metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[4-amino-*N*-(pyrimidin-2-yl- κ *N*)benzenesulfonamidato- κ *N*](4,4'-dimethyl-2,2'-bipyridine- κ^2 *N*,*N'*)cadmium dimethylformamide disolvate

G. M. Golzar Hossain^a* and A. J. Amoroso^b

^aDepartment of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh, and ^bSchool of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales Correspondence e-mail: acsbd@yahoo.com

Received 7 August 2011; accepted 2 February 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.038; wR factor = 0.093; data-to-parameter ratio = 15.8.

In the title compound, $[Cd(C_{10}H_9N_4O_2S)_2(C_{12}H_{12}N_2)]$ -2C₃H₇NO, the Cd^{II} ion lies on a twofold rotation axis, is sixcoordinated by N atoms, and displays a trigonal–prismatic geometry arising from the two sulfadiazinate ligands and one 4,4'-dimethyl-2,2'-bipyridine ligand. Both ligands are bidentate and coordinate *via* their N atoms. The O and carbonyl C atoms of the dimethylformamide molecule show disorder and were modelled with two different orientations and with site occupancies of 0.584 (10):0.416 (10). The geometry around the sulfadiazine S atom is distorted tetrahedral. The crystal structure involves N–H···O hydrogen bonds which link molecules into a three-dimensional network. Weak C–H···O hydrogen bonds are also observed.

Related literature

For the comparison of the N-H bond distance of the terminal amine group and the C-S-N-C torsion angle, see: Heren *et al.* (2006); Hossain & Amoroso (2007); Hossain (2011). For the hydrogen bonds of sulfadiazinate anions, see: Paşaoğlu *et al.* (2008). For the comparison of the dihedral angle between the aromatic rings of the anion, see: Hossain & Amoroso (2007); Hossain (2011). For the comparison of Cd-N bond distances, see: Kalateh *et al.* (2010); Hossain (2011).

Experimental

Crystal data

 $\begin{bmatrix} Cd(C_{10}H_9N_4O_2S)_2(C_{12}H_{12}N_2) \end{bmatrix} & \beta = 118.3334 \ (11)^{\circ} \\ C_{23}H_7NO & V = 4094.81 \ (17) \ \mathring{A}^3 \\ M_r = 941.37 & Z = 4 \\ Monoclinic, \ C2/c & Mo \ K\alpha \ radiation \\ a = 17.4428 \ (4) \ \mathring{A} & \mu = 0.70 \ mm^{-1} \\ b = 16.2753 \ (4) \ \mathring{A} & T = 150 \ K \\ c = 16.3873 \ (4) \ \mathring{A} & 0.20 \times 0.20 \times 0.18 \ mm \\ \end{bmatrix}$

Data collection

Nonius KappaCCD diffractometer	18995 measured reflections
Absorption correction: multi-scan	4685 independent reflections
(Blessing, 1995)	3855 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.873, \ T_{\max} = 0.885$	$R_{\rm int} = 0.070$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.093$	independent and constrained
S = 1.04	refinement
4685 reflections	$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
297 parameters	$\Delta \rho_{\rm min} = -0.59 \ {\rm e} \ {\rm \AA}^{-3}$
30 restraints	

Table 1

Selected geometric parameters (Å, °).

2.312 (2)	Cd1-N12	2.505 (2)
2.251 (2)	N14-C18	1.360 (3)
116.97 (11)	$N1 - Cd1 - N12^{i}$	91.26 (7)
128.97 (8)	N11-Cd1-N12	56.10 (7)
102.88 (8)	N1-Cd1-N12	134.18 (8)
70.87 (11)	N12 ⁱ -Cd1-N12	127.65 (9)
95.54 (7)	N13-C11-N12	125.7 (2)
	2.312 (2) 2.251 (2) 116.97 (11) 128.97 (8) 102.88 (8) 70.87 (11) 95.54 (7)	$\begin{array}{cccc} 2.312 & (2) & Cd1-N12 \\ 2.251 & (2) & N14-C18 \\ \end{array}$ $\begin{array}{cccc} 116.97 & (11) & N1-Cd1-N12^{i} \\ 128.97 & (8) & N11-Cd1-N12 \\ 102.88 & (8) & N1-Cd1-N12 \\ 70.87 & (11) & N12^{i}-Cd1-N12 \\ 95.54 & (7) & N13-C11-N12 \\ \end{array}$

