., Halet, J.-F. & Gautier, R. (2003). Acta Cryst. B59, 472– 478.
- Gougeon, P., Gall, P. & McCarroll, W. H. (2007). Acta Cryst. E63, i119-i121.
- Gougeon, P., Gall, P. & Sergent, M. (1991). Acta Cryst. C47, 421-423.
- Gougeon, P., Potel, M. & Sergent, M. (1990). Acta Cryst. C46, 1188-1190.
- Hibble, S. J., Cheetham, A. K., Bogle, A. R. L., Wakerley, H. R. & Cox, D. E. (1988). J. Am. Chem. Soc. 110, 3295–3296.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Schäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833-845.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, i21-i22 [doi:10.1107/S160053681200801X]

$LiCe_9Mo_{16}O_{35}$

Patrick Gougeon and Philippe Gall

S1. Comment

LiCe₉Mo₁₆O₃₅ is isotopic with the LiNd₉Mo₁₆O₃₅ (Gougeon *et al.*, 2011) structure type. The crystal structure (Fig. 1) is based on $Mo_{16}O_{26}iO_{10}a$ cluster units (Fig. 2) sharing two Oⁱ or four O^a ligands (for details of the i- and a-type ligand notation, see Schäfer & von Schnering (1964)) to form infinite molybdenum cluster chains running parallel to the b axis. The Mo₁₆ core of the Mo₁₆O₂₆ iO_{10}^{a} unit can be seen as resulting of the fusion of two bioctahedral Mo₁₀ clusters through the sharing of three edges per Mo_{10} cluster. The Mo_{10} cluster results itself from metal edge-sharing of two Mo_6 octahedra and was first observed forming infinite chains in the MMo₅O₈ (M = Ca, Sr, Sn, Pb, La–Gd) compounds (Hibble *et al.*, 1988; Dronskowski & Simon, 1989; Gougeon et al., 1990, 1991, 2003, 2007; Dronskowski et al., 1991; Gall et al., 1993, 1995; Gall & Gougeon, 1994*a*,*b*; Gougeon & Gall, 2002) and more later as isolated cluster in the $R_{16}Mo_{21}O_{56}$ (R = La, Ce, Pr, and Nd) series (Gall & Gougeon, 1993, 1998; Gall et al., 1999). The Mo₁₆O₂₆iO₁₀^a cluster is centered on 2b position and thus has point-group symmetry 2/m. The Mo-Mo distances lie between 2.6412 (3) and 2.9030 (5) Å compared to 2.725 Å in the Mo metal and the Mo—O distances between 1.9759 (16) and 2.11407 (18) Å. The Mo—O chains, which have the connectivity formula $Mo_{16}O_{24}{}^{i}O_{22}{}^{i\cdot}O_{6}{}^{a}O_{4/2}{}^{a\cdot a}$ are separated by the Li⁺ and Ce³⁺ cations. The Li⁺ cation occupies a highly tetragonally distorted octahedral site of O atoms of symmetry 2/m centered at the origin of the unit cell. The Li-O distances in the equatorial plane are 2.4135 (16) Å [Li—O10] and the two trans Li—O7 bonds are 1.861 (3) Å. The coordination numbers of the Ce ions are 6, 9 or 10 with Ce—O distances spreading over a wide range [2.280 (2) to 3.089 (3) Å]. By using the bond-length-bond-strength formula (Brown & Wu, 1976) for the Mo-O, Ce-O and Li-O bonds (s = $[d(Mo-O)/1.882]^{-6}$, s = $[d(Ce-O)/2.160]^{-6.5}$ and s = $[d(Li-O)/1.378]^{-4.065}$, an assignment of oxidation states to the Mo, Ce and Li atoms was made. The valence of each independent Mo atom was determined as follows: Mo(1) +3.36, Mo(2) +2.78, Mo(3) +2.29, Mo(4) +2.81, and Mo(5) +1.6. From these values, we could deduce an average Mo oxidation state of + 2.60 which is close to that based on the stoichiometry, + 2.625, when considering all the Ce ions as trivalent and the Li ion monovalent. Bond-valence sums of the Ce-O bonds was +3.08, +3.11, +3.09, and +3.30 for Ce1, Ce2, Ce3, and Ce4, respectively. For the Li atom, a value of ± 1.00 was found. It is interesting to note that for the total valence sum $\Sigma(Mo-O) + \Sigma(Ce-O) + \Sigma(Li-O)$, we obtained a value of 70.5 per formula unit, which is in very good agreement with the theoretical value of 70 based on the 35 O atoms.

S2. Experimental

Single crystals of $LiCe_9Mo_{16}O_{35}$ were obtained from a mixture of Li_2MoO_4 , CeO_2 , MoO_3 , and Mo with the nominal composition $Li_2CeMo_6O_{12}$. Before use, Mo powder was reduced under H_2 flowing gas at 1273 K during 10 h in order to eliminate any trace of oxygen. The initial mixture (ca 4 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc welding system. The charge was heated at the rate of 300 K/h up to 2000 K, temperature which was held for 18 h, then cooled at 100 K/h down to 1373 K and finally furnace cooled.

Figure 1

View of the crystal structure of $LiCe_9Mo_{16}O_{35}$ (Displacement ellipsoids are drawn at the 97% probability level).

Figure 2

Plot showing the atom-numbering scheme of the $Mo_{16}O_{26}{}^{i}O_{10}{}^{a}$ units. Displacement ellipsoids are drawn at the 97% probability level.

lithium nonacerium hexadecamolybdenum pentatridecaoxide

Crystal data	
$LiCe_9Mo_{16}O_{35}$	F(000) = 2954
$M_r = 3363.06$	$D_{\rm x} = 7.365 {\rm Mg} {\rm m}^{-3}$
Monoclinic, C2/m	Mo $K\alpha$ radiation, $\lambda = 0.71069$ Å
a = 18.3000 (2) Å	Cell parameters from 21270 reflections
b = 8.6326(1) Å	$\theta = 0.9 - 35.0^{\circ}$
c = 9.8172 (1) Å	$\mu = 19.66 \text{ mm}^{-1}$
$\beta = 102.0953 (7)^{\circ}$	T = 293 K
V = 1516.46 (3) Å ³	Multi-faceted fragment, black
Z=2	$0.15 \times 0.12 \times 0.06 \text{ mm}$
Data collection	
Nonius KappaCCD	21270 measured reflections
diffractometer	3511 independent reflections
Radiation source: fine-focus sealed tube	3383 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.027$
φ scans ($\kappa = 0$) and additional ω scans	$\theta_{\text{max}} = 35.0^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$
Absorption correction: multi-scan	$h = -26 \rightarrow 29$
(<i>PLATON</i> ; Spek, 2009)	$k = -13 \rightarrow 13$
$T_{\min} = 0.190, \ T_{\max} = 0.418$	$l = -15 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.016$	$w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 6.2844P]$
$wR(F^2) = 0.033$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.29	$(\Lambda/\sigma)_{max} = 0.004$
3511 reflections158 parameters0 restraintsPrimary atom site location: structure-invariant direct methods	$\begin{split} \Delta \rho_{\text{max}} &= 1.13 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{\text{min}} &= -1.33 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: } SHELXL97 \text{ (Sheldrick,} \\ 2008), \text{Fc}^* &= \text{kFc}[1 + 0.001 \text{ kFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ \text{Extinction coefficient: } 0.00166 \text{ (3)} \end{split}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Li	-0.5000	-0.5000	1.0000	0.038 (4)
Cel	-0.345982 (8)	-0.273486 (15)	0.201055 (12)	0.00556 (3)
Ce2	-0.191529 (11)	-0.5000	0.071345 (17)	0.00625 (4)
Ce3	-0.298077 (11)	0.0000	0.534154 (17)	0.00582 (4)
Ce4	0.0000	-0.5000	0.0000	0.00664 (5)
Mo1	-0.290730 (16)	-0.5000	0.74596 (2)	0.00368 (5)
Mo2	-0.401044 (12)	-0.33869 (2)	0.828637 (17)	0.00338 (4)
Mo3	-0.388827 (11)	-0.34166 (2)	0.551746 (17)	0.00319 (4)
Mo4	-0.000772 (11)	-0.31629 (2)	0.357312 (17)	0.00311 (4)
Mo5	-0.490663 (16)	-0.5000	0.35678 (2)	0.00316 (5)
O1	-0.17701 (15)	-0.5000	0.8112 (2)	0.0070 (4)
O2	-0.28523 (11)	-0.3349 (2)	0.88711 (16)	0.0064 (3)
O3	-0.10014 (11)	-0.6759 (2)	0.02198 (16)	0.0062 (3)
O4	-0.27246 (11)	-0.3355 (2)	0.60863 (16)	0.0059 (3)
O5	-0.38352 (11)	-0.1616 (2)	0.69257 (16)	0.0051 (3)
O6	0.00695 (16)	-0.5000	0.2346 (2)	0.0066 (4)
O7	-0.40015 (16)	-0.5000	0.9860 (2)	0.0067 (4)
O8	-0.38482 (10)	-0.1769 (2)	0.40574 (15)	0.0050 (3)
O9	0.0000	-0.5000	0.5000	0.0059 (6)
O10	-0.51815 (10)	-0.33622 (19)	0.79643 (16)	0.0050 (3)
O11	-0.37455 (15)	-0.5000	0.3998 (2)	0.0052 (4)
O12	-0.26903 (15)	-0.5000	0.2327 (2)	0.0063 (4)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Li	0.007 (6)	0.070 (12)	0.037 (7)	0.000	0.005 (5)	0.000
Cel	0.00563 (6)	0.00466 (5)	0.00630 (5)	0.00095 (4)	0.00106 (4)	0.00077 (3)
Ce2	0.00587 (9)	0.00703 (8)	0.00639 (6)	0.000	0.00251 (5)	0.000
Ce3	0.00568 (9)	0.00564 (7)	0.00553 (6)	0.000	-0.00025 (5)	0.000
Ce4	0.00575 (12)	0.00932 (11)	0.00530 (9)	0.000	0.00216 (7)	0.000
Mo1	0.00269 (12)	0.00349 (10)	0.00447 (9)	0.000	-0.00012 (7)	0.000
Mo2	0.00339 (9)	0.00276 (7)	0.00372 (6)	0.00000 (6)	0.00011 (5)	-0.00036 (5)
Mo3	0.00291 (9)	0.00265 (7)	0.00385 (6)	-0.00007 (6)	0.00036 (5)	0.00014 (5)
Mo4	0.00306 (9)	0.00221 (7)	0.00386 (6)	-0.00005 (6)	0.00029 (5)	-0.00010 (5)
Mo5	0.00309 (12)	0.00254 (10)	0.00372 (9)	0.000	0.00047 (7)	0.000
01	0.0034 (11)	0.0067 (10)	0.0095 (9)	0.000	-0.0014 (7)	0.000
O2	0.0061 (8)	0.0056 (7)	0.0068 (6)	0.0004 (6)	-0.0004(5)	-0.0021 (5)
O3	0.0073 (8)	0.0050 (7)	0.0063 (6)	0.0000 (6)	0.0010 (5)	0.0013 (5)
O4	0.0038 (8)	0.0062 (7)	0.0077 (6)	-0.0006 (6)	0.0010 (5)	0.0006 (5)
05	0.0044 (8)	0.0043 (7)	0.0062 (6)	-0.0001 (6)	0.0006 (5)	0.0000 (5)
06	0.0110 (12)	0.0039 (10)	0.0047 (8)	0.000	0.0013 (7)	0.000
O7	0.0089 (12)	0.0051 (10)	0.0058 (8)	0.000	0.0011 (7)	0.000
08	0.0039 (8)	0.0051 (7)	0.0055 (6)	-0.0001 (6)	0.0000 (5)	0.0009 (5)
09	0.0100 (17)	0.0036 (13)	0.0041 (11)	0.000	0.0014 (10)	0.000
O10	0.0037 (8)	0.0041 (7)	0.0073 (6)	-0.0001 (6)	0.0013 (5)	0.0000 (5)
O11	0.0046 (11)	0.0060 (10)	0.0053 (8)	0.000	0.0017 (7)	0.000
012	0.0063 (12)	0.0063 (10)	0.0060 (8)	0.000	0.0002 (7)	0.000