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N14-H14 B ···O1 D ⁱⁱ	0.95(1)	2.10(1)	3.034 (7)	169 (3)
$N14-H14B\cdots O1^{ii}$	0.95 (1)	1.99 (2)	2.853 (5)	151 (3)
N14 $-$ H14 A \cdots O11 ⁱⁱⁱ	0.95 (1)	2.00(1)	2.950 (3)	176 (3)
$C12-H12\cdots O12^{iv}$	0.95	2.48	3.393 (3)	162
$C6-H6C\cdotsO1^{v}$	0.98	2.58	3.487 (5)	154
$C6-H6A\cdots N13^{vi}$	0.98	2.63	3.558 (4)	159
$C8-H8A\cdots O11^{vii}$	0.98	2.55	3.497 (4)	161
Symmetry codes: (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2};$ (v)	-x + 1, -y - x + 1, -y + 1, -y + 1	, -z + 1; (iii) 1, $-z + 1;$ (vi	$ \begin{array}{r} -x + \frac{1}{2}, y - \frac{1}{2} \\ (x - x + \frac{1}{2}, y + \frac{1}{2}) \end{array} $	$-z + \frac{1}{2};$ (iv) , $-z + \frac{1}{2};$ (vii)

Data collection: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998); cell refinement: *DENZO* and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

GMGH is grateful to the Ministry of Science, Information and Communication Technology for awarding the Bangabandhu Fellowship and to the School of Chemistry, Cardiff University, Wales, for crystallographic services.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2090).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Heren, Z., Paşaoğlu, H. & Kaştaş, G. (2006). Acta Cryst. E62, 03437-03439.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Hossain, G. M. G. (2011). Acta Cryst. E67, m505-m506.
- Hossain, G. M. G. & Amoroso, A. J. (2007). Acta Cryst. E63, m759-m760.
- Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Paşaoğlu, H., Kaştaş, G., Heren, Z. & Büyükgüngör, O. (2008). Acta Cryst. E64, m1192.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m276-m277 [doi:10.1107/S1600536812004412]

Bis[4-amino-*N*-(pyrimidin-2-yl- κN)benzenesulfonamidato- κN](4,4'-dimethyl-2,2'-bipyridine- $\kappa^2 N$,*N*')cadmium dimethylformamide disolvate

G. M. Golzar Hossain and A. J. Amoroso

S1. Comment

The cadmium complex is six coordinate and shows trigonal prismatic rather than the octahedral structure as the *cis* and *trans* angles around the cadmium centre deviate considerably from the ideal octahedron [*cis* angle of 56.10 (7) *cf*. 90° and *trans* angle of 128.97 (8) *cf*. 180°]. The bond angles around the S atom correspond to a distorted tetrahedral geometry.

The bond distance C18–N14 of 1.359 (3)Å is comparable with the value of 1.366 (5)Å (Hossain, 2011). The torsion angle C15–S11–N11–C11 of 53.5 (2)° is less than the value of 66.1 (3)° and the dihedral angle between the aromatic rings of the anion of 76.60 (8)° is also smaller than the value of 88.65 (12)° in the sulfadiazinate anion (Hossain, 2011) because the large 4,4'-dimethyl-2,2'-bipyridine (dmbpy) ligand is attached to the Cd ion in the complex. Due to the presence of the larger dmbpy molecule the torsion and dihedral angles are reduced from the latter one where small dmf molecules are attached with the metal centre. In the title complex, (I), the O and formido C atoms of the solvated dimethylformamide show disorder and were modeled as two different orientations with site occupancies of 0.584 (10):0.416 (10).

Cd–N1(dmbpy) bond distance of 2.312 (2)Å is consistent with those for the reported dmbpy-Cd(II) complex, (Cd–N 2.366 (5) and 2.326 (4) Å)(Kalateh *et al.*, 2010). Cd–N11(sulfonamido) bond distance of 2.252 (2)Å is relatively short (Hossain, 2011) and Cd–N12(pyrimido) with the value of 2.505 (2)Å is the longest bond in the complex.

The packing of (1) (Fig. 2) is stabilized by intermolecular N—H···O hydrogen bonds (Table 2) between the sdz anions (Paşaoğlu, *et al.*, 2008) and dimethylformamide molecules.