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Li—07 ⁱ	1.861 (3)	Mo3—O11	2.0795 (16)
Li—O7	1.861 (3)	Mo3—O4	2.0860 (19)
Li—O10 ⁱⁱ	2.4135 (16)	Mo3—Mo3 ⁱⁱ	2.7338 (4)
Li—O10 ⁱⁱⁱ	2.4135 (16)	Mo3—Mo4 ^v	2.7375 (3)
Li—O10 ⁱ	2.4135 (16)	Mo3—Mo5	2.7405 (3)
Li—O10	2.4135 (16)	Mo3—Mo4 ^{xv}	2.8391 (3)
Ce1-O3 ^{iv}	2.3603 (16)	Mo3—Mo5 ^{xiv}	2.8928 (3)
Ce1-012	2.3916 (16)	Mo4—O6	2.0145 (14)
Ce1—O1 ^v	2.4055 (5)	Mo4—O8 ^{xvi}	2.0758 (19)
Ce1-08	2.4159 (16)	Mo4—O5 ^v	2.0797 (19)
Ce1—O10vi	2.5499 (19)	Mo4—O10 ^v	2.0857 (16)
Ce1—O4 ^v	2.7161 (18)	Mo4—O9	2.1141 (2)
Ce1—O2 ^v	2.874 (2)	Mo4—Mo2 ^v	2.6412 (3)
Ce1-011	2.8865 (16)	Mo4—Mo5 ^{xvii}	2.7367 (2)
Ce1—O7 ^{vii}	2.8959 (17)	Mo4—Mo3 ^v	2.7375 (3)
Ce2-012	2.337 (3)	Mo4—Mo4 ^{xviii}	2.7958 (3)
Ce2—O3 ⁱⁱ	2.3829 (19)	Mo4—Mo3 ^{xvi}	2.8391 (3)
Ce2—O3	2.3829 (19)	Mo4—Mo4 ⁱⁱ	3.1718 (4)
Ce2—O1 ^{vii}	2.622 (2)	Mo5—O11	2.078 (3)
Ce2—O2 ^{viii}	2.6352 (17)	Mo5—O10 ^{xiv}	2.0950 (16)

$C_{a2} = O_{2}^{vii}$	26352(17)	$M_{0}5 = O10^{vi}$	2 0050 (16)
Ce2 = 02	2.0352(17) 2.8054(16)	Mo5 - Mo4xix	2.0950(10)
$C_{e2} = 05^{\circ}$	2.8054(10)		2.7307(2)
$C_{2} = O_{2}^{ix}$	2.8034(10)	$M_{10} = M_{10} 2^{11}$	2.7307(2)
$Ce2 = O2^{x}$	2.9625(17)	M05 - M03''	2.7405 (3)
	2.9625 (17)	$MO5 - MO2^{AV}$	2.7691 (3)
	2.360 (2)	$Mo5 - Mo2^{v_1}$	2.7691 (3)
Ce3—08	2.3670 (17)	Mo5—Mo3 ^{xiv}	2.8928 (3)
Ce3—O8 ^x	2.3670 (17)	Mo5—Mo3 ^{vi}	2.8928 (3)
Ce3—O4 ^v	2.5309 (18)	Mo5—Mo5 ^{xiv}	2.9030 (5)
Ce3—O4 ^{x1}	2.5309 (18)	Ol—Cel ^v	2.4055 (5)
$Ce3-O5^{x}$	2.7980 (17)	O1—Ce1 ^{ix}	2.4055 (5)
Ce3—O5	2.7980 (17)	O1—Ce2 ^{xx}	2.622 (2)
Ce3—O4 ^x	3.0001 (17)	O1—Ce3 ^v	3.325 (2)
Ce3—O4	3.0001 (17)	O2—Ce2 ^{xx}	2.6352 (17)
Ce3—O11 ^v	3.089 (3)	O2—Ce1 ^v	2.874 (2)
Ce4—O6 ^{xii}	2.280 (2)	O2—Ce2 ^v	2.9625 (17)
Ce4—O6	2.280 (2)	O3—Mo2 ^{ix}	2.0277 (16)
Ce4—O3	2.4244 (19)	O3—Ce1 ^{xxi}	2.3603 (16)
Ce4—O3 ^{xii}	2.4244 (19)	O4—Ce3 ^v	2.5309 (18)
Ce4—O3 ⁱⁱ	2.4244 (19)	O4—Ce1 ^v	2.7161 (18)
Ce4—O3 ^{xiii}	2.4244 (19)	O5—Mo4 ^v	2.0797 (19)
Mo1—O2	1.9759 (16)	O5—Ce2 ^v	2.8054 (16)
Mo1—O2 ⁱⁱ	1.9759 (16)	O6—Mo4 ⁱⁱ	2.0145 (14)
Mo1—O4 ⁱⁱ	2.0332 (17)	O7—Mo2 ⁱⁱ	2.0773 (16)
Mo1—O4	2.0332 (17)	O7—Ce1 ^{xx}	2.8959 (17)
Mo1-O1	2.045 (3)	O7—Ce1 ^{xxii}	2.8959 (17)
Mo1—Mo3 ⁱⁱ	2,7003 (3)	$08-M04^{xv}$	2.0758 (19)
Mol-Mo3	2 7003 (3)	$09 - Mo4^{ii}$	2.1141 (2)
$Mo1 - Mo2^{ii}$	2 7129 (3)	$09 - Mo4^{xviii}$	2.1111(2) 2.1141(2)
Mol-Mo2	2.7129(3)	$09 - Mo4^{xxiii}$	2.1111(2) 2.1141(2)
$Mo2 - O3^{xi}$	2.7129(3) 2.0277(16)	$09-Ce^{3v}$	2.1141(2) 3.6397(2)
$M_{02} = 03$	2.0277(10)	$O_{2} C_{2}^{3xxiv}$	3.6397(2)
Mo2O2	2.077(2)	O_{3} O_{4}^{V}	2.0397(2)
$M_{02} = 07$	2.0775(10) 2.0095(16)	$O10 M_{0}5xiy$	2.0857(10)
$M_{02} = 0.10$	2.0983(10) 2.0007(10)		2.0930 (10)
$M_{12} = M_{14} A_{14}$	2.0997(19)		2.3499 (19)
$M_0 2 = M_0 5^{xiy}$	2.6412(3)	011—M03"	2.0795 (16)
	2.7691 (3)		2.8865 (16)
Mo2—Mo3	2.7739 (2)		3.089 (3)
Mo2—Mo2 ⁿ	2.7851 (4)	012—Ce3 ^v	2.360 (2)
Mo3—O8	2.0315 (16)	O12—Ce1 ⁿ	2.3916 (16)
Mo3—O5	2.0688 (16)		
O7 ⁱ —Li—O7	180.0	O2 ⁱⁱ —Mo1—Mo2	95.29 (6)
O7 ⁱ —Li—O10 ⁱⁱ	95.41 (7)	O4 ⁱⁱ —Mo1—Mo2	142.46 (6)
O7—Li—O10 ⁱⁱ	84.59 (7)	O4—Mo1—Mo2	94.36 (5)
O7 ⁱ —Li—O10 ⁱⁱⁱ	84.59 (7)	O1—Mo1—Mo2	132.72 (5)
O7—Li—O10 ⁱⁱⁱ	95.41 (7)	Mo3 ⁱⁱ —Mo1—Mo2	92.568 (10)
O10 ⁱⁱ —Li—O10 ⁱⁱⁱ	180.0	Mo3—Mo1—Mo2	61.651 (7)