S2. Experimental

The sodium salt of sulfadiazine (Nasdz, 0.5446 g, 2 mmol) was dissolved in hot methanol (50 ml) and a methanol solution (10 ml) of $(CH_3COO)_2Cd.2H_2O$ (0.26647 g, 1 mmol) was added slowly with constant stirring on a hot plate. A white precipitate was formed and the mixture was stirred for a further 2 h. The precipitate was filtered off and dried over silica gel; it was then dissolved in dimethylsulfoxide solution (50 ml), and 4,4'-dimethyl-2,2'-bipyridine (0.1841 g, 1 mmol) was added, stirred for 10 min., filtered and left for crystallization. A week later, white block-shaped crystals of (1) were filtered off and dried over silica gel.

S3. Refinement

The O and formido C atoms of dimethylformamide show disorder and were modeled with two different orientations and site occupancies of 0.584 (10):0.416 (10). The H atoms were positioned geometrically and refined using a riding model [except terminal amino group N(14) which were located from the difference map and refined freely with the N—H distances of 0.948 (3) Å], with C—H = 0.95–0.98 Å and with $U_{iso}(H) = 1.2$ (1.5 for methyl groups) times $U_{eq}(C)$.

Figure 1

The molecular structure of the title compound (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. The disordered atoms are linked by dashed lines.

Figure 2

The packing of (I), viewed down the *b*-axis, showing one layer of molecules connected by N—H···O hydrogen bonds (dashed lines).

Bis[4-amino-*N*-(pyrimidin-2-yl- κ *N*)benzenesulfonamidato- κ *N*](4,4'-dimethyl-2,2'-bipyridine- κ ²*N*,*N*')cadmium dimethylformamide monosolvate

Crystal data

$[Cd(C_{10}H_9N_4O_2S)_2(C_{12}H_{12}N_2)]\cdot 2C_3H_7NO$
$M_r = 941.37$
Monoclinic, C2/c
Hall symbol: -C 2yc
a = 17.4428 (4) Å
b = 16.2753 (4) Å
c = 16.3873 (4) Å
$\beta = 118.3334 (11)^{\circ}$
$V = 4094.81 (17) Å^3$
Z = 4

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.873, T_{\max} = 0.885$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.093$ S = 1.044685 reflections F(000) = 1936 $D_x = 1.527 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4685 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.70 \text{ mm}^{-1}$ T = 150 KBlock, white $0.20 \times 0.20 \times 0.18 \text{ mm}$

18995 measured reflections 4685 independent reflections 3855 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{max} = 27.5^\circ, \theta_{min} = 3.4^\circ$ $h = -22 \rightarrow 22$ $k = -20 \rightarrow 21$ $l = -21 \rightarrow 21$