$O7^{i}$ —Li—O10 ⁱ	84.59 (7)	Mo2 ⁱⁱ —Mo1—Mo2	61.767 (10)
$O7$ — Li — $O10^i$	95.41 (7)	O2—Mo1—Ce2 ^{xx}	52.36 (5)
O10 ⁱⁱ —Li—O10 ⁱ	108.28 (8)	O2 ⁱⁱ —Mo1—Ce2 ^{xx}	52.36 (5)
O10 ⁱⁱⁱ —Li—O10 ⁱ	71.72 (8)	O4 ⁱⁱ —Mo1—Ce2 ^{xx}	120.27 (5)
O7 ⁱ —Li—O10	95.41 (7)	O4—Mo1—Ce2 ^{xx}	120.27 (5)
O7—Li—O10	84.59 (7)	O1—Mo1—Ce2 ^{xx}	52.01 (7)
O10 ⁱⁱ —Li—O10	71.72 (8)	Mo3 ⁱⁱ —Mo1—Ce2 ^{xx}	145.707 (6)
O10 ⁱⁱⁱ —Li—O10	108.28 (8)	Mo3—Mo1—Ce2 ^{xx}	145.707 (6)
$O10^{i}$ —Li—O10	180.000 (1)	$Mo2^{ii}$ — $Mo1$ — $Ce2^{xx}$	90.187 (8)
07^{i} Li Mo2	138 20 (5)	Mo2-Mo1-Ce2xx	90 187 (8)
$07 - 1i - Mo^2$	41.80(5)	Ω^2 —Mo1—Cel ^v	57 59 (6)
010^{ii} I i Mo2	78 79 (4)	Ω^{2ii} Mo1 Cel ^v	11778(5)
$O10^{iii}$ Li Mo2	101.21(4)	O_2^{ii} Mol Colv	117.70(5)
$O10^{i}$ Li $M_{0}2$	101.21(4) 126.78(4)	O4 - Mo1 - Cel	111.02(3)
O10 - Li - Mo2	130.76(4)	O4 Mo1 Celv	33.03 (3)
	43.22 (4)		44.290 (8)
$0/-L1-M02^{2}$	41.80 (5)	Mo3 th —Mo1—Cel ^v	144.943 (9)
O'/—L1—Mo2 ¹	138.20 (5)	Mo3—Mo1—Celv	96.635 (6)
$O10^{n}$ —Li—Mo2 ¹	101.21 (4)	Mo2 ⁿ —Mo1—Ce1 ^v	151.707 (9)
O10 ⁱⁱⁱ —Li—Mo2 ⁱ	78.79 (4)	Mo2—Mo1—Ce1 ^v	99.651 (5)
O10 ⁱ —Li—Mo2 ⁱ	43.22 (4)	$Ce2^{xx}$ —Mo1—Ce1 ^v	67.487 (5)
O10—Li—Mo2 ⁱ	136.78 (4)	O2—Mo1—Ce1 ^{ix}	117.78 (5)
Mo2—Li—Mo2 ⁱ	180.000 (6)	O2 ⁱⁱ —Mo1—Ce1 ^{ix}	57.59 (6)
O7 ⁱ —Li—Mo2 ⁱⁱ	138.20 (5)	O4 ⁱⁱ —Mo1—Ce1 ^{ix}	53.03 (5)
O7—Li—Mo2 ⁱⁱ	41.80 (5)	O4—Mo1—Ce1 ^{ix}	111.62 (5)
O10 ⁱⁱ —Li—Mo2 ⁱⁱ	43.22 (4)	O1—Mo1—Ce1 ^{ix}	44.290 (8)
O10 ⁱⁱⁱ —Li—Mo2 ⁱⁱ	136.78 (4)	Mo3 ⁱⁱ —Mo1—Ce1 ^{ix}	96.635 (6)
O10 ⁱ —Li—Mo2 ⁱⁱ	101.21 (4)	Mo3—Mo1—Ce1 ^{ix}	144.943 (9)
010—Li—Mo2 ⁱⁱ	78.79 (4)	Mo2 ⁱⁱ —Mo1—Ce1 ^{ix}	99.651 (5)
$M_0 2$ —Li— $M_0 2^{ii}$	54 260 (7)	Mo2—Mo1—Ce1 ^{ix}	151 707 (9)
$Mo2^{i}$ Li $Mo2^{ii}$	125740(7)	Ce^{2xx} —Mo1—Ce1 ^{ix}	67 487 (5)
07^{i} Li $M_{0}2^{iii}$	41.80(5)	Cel^{v} Mol Cel^{ix}	87.964 (8)
07 - 11 - 1002	138 20 (5)	O_3^{xi} M_0^2 O_2^2	86 18 (7)
O_1^{ii} Li M_0^{2ii}	136.20(5) 136.78(4)	O_3^{xi} Mo2 O_7^{xi}	85.05 (6)
O10 - Li - Mo2	130.78(4)	$03 - M_{2} = 07$	83.33 (0)
$O10^{ii}$ Li Mo2 ⁱⁱⁱ	43.22 (4)	$O_2 = MO_2 = O_7$	87.31 (9)
	78.79 (4) 101.21 (4)	$03^{$	88.01 (7)
010—L1—M02 ^{III}	101.21 (4)	02—M02—05	83.17(7)
Mo2—L1—Mo2 ^m	125.740(7)	0/M0205	169.50 (9)
$Mo2^{1}$ —L1— $Mo2^{10}$	54.260 (7)	O3 ^{xi} —Mo2—O10	87.58 (7)
$Mo2^{n}$ —L1— $Mo2^{m}$	180.0	O2—Mo2—O10	172.63 (6)
$O7^{i}$ —Li—Ce1 ^{xx}	128.23 (5)	O7—Mo2—O10	88.14 (9)
O7—Li—Ce1 ^{xx}	51.77 (5)	O5—Mo2—O10	100.61 (7)
O10 ⁱⁱ —Li—Ce1 ^{xx}	135.89 (4)	O3 ^{xi} —Mo2—Mo4 ^v	92.95 (5)
O10 ⁱⁱⁱ —Li—Ce1 ^{xx}	44.11 (4)	O2—Mo2—Mo4 ^v	133.64 (5)
O10 ⁱ —Li—Ce1 ^{xx}	84.80 (4)	O7—Mo2—Mo4 ^v	138.74 (8)
O10—Li—Ce1 ^{xx}	95.20 (4)	O5—Mo2—Mo4 ^v	50.48 (5)
Mo2—Li—Ce1 ^{xx}	64.780 (4)	O10—Mo2—Mo4 ^v	50.64 (4)
Mo2 ⁱ —Li—Ce1 ^{xx}	115.220 (4)	O3 ^{xi} —Mo2—Mo1	132.54 (6)
Mo2 ⁱⁱ —Li—Ce1 ^{xx}	93.573 (4)	O2—Mo2—Mo1	46.41 (5)

Mo2 ⁱⁱⁱ —Li—Ce1 ^{xx}	86.427 (4)	O7—Mo2—Mo1	89.31 (7)
O7 ⁱ —Li—Ce1 ^{xiv}	51.77 (5)	O5—Mo2—Mo1	87.76 (5)
O7—Li—Ce1 ^{xiv}	128.23 (5)	O10—Mo2—Mo1	139.47 (5)
O10 ⁱⁱ —Li—Ce1 ^{xiv}	44.11 (4)	Mo4 ^v —Mo2—Mo1	119.623 (9)
O10 ⁱⁱⁱ —Li—Ce1 ^{xiv}	135.89 (4)	O3 ^{xi} —Mo2—Mo5 ^{xiv}	136.18 (6)
$O10^{i}$ —Li—Ce1 ^{xiv}	95.20 (4)	O2—Mo2—Mo5 ^{xiv}	137.57 (5)
O10—Li—Ce1 ^{xiv}	84.80 (4)	O7—Mo2—Mo5 ^{xiv}	92.57 (6)
Mo2—Li—Ce1 ^{xiv}	115.220 (4)	$05-Mo2-Mo5^{xiv}$	97.57 (5)
Mo2 ⁱ —Li—Ce1 ^{xiv}	64.780 (4)	010—Mo2—Mo5 ^{xiv}	48.62 (4)
Mo2 ⁱⁱ —Li—Ce1 ^{xiv}	86.427 (4)	Mo4 ^v —Mo2—Mo5 ^{xiv}	60.718 (6)
Mo2 ⁱⁱⁱ —Li—Ce1 ^{xiv}	93.573 (4)	Mo1—Mo2—Mo5 ^{xiv}	91.153 (9)
Ce^{1xx} — Li — Ce^{1xiv}	180.000 (3)	$O3^{xi}$ —Mo2—Mo3	136.41 (5)
$O3^{iv}$ —Ce1—O12	122.15 (7)	Ω^2 —Mo2—Mo3	89.08 (4)
$O3^{iv}$ —Ce1—O1 ^v	69.32 (7)	07—Mo2—Mo3	137.13 (4)
012 —Ce1— 01^{v}	134.79 (8)	05-M02-M03	47.81 (4)
$O3^{iv}$ —Ce1—O8	120.66 (6)	010—Mo2—Mo3	98.15 (4)
012—Ce1—08	116 24 (7)	$Mo4^{v}$ — $Mo2$ — $Mo3$	60 674 (7)
01^{v} Ce1 00	77 76 (7)	Mol-Mo2-Mo3	58 951 (7)
$O3^{iv}$ —Ce1—O10 ^{vi}	82.31 (6)	$Mo5^{xiv}$ $Mo2$ $Mo3$	62.917 (8)
012 —Ce1— 010^{vi}	111.96(7)	$O3^{xi}$ Mo2 Mo2 ⁱⁱ	133 86 (5)
$O1^{v}$ —Ce1—O10 ^{vi}	112.96 (7)	Ω_{2} Mo ₂ Mo ₂	90.91 (5)
$08-Ce1-010^{vi}$	66.91 (6)	07—Mo2—Mo2 ⁱⁱ	47 91 (4)
$O3^{iv}$ —Ce1—O4 ^v	129.24 (6)	$05 - Mo2 - Mo2^{ii}$	136.76 (4)
012 —Ce1— 04^{v}	80.26 (6)	$010 - Mo2 - Mo2^{ii}$	90 58 (5)
01^{v} Ce1 04^{v}	64 64 (7)	$Mo4^{v}$ — $Mo2$ — $Mo2^{ii}$	120 433 (6)
08 —Ce1— 04^{v}	68 88 (6)	$Mo1 - Mo2 - Mo2^{ii}$	59 117 (5)
010^{vi} Ce1 04^{v}	134 92 (5)	$Mo5^{xiv}$ $Mo2$ $Mo2^{ii}$	59 809 (5)
$O3^{iv}$ —Ce1— $O2^{v}$	79.48 (6)	$Mo3 - Mo2 - Mo2^{ii}$	89.470 (5)
012 —Ce1— 02^{v}	78 39 (7)	$O3^{xi}$ —Mo2—Li	80.52 (5)
$O1^{v}$ —Ce1— $O2^{v}$	59.97 (7)	Ω_{2} Mo ₂ Li	122.93(5)
$08-Ce1-02^{v}$	12324(5)	07—Mo2—Li	36 66 (8)
010^{vi} Ce1 02^{v}	161 79 (5)	05-M02-Li	150.49(5)
04^{v} —Ce1— 02^{v}	59.85 (5)	010 Mo2 Li	51 92 (4)
03^{iv} —Ce1—011	140.28(7)	$Mo4^{v}$ — $Mo2$ — Ii	102 456 (8)
012—Ce1—011	62.84 (7)	Mol-Mo2-Li	102.130(0) 119677(7)
01^{v} Ce1 011	139 21 (6)	$Mo5^{xiv}$ Mo2 Li	72 991 (7)
08-Ce1-011	62 94 (5)	Mo3—Mo2—Li	135 603 (8)
010^{vi} Ce1 011	62 26 (6)	$Mo2^{ii}$ $Mo2^{-1}$ Ii	62 870 (4)
04^{v} —Ce1—O11	90.07 (6)	M_{1}^{xi} M_{0}^{2} Ce^{2v}	43 12 (5)
02^{v} —Ce1—O11	134 84 (6)	Ω^2 —Mo ² —Ce ² ^v	59 43 (5)
O_2^{iv} Cel O_1^{ii}	63 38 (5)	$02 \text{ Mo2} \text{ Ce2}^{\vee}$	115.69(5)
012 —Ce1— 07^{vii}	69 19 (7)	$05 - Mo2 - Ce2^{v}$	55 05 (4)
01^{v} Ce1 07^{vii}	131 52 (6)	$010 - Mo2 - Ce2^{v}$	117.60(5)
08 —Ce1— 07^{vii}	136 39 (7)	$M_04^v - M_02 - Ce^{2^v}$	89 410 (7)
010^{vi} Ce1 07^{vii}	71 23 (7)	$Mo1 - Mo2 - Ce2^{v}$	99 782 (8)
$O4^{v}$ —Ce1—O7 ^{vii}	146 86 (6)	$Mo_{1} = Mo_{2} = Ce_{2}$ $Mo_{2} = Mo_{2} = Ce_{2}v$	149 571 (7)
Ω^{v} Cel Ω^{vii}	100 38 (6)	$Mo3 - Mo2 - Ce^{2v}$	98 774 (7)
$011 - Ce1 - 07^{vii}$	87 29 (5)	$Mo2^{ii}$ $Mo2$ $Ce2^{v}$	148704(A)
$\overline{\mathbf{U}}$	01.27 (3)	11102	170./27 (4)

O3 ^{iv} —Ce1—Mo1 ^v	92.59 (5)	Li—Mo2—Ce2 ^v	123.174 (6)
O12—Ce1—Mo1 ^v	98.83 (5)	O8—Mo3—O5	86.67 (6)
O1 ^v —Ce1—Mo1 ^v	36.42 (6)	O8—Mo3—O11	85.73 (6)
O8—Ce1—Mo1 ^v	88.19 (4)	O5—Mo3—O11	167.88 (8)
O10 ^{vi} —Ce1—Mo1 ^v	146.49 (4)	O8—Mo3—O4	89.16 (7)
O4 ^v —Ce1—Mo1 ^v	36.73 (4)	O5—Mo3—O4	84.24 (7)
O2 ^v —Ce1—Mo1 ^v	35.48 (3)	O11—Mo3—O4	86.22 (9)
O11—Ce1—Mo1 ^v	126.78 (5)	O8—Mo3—Mo1	137.36 (5)
O7 ^{vii} —Ce1—Mo1 ^v	135.15 (5)	O5—Mo3—Mo1	88.70 (5)
O3 ^{iv} —Ce1—Mo4 ^{xv}	96.09 (5)	O11—Mo3—Mo1	90.50 (6)
O12—Ce1—Mo4 ^{xv}	128.25 (6)	O4—Mo3—Mo1	48.20 (5)
O1 ^v —Ce1—Mo4 ^{xv}	88.36 (6)	O8—Mo3—Mo3 ⁱⁱ	134.44 (5)
O8—Ce1—Mo4 ^{xv}	34.03 (4)	O5—Mo3—Mo3 ⁱⁱ	138.70 (4)
O10 ^{vi} —Ce1—Mo4 ^{xv}	34.97 (4)	O11—Mo3—Mo3 ⁱⁱ	48.91 (4)
O4 ^v —Ce1—Mo4 ^{xv}	102.68 (4)	O4—Mo3—Mo3 ⁱⁱ	91.45 (5)
O2 ^v —Ce1—Mo4 ^{xv}	147.69 (3)	Mo1—Mo3—Mo3 ⁱⁱ	59.590 (5)
O11—Ce1—Mo4 ^{xv}	65.48 (4)	O8—Mo3—Mo4 ^v	91.12 (5)
$O7^{vii}$ —Ce1—Mo4 ^{xv}	106.14 (6)	O5—Mo3—Mo4 ^v	48.88 (5)
Mo1 ^v —Ce1—Mo4 ^{xv}	114.039 (6)	O11—Mo3—Mo4 ^v	140.67 (7)
O3 ^{iv} —Ce1—Mo2 ^{vii}	31.40 (4)	O4—Mo3—Mo4 ^v	132.99 (5)
O12—Ce1—Mo2 ^{vii}	92.04 (5)	Mo1—Mo3—Mo4 ^v	116.662 (9)
O1 ^v —Ce1—Mo2 ^{vii}	96.68 (5)	Mo3 ⁱⁱ —Mo3—Mo4 ^v	119.873 (6)
O8—Ce1—Mo2 ^{vii}	145.48 (4)	O8—Mo3—Mo5	88.64 (5)
O10 ^{vi} —Ce1—Mo2 ^{vii}	84.91 (3)	O5—Mo3—Mo5	140.47 (5)
O4 ^v —Ce1—Mo2 ^{vii}	139.49 (4)	O11—Mo3—Mo5	48.74 (7)
O2 ^v —Ce1—Mo2 ^{vii}	79.64 (3)	O4—Mo3—Mo5	134.94 (5)
O11—Ce1—Mo2 ^{vii}	121.66 (4)	Mo1—Mo3—Mo5	119.660 (8)
O7 ^{vii} —Ce1—Mo2 ^{vii}	34.91 (3)	Mo3 ⁱⁱ —Mo3—Mo5	60.081 (5)
Mo1 ^v —Ce1—Mo2 ^{vii}	107.584 (6)	Mo4 ^v —Mo3—Mo5	92.056 (9)
Mo4 ^{xv} —Ce1—Mo2 ^{vii}	112.839 (6)	O8—Mo3—Mo2	135.01 (5)
O12—Ce2—O3 ⁱⁱ	133.58 (5)	O5—Mo3—Mo2	48.73 (4)
O12—Ce2—O3	133.58 (5)	O11—Mo3—Mo2	139.20 (4)
O3 ⁱⁱ —Ce2—O3	79.20 (9)	O4—Mo3—Mo2	91.42 (4)
O12—Ce2—O1 ^{vii}	149.28 (9)	Mo1—Mo3—Mo2	59.398 (8)
O3 ⁱⁱ —Ce2—O1 ^{vii}	65.37 (6)	Mo3 ⁱⁱ —Mo3—Mo2	90.530 (5)
O3—Ce2—O1 ^{vii}	65.37 (6)	Mo4 ^v —Mo3—Mo2	57.266 (7)
O12—Ce2—O2 ^{viii}	93.73 (7)	Mo5—Mo3—Mo2	120.425 (10)
O3 ⁱⁱ —Ce2—O2 ^{viii}	126.07 (5)	O8—Mo3—Mo4 ^{xv}	46.92 (5)
O3—Ce2—O2 ^{viii}	84.21 (6)	O5—Mo3—Mo4 ^{xv}	90.84 (5)
O1 ^{vii} —Ce2—O2 ^{viii}	61.04 (6)	O11—Mo3—Mo4 ^{xv}	90.85 (6)
O12—Ce2—O2 ^{vii}	93.73 (7)	O4—Mo3—Mo4 ^{xv}	136.07 (5)
O3 ⁱⁱ —Ce2—O2 ^{vii}	84.21 (6)	Mo1—Mo3—Mo4 ^{xv}	175.622 (10)
O3—Ce2—O2 ^{vii}	126.07 (5)	Mo3 ⁱⁱ —Mo3—Mo4 ^{xv}	118.702 (5)
O1 ^{vii} —Ce2—O2 ^{vii}	61.04 (6)	Mo4 ^v —Mo3—Mo4 ^{xv}	60.145 (7)
O2 ^{viii} —Ce2—O2 ^{vii}	65.50 (7)	Mo5—Mo3—Mo4 ^{xv}	58.713 (6)
O12—Ce2—O5 ^v	72.64 (6)	Mo2—Mo3—Mo4 ^{xv}	117.351 (9)
$O3^{ii}$ —Ce2—O5 ^v	66.93 (5)	O8—Mo3—Mo5 ^{xiv}	133.82 (5)
$O3$ — $Ce2$ — $O5^{\vee}$	104.01 (6)	O5—Mo3—Mo5 ^{xiv}	94.57 (5)