297 parameters30 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0369P)^2 + 6.0396P]$
neighbouring sites	where $P = (F_0^2 + 2F_c^2)/3$
H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta ho_{ m max} = 0.55 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.59 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cd1	0.5000	0.285613 (15)	0.2500	0.02672 (10)	
S11	0.30729 (4)	0.17732 (4)	0.20921 (4)	0.02384 (15)	
011	0.24693 (12)	0.19449 (12)	0.24412 (14)	0.0332 (4)	
O12	0.28358 (12)	0.20915 (11)	0.11776 (12)	0.0311 (4)	
N11	0.40303 (13)	0.21330 (12)	0.27493 (14)	0.0242 (5)	
N12	0.53497 (14)	0.21773 (13)	0.40087 (14)	0.0253 (5)	
N13	0.42490 (14)	0.13244 (14)	0.40597 (14)	0.0282 (5)	
N14	0.34151 (18)	-0.18335 (14)	0.19655 (18)	0.0384 (6)	
C11	0.45350 (16)	0.18555 (15)	0.36375 (17)	0.0231 (5)	
C12	0.59239 (18)	0.19244 (18)	0.48605 (18)	0.0330 (6)	
H12	0.6500	0.2136	0.5142	0.040*	
C13	0.56952 (19)	0.13622 (19)	0.53386 (19)	0.0368 (7)	
H13	0.6105	0.1171	0.5936	0.044*	
C14	0.48492 (19)	0.10921 (18)	0.49108 (18)	0.0331 (6)	
H14	0.4677	0.0717	0.5238	0.040*	
C15	0.31751 (15)	0.07013 (15)	0.20727 (16)	0.0222 (5)	
C16	0.26797 (16)	0.01885 (16)	0.23138 (17)	0.0262 (5)	
H16	0.2286	0.0417	0.2500	0.031*	
C17	0.27577 (16)	-0.06534 (16)	0.22831 (17)	0.0268 (6)	
H17	0.2412	-0.1000	0.2444	0.032*	
C18	0.33400 (17)	-0.10060 (16)	0.20182 (16)	0.0264 (6)	
C19	0.38526 (18)	-0.04727 (16)	0.17978 (18)	0.0290 (6)	
H19	0.4262	-0.0696	0.1630	0.035*	
C20	0.37690 (17)	0.03677 (16)	0.18217 (17)	0.0259 (5)	
H20	0.4116	0.0719	0.1667	0.031*	
N1	0.42193 (15)	0.40137 (14)	0.17391 (15)	0.0305 (5)	
C1	0.45450 (17)	0.47574 (16)	0.21050 (18)	0.0266 (6)	
C2	0.40492 (17)	0.54691 (16)	0.17667 (18)	0.0270 (6)	
H2	0.4285	0.5985	0.2043	0.032*	
C3	0.32125 (17)	0.54268 (18)	0.10280 (18)	0.0298 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C4	0.29046 (19)	0.46709 (19)	0.0646 (2)	0.0375 (7)	
H4	0.2341	0.4620	0.0127	0.045*	
C5	0.34180 (19)	0.39805 (19)	0.1019 (2)	0.0391 (7)	
Н5	0.3190	0.3460	0.0750	0.047*	
C6	0.26532 (18)	0.61872 (18)	0.0669 (2)	0.0358 (7)	
H6A	0.2244	0.6211	0.0921	0.054*	
H6B	0.2328	0.6167	-0.0010	0.054*	
H6C	0.3025	0.6676	0.0863	0.054*	
N2	0.52238 (17)	0.33948 (15)	0.96056 (17)	0.0372 (6)	
C8	0.4460 (2)	0.3874 (3)	0.9325 (4)	0.0815 (15)	
H8A	0.3993	0.3653	0.8745	0.122*	
H8B	0.4580	0.4444	0.9228	0.122*	
H8C	0.4280	0.3856	0.9807	0.122*	
C9	0.5952 (2)	0.3585 (2)	1.0476 (2)	0.0591 (10)	
H9A	0.6398	0.3159	1.0638	0.089*	
H9B	0.5766	0.3610	1.0953	0.089*	
H9C	0.6194	0.4118	1.0435	0.089*	
C7	0.5088 (5)	0.2855 (3)	0.8943 (4)	0.0388 (16)	0.584 (10)
H7	0.4531	0.2804	0.8415	0.047*	0.584 (10)
O1	0.5723 (3)	0.2409 (3)	0.9032 (3)	0.0543 (17)	0.584 (10)
C7D	0.5528 (7)	0.2831 (6)	0.9201 (7)	0.049 (2)	0.416 (10)
H7′	0.6071	0.2589	0.9614	0.058*	0.416 (10)
O1D	0.5248 (4)	0.2615 (4)	0.8480 (5)	0.054 (3)	0.416 (10)
H14A	0.3127 (18)	-0.2243 (13)	0.213 (2)	0.044 (9)*	
H14B	0.3791 (19)	-0.2145 (17)	0.182 (3)	0.060 (11)*	

Atomic displacement parameters (\mathring{A}^2)