O1 ^{vii} —Ce2—O5 ^v	132.27 (6)	O11—Mo3—Mo5 ^{xiv}	97.51 (6)
O2 ^{viii} —Ce2—O5 ^v	166.30 (5)	O4—Mo3—Mo5 ^{xiv}	136.95 (5)
O2 ^{vii} —Ce2—O5 ^v	115.69 (5)	Mo1—Mo3—Mo5 ^{xiv}	88.790 (9)
O12—Ce2—O5 ^{ix}	72.64 (6)	Mo3 ⁱⁱ —Mo3—Mo5 ^{xiv}	61.803 (5)
O3 ⁱⁱ —Ce2—O5 ^{ix}	104.01 (6)	Mo4 ^v —Mo3—Mo5 ^{xiv}	58.087 (6)
O3—Ce2—O5 ^{ix}	66.93 (5)	Mo5—Mo3—Mo5 ^{xiv}	61.970 (9)
O1 ^{vii} —Ce2—O5 ^{ix}	132.27 (6)	Mo2—Mo3—Mo5 ^{xiv}	58.461 (7)
O2 ^{viii} —Ce2—O5 ^{ix}	115.69 (5)	Mo4 ^{xv} —Mo3—Mo5 ^{xiv}	86.906 (8)
O2 ^{vii} —Ce2—O5 ^{ix}	166.30 (5)	O8—Mo3—Ce3	42.95 (5)
$O5^{v}$ —Ce2—O5 ^{ix}	59.64 (7)	O5—Mo3—Ce3	55.13 (5)
O12—Ce2—O2 ^{ix}	77.39 (4)	O11—Mo3—Ce3	113.38 (5)
$O3^{ii}$ —Ce2— $O2^{ix}$	140.99 (6)	O4—Mo3—Ce3	60.69 (5)
O3—Ce2—O2 ^{ix}	62.17 (6)	Mo1—Mo3—Ce3	102.416 (8)
O1 ^{vii} —Ce2—O2 ^{ix}	100.42 (3)	Mo3 ⁱⁱ —Mo3—Ce3	149.964 (5)
O2 ^{viii} —Ce2—O2 ^{ix}	58.34 (6)	Mo4 ^v —Mo3—Ce3	89.212 (7)
O2 ^{vii} —Ce2—O2 ^{ix}	122.06 (3)	Mo5—Mo3—Ce3	131.587 (7)
$O5^{v}$ —Ce2— $O2^{ix}$	115.54 (5)	Mo2—Mo3—Ce3	100.481 (7)
$O5^{ix}$ —Ce2—O2 ^{ix}	57.35 (5)	Mo4 ^{xv} —Mo3—Ce3	80.844 (7)
O12—Ce2—O2 ^v	77.39 (4)	Mo5 ^{xiv} —Mo3—Ce3	146.743 (8)
$O3^{ii}$ —Ce2— $O2^{v}$	62.17 (6)	O6—Mo4—O8 ^{xvi}	85.31 (9)
O3—Ce2—O2 ^v	140.99 (6)	O6—Mo4—O5 ^v	89.00 (9)
O1 ^{vii} —Ce2—O2 ^v	100.42 (3)	O8 ^{xvi} —Mo4—O5 ^v	173.10(7)
$O2^{viii}$ —Ce2—O2 ^v	122.06 (3)	O6—Mo4—O10 ^v	91.20 (7)
$O2^{vii}$ —Ce2— $O2^{v}$	58.34 (6)	O8 ^{xvi} —Mo4—O10 ^v	82.35 (7)
$O5^v$ —Ce2— $O2^v$	57.35 (5)	O5 ^v —Mo4—O10 ^v	101.70 (7)
$O5^{ix}$ —Ce2—O2 ^v	115.54 (5)	O6—Mo4—O9	79.29 (5)
$O2^{ix}$ —Ce2—O2 ^v	154.73 (7)	O8 ^{xvi} —Mo4—O9	87.84 (5)
O12-Ce2-Mo1vii	111.35 (6)	O5 ^v —Mo4—O9	87.27 (4)
O3 ⁱⁱ —Ce2—Mo1 ^{vii}	94.00 (4)	O10 ^v —Mo4—O9	166.89 (5)
O3-Ce2-Mo1vii	94.00 (4)	O6—Mo4—Mo2 ^v	96.21 (6)
O1vii—Ce2—Mo1vii	37.93 (6)	O8 ^{xvi} —Mo4—Mo2 ^v	133.42 (5)
O2viii—Ce2—Mo1vii	36.42 (4)	O5 ^v —Mo4—Mo2 ^v	51.11 (4)
O2 ^{vii} —Ce2—Mo1 ^{vii}	36.42 (4)	O10 ^v —Mo4—Mo2 ^v	51.11 (5)
O5 ^v —Ce2—Mo1 ^{vii}	150.15 (3)	O9—Mo4—Mo2 ^v	138.338 (10)
O5 ^{ix} —Ce2—Mo1 ^{vii}	150.15 (3)	O6—Mo4—Mo5 ^{xvii}	140.45 (5)
O2 ^{ix} —Ce2—Mo1 ^{vii}	93.84 (3)	O8 ^{xvi} —Mo4—Mo5 ^{xvii}	87.85 (5)
O2 ^v —Ce2—Mo1 ^{vii}	93.84 (3)	O5 ^v —Mo4—Mo5 ^{xvii}	99.03 (5)
O12—Ce2—Mo2 ^v	98.05 (3)	O10 ^v —Mo4—Mo5 ^{xvii}	49.26 (5)
O3 ⁱⁱ —Ce2—Mo2 ^v	35.57 (4)	O9—Mo4—Mo5 ^{xvii}	139.345 (9)
O3—Ce2—Mo2 ^v	106.07 (5)	Mo2 ^v —Mo4—Mo5 ^{xvii}	61.952 (8)
O1 ^{vii} —Ce2—Mo2 ^v	97.73 (3)	O6—Mo4—Mo3 ^v	137.41 (8)
O2 ^{viii} —Ce2—Mo2 ^v	150.68 (4)	O8 ^{xvi} —Mo4—Mo3 ^v	136.74 (4)
O2 ^{vii} —Ce2—Mo2 ^v	86.93 (4)	O5 ^v —Mo4—Mo3 ^v	48.54 (5)
O5 ^v —Ce2—Mo2 ^v	37.81 (3)	O10 ^v —Mo4—Mo3 ^v	99.64 (5)
O5 ^{ix} —Ce2—Mo2 ^v	93.48 (4)	O9—Mo4—Mo3 ^v	93.467 (8)
$O2^{ix}$ —Ce2—Mo2 ^v	150.67 (3)	Mo2 ^v —Mo4—Mo3 ^v	62.060 (7)
O2 ^v —Ce2—Mo2 ^v	37.12 (4)	Mo5 ^{xvii} —Mo4—Mo3 ^v	63.801 (8)
Mo1 ^{vii} —Ce2—Mo2 ^v	114.434 (4)	O6—Mo4—Mo4 ^{xviii}	127.74 (5)

O12 ^v —Ce3—O8	132.16 (5)	O8 ^{xvi} —Mo4—Mo4 ^{xviii}	88.58 (4)
O12 ^v —Ce3—O8 ^x	132.16 (5)	O5 ^v —Mo4—Mo4 ^{xviii}	91.83 (4)
O8—Ce3—O8 ^x	80.35 (8)	O10 ^v —Mo4—Mo4 ^{xviii}	139.18 (4)
O12 ^v —Ce3—O4 ^v	108.37 (7)	O9—Mo4—Mo4 ^{xviii}	48.606 (5)
O8—Ce3—O4 ^v	72.90 (6)	Mo2 ^v —Mo4—Mo4 ^{xviii}	123.722 (10)
$O8^{x}$ —Ce3—O4 ^v	115.46 (5)	Mo5 ^{xvii} —Mo4—Mo4 ^{xviii}	90.884 (6)
O12 ^v —Ce3—O4 ^{xi}	108.37 (7)	Mo3 ^v —Mo4—Mo4 ^{xviii}	61.730 (7)
O8—Ce3—O4 ^{xi}	115.46 (5)	O6—Mo4—Mo3 ^{xvi}	130.47 (8)
$O8^{x}$ —Ce3—O4 ^{xi}	72.90 (6)	O8 ^{xvi} —Mo4—Mo3 ^{xvi}	45.63 (4)
$O4^v$ —Ce3—O4 ^{xi}	68.25 (8)	O5 ^v —Mo4—Mo3 ^{xvi}	139.29 (4)
O12 ^v —Ce3—O5 ^x	72.46 (7)	O10 ^v —Mo4—Mo3 ^{xvi}	88.72 (5)
O8—Ce3—O5 ^x	103.13 (6)	O9—Mo4—Mo3 ^{xvi}	90.635 (7)
$O8^{x}$ —Ce3—O5 ^x	65.41 (5)	Mo2 ^v —Mo4—Mo3 ^{xvi}	120.793 (9)
$O4^v$ —Ce3—O5 ^x	175.45 (6)	Mo5 ^{xvii} —Mo4—Mo3 ^{xvi}	58.843 (8)
$O4^{xi}$ —Ce3—O5 ^x	115.94 (5)	Mo3 ^v —Mo4—Mo3 ^{xvi}	91.111 (9)
O12 ^v —Ce3—O5	72.47 (7)	Mo4 ^{xviii} —Mo4—Mo3 ^{xvi}	58.125 (7)
O8—Ce3—O5	65.41 (5)	O6—Mo4—Mo4 ⁱⁱ	38.07 (5)
O8 ^x —Ce3—O5	103.13 (6)	O8 ^{xvi} —Mo4—Mo4 ⁱⁱ	88.38 (5)
O4 ^v —Ce3—O5	115.94 (5)	O5 ^v —Mo4—Mo4 ⁱⁱ	84.74 (5)
O4 ^{xi} —Ce3—O5	175.45 (6)	O10 ^v —Mo4—Mo4 ⁱⁱ	129.14 (5)
O5 ^x —Ce3—O5	59.82 (7)	O9—Mo4—Mo4 ⁱⁱ	41.395 (5)
O12 ^v —Ce3—O4 ^x	74.97 (3)	Mo2 ^v —Mo4—Mo4 ⁱⁱ	120.433 (6)
O8—Ce3—O4 ^x	143.69 (6)	Mo5 ^{xvii} —Mo4—Mo4 ⁱⁱ	176.099 (7)
$O8^{x}$ —Ce3—O4 ^x	63.90 (5)	Mo3 ^v —Mo4—Mo4 ⁱⁱ	119.873 (6)
$O4^v$ —Ce3—O4 ^x	127.22 (4)	Mo4 ^{xviii} —Mo4—Mo4 ⁱⁱ	90.0
$O4^{xi}$ —Ce3—O4 ^x	61.42 (6)	Mo3 ^{xvi} —Mo4—Mo4 ⁱⁱ	118.702 (5)
$O5^{x}$ —Ce3—O4 ^x	57.32 (5)	O6—Mo4—Ce1 ^{xvi}	75.70 (7)
O5—Ce3—O4 ^x	115.02 (5)	O8 ^{xvi} —Mo4—Ce1 ^{xvi}	40.64 (4)
O12 ^v —Ce3—O4	74.97 (3)	O5 ^v —Mo4—Ce1 ^{xvi}	141.03 (4)
O8—Ce3—O4	63.90 (5)	O10 ^v —Mo4—Ce1 ^{xvi}	44.48 (5)
O8 ^x —Ce3—O4	143.69 (6)	O9-Mo4-Ce1 ^{xvi}	123.412 (8)
O4 ^v —Ce3—O4	61.42 (6)	Mo2 ^v —Mo4—Ce1 ^{xvi}	94.531 (7)
O4 ^{xi} —Ce3—O4	127.22 (3)	Mo5 ^{xvii} —Mo4—Ce1 ^{xvi}	73.927 (8)
O5 ^x —Ce3—O4	115.02 (5)	Mo3 ^v —Mo4—Ce1 ^{xvi}	137.453 (8)
O5—Ce3—O4	57.32 (5)	Mo4 ^{xviii} —Mo4—Ce1 ^{xvi}	125.945 (10)
O4 ^x —Ce3—O4	149.80 (6)	Mo3 ^{xvi} —Mo4—Ce1 ^{xvi}	70.101 (6)
O12 ^v —Ce3—O11 ^v	59.67 (8)	Mo4 ⁱⁱ —Mo4—Ce1 ^{xvi}	102.511 (4)
O8—Ce3—O11 ^v	130.85 (5)	O11-Mo5-O10 ^{xiv}	85.23 (7)
O8 ^x —Ce3—O11 ^v	130.85 (5)	O11-Mo5-O10 ^{vi}	85.23 (7)
O4 ^v —Ce3—O11 ^v	59.89 (5)	O10 ^{xiv} —Mo5—O10 ^{vi}	84.89 (9)
$O4^{xi}$ —Ce3—O11 ^v	59.89 (5)	O11-Mo5-Mo4 ^{xix}	93.800 (8)
O5 ^x —Ce3—O11 ^v	123.33 (5)	O10 ^{xiv} —Mo5—Mo4 ^{xix}	48.96 (4)
O5—Ce3—O11 ^v	123.33 (5)	O10 ^{vi} —Mo5—Mo4 ^{xix}	133.64 (5)
O4 ^x —Ce3—O11 ^v	81.27 (4)	O11—Mo5—Mo4 ^{xv}	93.800 (8)
O4—Ce3—O11 ^v	81.27 (4)	O10 ^{xiv} —Mo5—Mo4 ^{xv}	133.64 (5)
O12 ^v —Ce3—O1 ^v	157.12 (8)	O10 ^{vi} —Mo5—Mo4 ^{xv}	48.96 (4)
O8—Ce3—O1 ^v	61.54 (5)	$Mo4^{xix}$ — $Mo5$ — $Mo4^{xv}$	172.199 (15)
$O8^{x}$ —Ce3—O1 ^v	61.54 (5)	O11—Mo5—Mo3	48.79 (4)
00 000 01			

O4 ^v —Ce3—O1 ^v	53.99 (5)	O10 ^{xiv} —Mo5—Mo3	134.00 (5)
O4 ^{xi} —Ce3—O1 ^v	53.99 (5)	O10 ^{vi} —Mo5—Mo3	91.23 (5)
$O5^{x}$ —Ce3—O1 ^v	126.41 (5)	Mo4 ^{xix} —Mo5—Mo3	122.183 (10)
O5—Ce3—O1 ^v	126.41 (5)	Mo4 ^{xv} —Mo5—Mo3	62.444 (6)
$O4^{x}$ —Ce3—O1 ^v	103.27 (3)	O11—Mo5—Mo3 ⁱⁱ	48.79 (4)
O4—Ce3—O1 ^v	103.27 (3)	O10 ^{xiv} —Mo5—Mo3 ⁱⁱ	91.23 (5)
O11 ^v —Ce3—O1 ^v	97.45 (6)	O10 ^{vi} —Mo5—Mo3 ⁱⁱ	134.00 (5)
O12 ^v —Ce3—Mo3	96.37 (3)	Mo4 ^{xix} —Mo5—Mo3 ⁱⁱ	62.444 (6)
O8—Ce3—Mo3	35.79 (4)	Mo4 ^{xv} —Mo5—Mo3 ⁱⁱ	122.183 (10)
O8 ^x —Ce3—Mo3	107.81 (4)	Mo3—Mo5—Mo3 ⁱⁱ	59.838 (9)
O4 ^v —Ce3—Mo3	81.55 (4)	O11—Mo5—Mo2 ^{xiv}	133.96 (4)
O4 ^{xi} —Ce3—Mo3	145.52 (4)	O10 ^{xiv} —Mo5—Mo2 ^{xiv}	48.76 (5)
O5 ^x —Ce3—Mo3	93.92 (4)	O10 ^{vi} —Mo5—Mo2 ^{xiv}	91.12 (5)
O5—Ce3—Mo3	37.35 (3)	Mo4 ^{xix} —Mo5—Mo2 ^{xiv}	57.330 (6)
O4 ^x —Ce3—Mo3	151.21 (4)	Mo4 ^{xv} —Mo5—Mo2 ^{xiv}	117.621 (10)
O4—Ce3—Mo3	37.32 (4)	Mo3—Mo5—Mo2 ^{xiv}	176.566 (12)
O11 ^v —Ce3—Mo3	118.510 (8)	Mo3 ⁱⁱ —Mo5—Mo2 ^{xiv}	119.773 (6)
O1 ^v —Ce3—Mo3	95.02 (2)	O11—Mo5—Mo2 ^{vi}	133.96 (4)
O12 ^v —Ce3—Mo3 ^x	96.37 (3)	O10 ^{xiv} —Mo5—Mo2 ^{vi}	91.12 (5)
O8—Ce3—Mo3 ^x	107.81 (4)	O10 ^{vi} —Mo5—Mo2 ^{vi}	48.76 (5)
O8 ^x —Ce3—Mo3 ^x	35.79 (4)	Mo4 ^{xix} —Mo5—Mo2 ^{vi}	117.621 (10)
O4 ^v —Ce3—Mo3 ^x	145.52 (4)	Mo4 ^{xv} —Mo5—Mo2 ^{vi}	57.330 (6)
O4 ^{xi} —Ce3—Mo3 ^x	81.55 (4)	Mo3—Mo5—Mo2 ^{vi}	119.773 (6)
O5 ^x —Ce3—Mo3 ^x	37.35 (3)	Mo3 ⁱⁱ —Mo5—Mo2 ^{vi}	176.566 (12)
O5—Ce3—Mo3 ^x	93.92 (4)	Mo2 ^{xiv} —Mo5—Mo2 ^{vi}	60.381 (9)
O4 ^x —Ce3—Mo3 ^x	37.32 (4)	O11—Mo5—Mo3 ^{xiv}	138.63 (4)
O4—Ce3—Mo3 ^x	151.21 (4)	O10 ^{xiv} —Mo5—Mo3 ^{xiv}	94.72 (5)
O11 ^v —Ce3—Mo3 ^x	118.510 (8)	O10 ^{vi} —Mo5—Mo3 ^{xiv}	136.07 (5)
O1 ^v —Ce3—Mo3 ^x	95.02 (2)	Mo4 ^{xix} —Mo5—Mo3 ^{xiv}	58.113 (6)
Mo3—Ce3—Mo3 ^x	119.929 (9)	Mo4 ^{xv} —Mo5—Mo3 ^{xiv}	114.493 (10)
$O12^{v}$ —Ce3—Mo1 ^v	122.20 (7)	Mo3—Mo5—Mo3 ^{xiv}	118.030 (9)
O8—Ce3—Mo1 ^v	87.20 (4)	Mo3 ⁱⁱ —Mo5—Mo3 ^{xiv}	89.919 (9)
O8 ^x —Ce3—Mo1 ^v	87.20 (4)	Mo2 ^{xiv} —Mo5—Mo3 ^{xiv}	58.622 (7)
O4 ^v —Ce3—Mo1 ^v	35.35 (4)	Mo2 ^{vi} —Mo5—Mo3 ^{xiv}	87.395 (10)
O4 ^{xi} —Ce3—Mo1 ^v	35.35 (4)	O11—Mo5—Mo3 ^{vi}	138.63 (4)
O5 ^x —Ce3—Mo1 ^v	148.03 (3)	O10 ^{xiv} —Mo5—Mo3 ^{vi}	136.07 (5)
O5—Ce3—Mo1 ^v	148.03 (3)	O10 ^{vi} —Mo5—Mo3 ^{vi}	94.72 (5)
O4 ^x —Ce3—Mo1 ^v	96.76 (3)	Mo4 ^{xix} —Mo5—Mo3 ^{vi}	114.493 (10)
O4—Ce3—Mo1 ^v	96.76 (3)	Mo4 ^{xv} —Mo5—Mo3 ^{vi}	58.113 (6)
O11 ^v —Ce3—Mo1 ^v	62.53 (4)	Mo3—Mo5—Mo3 ^{vi}	89.919 (9)
$O1^{v}$ —Ce3—Mo 1^{v}	34.92 (5)	Mo3 ⁱⁱ —Mo5—Mo3 ^{vi}	118.030 (9)
Mo3—Ce3—Mo1 ^v	110.725 (4)	Mo2 ^{xiv} —Mo5—Mo3 ^{vi}	87.395 (10)
Mo3 ^x —Ce3—Mo1 ^v	110.725 (4)	Mo2 ^{vi} —Mo5—Mo3 ^{vi}	58.622 (7)
O12 ^v —Ce3—O9 ^{xxv}	113.66 (7)	Mo3 ^{xiv} —Mo5—Mo3 ^{vi}	56.395 (9)
08—Ce3—O9 ^{xxv}	52.86 (4)	O11—Mo5—Mo5 ^{xiv}	97.23 (6)
O8x—Ce3—O9xxv	52.86 (4)	O10 ^{xiv} —Mo5—Mo5 ^{xiv}	137.55 (4)
$O4^{v}$ —Ce3—O9 ^{xxv}	125.08 (4)	O10 ^{vi} —Mo5—Mo5 ^{xiv}	137.55 (4)
$O4^{xi}$ —Ce3—O9 ^{xxv}	125.08 (4)	M_04^{xix} M_05 M_05^{xiv}	88.648 (6)
5. 60 07			