	1711	1/22	<i>L</i> /33	1/12	1/13	<i>L</i> /23
			0	0	0	0
Cdl	0.02882 (16)	0.01675 (15)	0.03504 (16)	0.000	0.01553 (12)	0.000
S11	0.0178 (3)	0.0207 (3)	0.0262 (3)	0.0004 (2)	0.0049 (2)	-0.0001 (2)
O11	0.0238 (9)	0.0312 (10)	0.0451 (11)	0.0031 (8)	0.0167 (8)	-0.0055 (9)
012	0.0249 (9)	0.0288 (10)	0.0266 (9)	0.0017 (8)	0.0016 (7)	0.0067 (8)
N11	0.0202 (10)	0.0206 (11)	0.0244 (10)	-0.0030 (8)	0.0047 (8)	-0.0018 (9)
N12	0.0205 (10)	0.0239 (11)	0.0252 (10)	-0.0010 (9)	0.0057 (8)	-0.0039 (9)
N13	0.0298 (11)	0.0270 (12)	0.0243 (11)	-0.0017 (9)	0.0101 (9)	-0.0010 (9)
N14	0.0512 (16)	0.0190 (12)	0.0487 (15)	-0.0013 (11)	0.0268 (13)	0.0009 (11)
C11	0.0221 (12)	0.0189 (12)	0.0240 (12)	0.0014 (10)	0.0074 (10)	-0.0032 (10)
C12	0.0257 (13)	0.0362 (16)	0.0269 (13)	0.0034 (12)	0.0043 (11)	-0.0045 (12)
C13	0.0341 (15)	0.0438 (17)	0.0228 (13)	0.0078 (13)	0.0057 (11)	0.0012 (12)
C14	0.0428 (16)	0.0298 (15)	0.0280 (13)	0.0024 (13)	0.0179 (12)	0.0028 (12)
C15	0.0188 (12)	0.0200 (12)	0.0222 (11)	-0.0014 (9)	0.0050 (9)	-0.0004 (10)
C16	0.0197 (12)	0.0293 (14)	0.0265 (12)	-0.0015 (10)	0.0085 (10)	0.0000 (11)
C17	0.0231 (13)	0.0280 (14)	0.0255 (12)	-0.0051 (11)	0.0084 (10)	0.0032 (11)
C18	0.0300 (14)	0.0233 (13)	0.0199 (11)	-0.0032 (11)	0.0068 (10)	0.0011 (10)
C19	0.0341 (15)	0.0267 (14)	0.0309 (13)	0.0002 (12)	0.0191 (12)	-0.0018 (11)
C20	0.0282 (13)	0.0241 (13)	0.0286 (13)	-0.0048 (11)	0.0159 (11)	-0.0008 (11)
N1	0.0304 (12)	0.0213 (11)	0.0362 (12)	-0.0023 (9)	0.0128 (10)	-0.0008 (10)

supporting information

C1	0.0267 (14)	0.0255 (13)	0.0290 (13)	-0.0021 (11)	0.0143 (11)	-0.0015 (11)
C2	0.0315 (14)	0.0211 (13)	0.0296 (13)	-0.0046 (11)	0.0154 (11)	-0.0025 (11)
C3	0.0259 (13)	0.0370 (16)	0.0270 (13)	0.0012 (12)	0.0129 (11)	0.0004 (12)
C4	0.0290 (15)	0.0374 (17)	0.0379 (16)	-0.0034 (13)	0.0092 (12)	0.0008 (13)
C5	0.0338 (16)	0.0275 (15)	0.0447 (16)	-0.0060 (12)	0.0095 (13)	-0.0008 (13)
C6	0.0289 (14)	0.0339 (16)	0.0377 (15)	0.0005 (12)	0.0103 (12)	-0.0018 (13)
N2	0.0423 (14)	0.0328 (13)	0.0374 (13)	-0.0080 (11)	0.0195 (11)	-0.0039 (11)
C8	0.041 (2)	0.056 (3)	0.106 (4)	-0.0036 (19)	0.002 (2)	0.013 (2)
C9	0.0377 (18)	0.059 (2)	0.054 (2)	-0.0155 (17)	0.0009 (16)	0.0119 (18)
C7	0.0388 (18)	0.0393 (18)	0.0386 (18)	-0.0027 (10)	0.0186 (11)	0.0007 (10)
01	0.0560 (19)	0.0551 (19)	0.0553 (19)	0.0001 (10)	0.0294 (12)	-0.0005 (9)
C7D	0.049 (3)	0.048 (3)	0.049 (3)	0.0000 (10)	0.0236 (14)	0.0008 (10)
O1D	0.055 (3)	0.055 (3)	0.055 (3)	-0.0006 (10)	0.0273 (15)	-0.0027 (10)

Geometric parameters (Å, °)

Cd1—N1	2.312 (2)	С19—Н19	0.9500
Cd1—N11	2.251 (2)	C20—H20	0.9500
Cd1—N11 ⁱ	2.251 (2)	N1—C5	1.336 (4)
Cd1—N1 ⁱ	2.312 (2)	N1—C1	1.350 (3)
Cd1—N12 ⁱ	2.505 (2)	C1—C2	1.394 (4)
Cd1—N12	2.505 (2)	C1—C1 ⁱ	1.498 (5)
S11—O11	1.444 (2)	C2—C3	1.387 (4)
S11—O12	1.448 (2)	С2—Н2	0.9500
S11—N11	1.608 (2)	C3—C4	1.369 (4)
S11—C15	1.755 (3)	C3—C6	1.512 (4)
N11-C11	1.372 (3)	C4—C5	1.385 (4)
N12—C12	1.339 (3)	C4—H4	0.9500
N12—C11	1.358 (3)	С5—Н5	0.9500
N13—C14	1.341 (3)	C6—H6A	0.9800
N13—C11	1.342 (3)	С6—Н6В	0.9800
N14—C18	1.360 (3)	С6—Н6С	0.9800
N14—H14A	0.948 (3)	N2—C7	1.328 (6)
N14—H14B	0.948 (3)	N2—C7D	1.377 (9)
C12—C13	1.381 (4)	N2—C8	1.418 (5)
C12—H12	0.9500	N2—C9	1.422 (4)
C13—C14	1.371 (4)	C8—H8A	0.9800
С13—Н13	0.9500	C8—H8B	0.9800
C14—H14	0.9500	C8—H8C	0.9800
C15—C16	1.387 (4)	С9—Н9А	0.9800
C15—C20	1.393 (4)	С9—Н9В	0.9800
C16—C17	1.380 (4)	С9—Н9С	0.9800
C16—H16	0.9500	C7—O1	1.274 (9)
C17—C18	1.403 (4)	С7—Н7	0.9500
С17—Н17	0.9500	C7D—O1D	1.101 (11)
C18—C19	1.411 (4)	C7D—H7′	0.9500
C19—C20	1.378 (4)		

116.97 (11)	C20-C19-C18	121.0 (2)
102.88 (8)	С20—С19—Н19	119.5
128.97 (8)	C18—C19—H19	119.5
128.97 (8)	C19—C20—C15	119.9 (2)
102.88 (8)	С19—С20—Н20	120.0
70.87 (11)	C15—C20—H20	120.0
56.10 (7)	C5—N1—C1	118.2 (2)
95.54 (7)	C5—N1—Cd1	123.03 (19)
134.18 (8)	C1—N1—Cd1	118.35 (17)
91 26 (7)	N1-C1-C2	1212(2)
95 54 (7)	$N1 - C1 - C1^{i}$	121.2(2)
56 10 (7)	$C_{2}-C_{1}-C_{1}^{i}$	123 14 (15)
91 26 (7)	C_{3} C_{2} C_{1} C_{1}	120.2(2)
134 18 (8)	C_{3} C_{2} H_{2}	119.9
127.65 (9)	C1 - C2 - H2	119.9
127.05(0) 115.91(12)	$C_{1}^{-}C_{2}^{-}C_{12}^{-}$	117.9 117.8(3)
113.91(12) 112.65(12)	$C_4 = C_3 = C_2$	117.8(3)
112.03(12) 104.00(11)	$C_{1}^{2} = C_{1}^{2} = C_{0}^{2}$	121.1(2) 121.1(3)
104.99(11) 107.30(12)	$C_2 = C_3 = C_0$	121.1(3) 110.7(3)
107.39(12) 108 56 (11)	$C_3 = C_4 = C_5$	119.7 (5)
106.30(11) 106.07(11)	C_{3} C_{4} H_{4}	120.1
100.97(11) 122.04(18)	$C_3 - C_4 - H_4$	120.1
122.04(18)	NI-C5-U5	122.9 (5)
101.80(15)	NI-CS-HS	118.5
134.42 (12)	C4—C5—H5	118.5
117.0 (2)	C3—C6—H6A	109.5
151.11 (19)	C3—C6—H6B	109.5
90.87 (14)	H6A—C6—H6B	109.5
114.8 (2)	C3—C6—H6C	109.5
126.8 (19)	H6A—C6—H6C	109.5
130 (2)	H6B—C6—H6C	109.5
103 (2)	C7—N2—C7D	29.0 (4)
125.7 (2)	C7—N2—C8	108.8 (4)
123.4 (2)	C7D—N2—C8	136.6 (5)
110.9 (2)	C7—N2—C9	133.8 (4)
121.4 (3)	C7D—N2—C9	105.2 (5)
119.3	C8—N2—C9	117.4 (3)
119.3	N2—C8—H8A	109.5
116.9 (2)	N2—C8—H8B	109.5
121.5	H8A—C8—H8B	109.5
121.5	N2—C8—H8C	109.5
124.1 (3)	H8A—C8—H8C	109.5
117.9	H8B—C8—H8C	109.5
117.9	N2—C9—H9A	109.5
120.0 (2)	N2—C9—H9B	109.5
120.7 (2)	Н9А—С9—Н9В	109.5
119.26 (19)	N2—C9—H9C	109.5
120.1 (2)	Н9А—С9—Н9С	109.5
119.9	Н9В—С9—Н9С	109.5
	116.97 (11) 102.88 (8) 128.97 (8) 128.97 (8) 102.88 (8) 70.87 (11) 56.10 (7) 95.54 (7) 134.18 (8) 91.26 (7) 95.54 (7) 56.10 (7) 91.26 (7) 134.18 (8) 127.65 (9) 115.91 (12) 112.65 (12) 104.99 (11) 107.39 (12) 108.56 (11) 106.97 (11) 122.04 (18) 101.86 (15) 134.42 (12) 117.0 (2) 151.11 (19) 90.87 (14) 114.8 (2) 126.8 (19) 130 (2) 103 (2) 125.7 (2) 123.4 (2) 110.9 (2) 121.4 (3) 119.3 119.3 119.3 116.9 (2) 121.5 124.1 (3) 117.9 120.0 (2) 120.7 (2) 119.26 (19) 120.1 (2) 119.9	116.97 (11)C20-C19-C18102.88 (8)C20-C19-H19128.97 (8)C18-C19-H19128.97 (8)C19-C20-H12102.88 (8)C19-C20-H20 50.10 (7)C5-N1-C195.54 (7)C5-N1-C195.54 (7)C5-N1-C195.54 (7)N1-C1-C295.54 (7)N1-C1-C1i56.10 (7)C2-C1-C1i91.26 (7)N1-C1-C295.54 (7)C1-C2-H2115.91 (12)C4-C3-C2115.91 (12)C4-C3-C6104.99 (11)C2-C3-C6107.39 (12)C3-C4-H4106.97 (11)C5-C4-H4122.04 (18)N1-C5-C4101.86 (15)N1-C5-H5134.42 (12)C4-C5-H5117.0 (2)C3-C6-H6B90.87 (14)H6A-C6-H6B114.8 (2)C3-C6-H6C130 (2)H6B-C6-H6C130 (2)C7-N2-C9121.4 (3)C7D-N2-C8110.9 (2)C7-N2-C9121.4 (3)C7D-N2-C9119.3N2-C8-H8C121.5H8A-C8-H8B121.5N2-C8-H8C121.7H8B-C8-H8C117.9N2-C9-H9A120.0 (2)N2-C9-H9B120.1 (2)H9A-C9-H9C120.1 (2)H9A-C9-H9C