O5 ^x —Ce3—O9 ^{xxv}	51.42 (4)	Mo4 ^{xv} —Mo5—Mo5 ^{xiv}	88.648 (6)
O5—Ce3—O9 ^{xxv}	51.42 (4)	Mo3—Mo5—Mo5 ^{xiv}	61.593 (9)
$O4^{x}$ —Ce3—O9 ^{xxv}	97.25 (4)	Mo3 ⁱⁱ —Mo5—Mo5 ^{xiv}	61.593 (9)
O4—Ce3—O9 ^{xxv}	97.25 (4)	Mo2 ^{xiv} —Mo5—Mo5 ^{xiv}	115.053 (13)
O11 ^v —Ce3—O9 ^{xxv}	173.33 (4)	Mo2 ^{vi} —Mo5—Mo5 ^{xiv}	115.053 (13)
$O1^v$ —Ce3—O9 ^{xxv}	89.22 (5)	Mo3 ^{xiv} —Mo5—Mo5 ^{xiv}	56.437 (9)
Mo3—Ce3—O9 ^{xxv}	60.555 (5)	Mo3 ^{vi} —Mo5—Mo5 ^{xiv}	56.437 (9)
$Mo3^{x}$ —Ce3—O 9^{xxv}	60.555 (5)	Mo1—O1—Ce1 ^v	99.29 (6)
Mo1 ^v —Ce3—O9 ^{xxv}	124.139 (7)	Mo1—O1—Ce1 ^{ix}	99.29 (6)
$O12^v$ —Ce3—Ce1 ^{xi}	36.60 (3)	Ce1 ^v —O1—Ce1 ^{ix}	157.89 (13)
O8—Ce3—Ce1 ^{xi}	168.71 (4)	Mo1—O1—Ce2 ^{xx}	90.06 (9)
O8 ^x —Ce3—Ce1 ^{xi}	108.76 (4)	Ce1 ^v —O1—Ce2 ^{xx}	95.93 (6)
O4 ^v —Ce3—Ce1 ^{xi}	107.70 (4)	$Ce1^{ix}$ — $O1$ — $Ce2^{xx}$	95.93 (6)
$O4^{xi}$ —Ce3—Ce 1^{xi}	74.40 (4)	Mo1—O1—Ce3 ^v	76.55 (7)
$O5^{x}$ —Ce3—Ce1 ^{xi}	75.73 (4)	Ce1 ^v —O1—Ce3 ^v	86.38 (6)
O5—Ce3—Ce1 ^{xi}	105.23 (3)	$Ce1^{ix}$ O1 $-Ce3^{v}$	86.38 (6)
O4 ^x —Ce3—Ce1 ^{xi}	44.87 (3)	$Ce2^{xx}$ — $O1$ — $Ce3^{v}$	166.61 (11)
O4—Ce3—Ce1 ^{xi}	106.11 (3)	Mo1—O2—Mo2	84.01 (7)
$O11^v$ —Ce3—Ce 1^{xi}	47.87 (3)	Mo1—O2—Ce2 ^{xx}	91.22 (7)
O1 ^v —Ce3—Ce1 ^{xi}	128.32 (4)	Mo2—O2—Ce2 ^{xx}	131.36 (8)
Mo3—Ce3—Ce1 ^{xi}	132.947 (5)	Mo1—O2—Ce1 ^v	86.94 (6)
Mo3 ^x —Ce3—Ce1 ^{xi}	78.291 (4)	Mo2—O2—Ce1 ^v	142.24 (7)
Mo1 ^v —Ce3—Ce1 ^{xi}	99.649 (6)	$Ce2^{xx}$ — $O2$ — $Ce1^{v}$	85.31 (6)
O9 ^{xxv} —Ce3—Ce1 ^{xi}	127.147 (5)	Mo1—O2—Ce2 ^v	144.38 (7)
O6 ^{xii} —Ce4—O6	180.0	Mo2—O2—Ce2 ^v	83.45 (6)
O6 ^{xii} —Ce4—O3	101.93 (7)	$Ce2^{xx}$ — $O2$ — $Ce2^{v}$	121.66 (6)
O6—Ce4—O3	78.07 (7)	$Ce1^v$ — $O2$ — $Ce2^v$	82.93 (5)
O6 ^{xii} —Ce4—O3 ^{xii}	78.07 (7)	Mo2 ^{ix} —O3—Ce1 ^{xxi}	111.27 (8)
O6—Ce4—O3 ^{xii}	101.93 (7)	Mo2 ^{ix} —O3—Ce2	101.31 (7)
O3—Ce4—O3 ^{xii}	180.00 (6)	Ce1 ^{xxi} —O3—Ce2	103.98 (7)
O6 ^{xii} —Ce4—O3 ⁱⁱ	101.93 (7)	Mo2 ^{ix} —O3—Ce4	127.21 (8)
O6—Ce4—O3 ⁱⁱ	78.07 (7)	Ce1 ^{xxi} —O3—Ce4	108.51 (6)
O3—Ce4—O3 ⁱⁱ	77.58 (9)	Ce2—O3—Ce4	101.22 (6)
O3 ^{xii} —Ce4—O3 ⁱⁱ	102.42 (9)	Mo1—O4—Mo3	81.91 (7)
O6 ^{xii} —Ce4—O3 ^{xiii}	78.07 (7)	Mo1—O4—Ce3 ^v	98.59 (7)
O6—Ce4—O3 ^{xiii}	101.93 (7)	Mo3—O4—Ce3 ^v	116.62 (7)
O3—Ce4—O3 ^{xiii}	102.42 (9)	Mo1—O4—Ce1 ^v	90.24 (6)
O3 ^{xii} —Ce4—O3 ^{xiii}	77.58 (9)	Mo3—O4—Ce1 ^v	144.66 (8)
O3 ⁱⁱ —Ce4—O3 ^{xiii}	180.00 (6)	$Ce3^v$ —O4—Ce1 v	98.58 (6)
O6 ^{xii} —Ce4—Ce2	109.59 (7)	Mo1—O4—Ce3	142.82 (8)
O6—Ce4—Ce2	70.41 (7)	Mo3—O4—Ce3	81.99 (6)
O3—Ce4—Ce2	38.98 (4)	Ce3 ^v —O4—Ce3	118.58 (6)
O3 ^{xii} —Ce4—Ce2	141.02 (4)	Ce1 ^v —O4—Ce3	83.95 (5)
O3 ⁱⁱ —Ce4—Ce2	38.98 (4)	Mo3—O5—Mo4 ^v	82.58 (6)
O3 ^{xiii} —Ce4—Ce2	141.02 (4)	Mo3	83.46 (6)
O6 ^{xii} —Ce4—Ce2 ^{xii}	70.41 (7)	Mo4 ^v O5Mo2	78.42 (6)
O6—Ce4—Ce2 ^{xii}	109.59 (7)	Mo3	87.52 (6)
O3—Ce4—Ce2 ^{xii}	141.02 (4)	Mo4 ^v —O5—Ce3	125.09 (7)

O3 ^{xii} —Ce4—Ce2 ^{xii}	38.98 (4)	Mo2—O5—Ce3	153.48 (9)
O3 ⁱⁱ —Ce4—Ce2 ^{xii}	141.02 (4)	Mo3—O5—Ce2 ^v	150.69 (9)
O3 ^{xiii} —Ce4—Ce2 ^{xii}	38.98 (4)	Mo4 ^v —O5—Ce2 ^v	122.56 (7)
Ce2—Ce4—Ce2 ^{xii}	180.000 (1)	Mo2—O5—Ce2 ^v	87.13 (5)
O6 ^{xii} —Ce4—Ce1 ^{xvi}	113.22 (5)	Ce3—O5—Ce2 ^v	88.70 (5)
O6—Ce4—Ce1 ^{xvi}	66.78 (5)	Mo4—O6—Mo4 ⁱⁱ	103.86 (10)
O3—Ce4—Ce1 ^{xvi}	144.81 (4)	Mo4—O6—Ce4	127.46 (5)
O3 ^{xii} —Ce4—Ce1 ^{xvi}	35.19 (4)	Mo4 ⁱⁱ —O6—Ce4	127.46 (5)
O3 ⁱⁱ —Ce4—Ce1 ^{xvi}	93.18 (4)	Li—O7—Mo2 ⁱⁱ	101.54 (10)
O3 ^{xiii} —Ce4—Ce1 ^{xvi}	86.82 (4)	Li—O7—Mo2	101.54 (10)
Ce2—Ce4—Ce1 ^{xvi}	121.134 (3)	$Mo2^{ii}$ — $O7$ — $Mo2$	84.19 (8)
Ce ^{2xii} —Ce ⁴ —Ce ^{1xvi}	58,866 (3)	$Li = 07 - Ce^{1xx}$	97.91 (7)
$O6^{xii}$ —Ce4—Ce1 ^{xxi}	66 78 (5)	M_02^{ii} $O7$ $Ce1^{xx}$	160.55(13)
$06-Ce4-Ce1^{xxi}$	113 22 (5)	$Mo2 - O7 - Ce1^{xx}$	92.16(3)
Ω_{3} Ce4 Ce1 ^{xxi}	35 19 (4)	$I_{i} = 0.7 - Ce^{1 \times ii}$	97.91 (7)
$O_{3}^{xii} - Ce_{4} - Ce_{1}^{xxi}$	144 81 (4)	M_02^{ii} $O7$ Ce^{1xxii}	92 16 (3)
$O3^{ii}$ Ce4 Ce1 ^{xxi}	86 82 (4)	$Mo2 = 07 = Ce1^{xxii}$	160.55(13)
O_3^{xiii} $C_2 A$ $C_2 A^{\text{xii}}$	03.18(4)	C_{2}	84.04 (6)
C_{2} C_{2} C_{2} C_{2} C_{2} C_{2}	58 866 (3)	$Mo^2 = O^8 = Mo^{4xy}$	87.45(7)
Ce2 - Ce4 - Ce1	30.000(3)	Mo3 = O8 = Co2	$\frac{101}{26} \frac{1}{6}$
Ce^{1xi} Ce^{4} Ce^{1xi}	121.134(3)	$Mod_{XY} = O_{0}^{2} - C_{0}^{2}$	101.20(0) 122.81(8)
	180.000(5)	$M04^{}-08-Ces$	132.81 (8)
	115.22(5)		115.95 (8)
06 - Ce4 - Ce1 xiv	66.78 (5) 02.18 (4)	$M04^{-1} - 08 - Cel$	105.34 (6)
	93.18 (4)		112.60 (7)
O3 ^{xii} —Ce4—Ce1 ^{xxiv}	86.82 (4)	Mo4 ⁿ —O9—Mo4 ^{xvm}	180.000 (11)
$O3^n$ —Ce4—Ce1 ^{xxiv}	144.81 (4)	Mo4 ⁿ —O9—Mo4	97.211 (10)
$O3^{xin}$ —Ce4—Ce1 ^{xxiv}	35.19 (4)	Mo4 ^{xvm} —O9—Mo4	82.789 (10)
Ce2—Ce4—Ce1 ^{xxiv}	121.134 (3)	$Mo4^n$ —O9— $Mo4^{xxm}$	82.789 (10)
Ce2 ^{xii} —Ce4—Ce1 ^{xxiv}	58.866 (3)	Mo4 ^{xviii} —O9—Mo4 ^{xxiii}	97.211 (10)
$Ce1^{xvi}$ —Ce4—Ce1 xxiv	74.878 (4)	Mo4—O9—Mo4 ^{xxiii}	180.000 (11)
$Ce1^{xxi}$ — $Ce4$ — $Ce1^{xxiv}$	105.122 (4)	Mo4 ⁱⁱ —O9—Ce3 ^v	94.201 (6)
O6 ^{xii} —Ce4—Ce1 ^{xxvi}	66.78 (5)	Mo4 ^{xviii} —O9—Ce3 ^v	85.799 (6)
O6—Ce4—Ce1 ^{xxvi}	113.22 (5)	Mo4—O9—Ce3 ^v	94.201 (6)
O3—Ce4—Ce1 ^{xxvi}	86.82 (4)	Mo4 ^{xxiii} —O9—Ce3 ^v	85.799 (6)
O3 ^{xii} —Ce4—Ce1 ^{xxvi}	93.18 (4)	Mo4 ⁱⁱ —O9—Ce3 ^{xxiv}	85.799 (6)
O3 ⁱⁱ —Ce4—Ce1 ^{xxvi}	35.19 (4)	Mo4 ^{xviii} —O9—Ce3 ^{xxiv}	94.201 (6)
O3 ^{xiii} —Ce4—Ce1 ^{xxvi}	144.81 (4)	Mo4—O9—Ce3 ^{xxiv}	85.799 (6)
Ce2—Ce4—Ce1 ^{xxvi}	58.866 (3)	Mo4 ^{xxiii} —O9—Ce3 ^{xxiv}	94.201 (6)
Ce2 ^{xii} —Ce4—Ce1 ^{xxvi}	121.134 (3)	Ce3 ^v —O9—Ce3 ^{xxiv}	180.000 (5)
Ce1 ^{xvi} —Ce4—Ce1 ^{xxvi}	105.122 (4)	Mo4 ^v —O10—Mo5 ^{xiv}	81.78 (6)
Ce1 ^{xxi} —Ce4—Ce1 ^{xxvi}	74.878 (4)	Mo4 ^v O10Mo2	78.26 (6)
Ce1 ^{xxiv} —Ce4—Ce1 ^{xxvi}	180.000 (3)	Mo5 ^{xiv} —O10—Mo2	82.62 (6)
O2—Mo1—O2 ⁱⁱ	92.35 (10)	Mo4 ^v —O10—Li	162.57 (9)
O2—Mo1—O4 ⁱⁱ	167.83 (8)	Mo5 ^{xiv} —O10—Li	100.44 (7)
O2 ⁱⁱ —Mo1—O4 ⁱⁱ	88.28 (7)	Mo2-010-Li	84.86 (6)
O2—Mo1—O4	88.28 (7)	Mo4v-010-Ce1vi	100.54 (7)
O2 ⁱⁱ —Mo1—O4	167.83 (8)	Mo5 ^{xiv} —O10—Ce1 ^{vi}	111.85 (7)
O4 ⁱⁱ —Mo1—O4	88.58 (10)	Mo2—O10—Ce1 ^{vi}	165.29 (8)

O2—Mo1—O1	83.18 (7)	Li—O10—Ce1 ^{vi}	94.68 (6)
O2 ⁱⁱ —Mo1—O1	83.18 (7)	Mo5—O11—Mo3	82.47 (8)
O4 ⁱⁱ —Mo1—O1	84.83 (7)	Mo5-011-Mo3 ⁱⁱ	82.47 (8)
O4—Mo1—O1	84.83 (7)	Mo3—O11—Mo3 ⁱⁱ	82.19 (8)
O2—Mo1—Mo3 ⁱⁱ	142.09 (6)	Mo5—O11—Ce1 ⁱⁱ	100.65 (7)
O2 ⁱⁱ —Mo1—Mo3 ⁱⁱ	93.36 (5)	Mo3—O11—Ce1 ⁱⁱ	176.28 (11)
O4 ⁱⁱ —Mo1—Mo3 ⁱⁱ	49.89 (5)	Mo3 ⁱⁱ —O11—Ce1 ⁱⁱ	96.162 (13)
O4—Mo1—Mo3 ⁱⁱ	93.59 (5)	Mo5-011-Ce1	100.65 (7)
O1—Mo1—Mo3 ⁱⁱ	134.71 (5)	Mo3-011-Ce1	96.162 (13)
O2—Mo1—Mo3	93.36 (5)	Mo3 ⁱⁱ —O11—Ce1	176.28 (11)
O2 ⁱⁱ —Mo1—Mo3	142.09 (6)	Ce1 ⁱⁱ —O11—Ce1	85.28 (6)
O4 ⁱⁱ —Mo1—Mo3	93.59 (5)	Mo5—O11—Ce3 ^v	179.63 (10)
O4—Mo1—Mo3	49.89 (5)	Mo3—O11—Ce3 ^v	97.25 (8)
O1—Mo1—Mo3	134.71 (5)	Mo3 ⁱⁱ —O11—Ce3 ^v	97.25 (8)
Mo3 ⁱⁱ —Mo1—Mo3	60.821 (10)	Ce1 ⁱⁱ —O11—Ce3 ^v	79.62 (6)
O2—Mo1—Mo2 ⁱⁱ	95.29 (6)	Ce1—O11—Ce3 ^v	79.62 (6)
O2 ⁱⁱ —Mo1—Mo2 ⁱⁱ	49.58 (6)	Ce2—O12—Ce3 ^v	113.01 (11)
O4 ⁱⁱ —Mo1—Mo2 ⁱⁱ	94.36 (5)	Ce2—O12—Ce1 ⁱⁱ	109.67 (6)
O4—Mo1—Mo2 ⁱⁱ	142.46 (6)	Ce3 ^v —O12—Ce1 ⁱⁱ	107.36 (6)
O1—Mo1—Mo2 ⁱⁱ	132.72 (5)	Ce2—O12—Ce1	109.67 (6)
Mo3 ⁱⁱ —Mo1—Mo2 ⁱⁱ	61.651 (7)	Ce3 ^v —O12—Ce1	107.36 (6)
Mo3—Mo1—Mo2 ⁱⁱ	92.568 (10)	Cel ⁱⁱ —O12—Cel	109.69 (11)
O2—Mo1—Mo2	49.58 (6)		

Symmetry codes: (i) -x-1, -y-1, -z+2; (ii) x, -y-1, z; (iii) -x-1, y, -z+2; (iv) -x-1/2, y+1/2, -z; (v) -x-1/2, -y-1/2, -z+1; (vi) -x-1, y, -z+1; (vii) x, y, z-1; (viii) x, -y-1, z-1; (ix) -x-1/2, y-1/2, -z+1; (ix) x, -y, z; (iii) -x-1/2, y-1/2, -z+1; (ivi) -x-1, y, -z+1; (viii) x, y, z-1; (viii) x, -y-1, z-2; (ivi) -x-1/2, y-1/2, -z+1; (ivi) x-1/2, y-1/2, -z+1; (ivi) -x-1, y-1, -z+1; (ivi) x-1/2, y-1/2, z; (ivi) x+1/2, y-1/2, z; (ivi) x+1/2, y-1/2, z; (ivii) x+1/2, y-1/2, z; (iviii) x+1/2, y-1/2, z; (ivii) x+1/2, y-1/2, z; (i