C15 C16 H16	110.0	O1 $C7$ $N2$	118 4 (6)
$C_{15}^{$	119.9 121.0(2)	O1 - C7 - N2	110.4 (0)
$C_{10} - C_{17} - C_{18}$	121.0 (2)	OI - C7 - H7	120.8
С10—С17—Н17	119.5	$N_2 = C_1 = \Pi_1$	120.8 (10)
C18—C17—H17	119.5	OID - C/D - N2	130.8 (10)
N14-C18-C17	122.0 (2)		114.6
N14—C18—C19	120.1 (3)	N2—C7D—H7′	114.6
C17—C18—C19	117.9 (2)		
011 011 011 011	(12)		124.9 (2)
OII—SII—NII—CII	04.3(2)	NII—SII—CI5—CI6	124.8 (2)
012—SII—NII—CII	-168.7(2)	011-511-C15-C20	-1/5.6/(19)
CI5—SII—NII—CII	-53.5 (2)	012-\$11-C15-C20	58.3 (2)
OII—SII—NII—Cdl	-133.41 (16)	N11—S11—C15—C20	-54.5 (2)
012—S11—N11—Cd1	-6.41 (19)	C20-C15-C16-C17	-1.6 (4)
C15—S11—N11—Cd1	108.82 (17)	S11—C15—C16—C17	179.10 (19)
N11 ⁱ —Cd1—N11—C11	74.58 (14)	C15—C16—C17—C18	0.6 (4)
N1 ⁱ —Cd1—N11—C11	-62.58 (18)	C16—C17—C18—N14	-178.7(2)
N1—Cd1—N11—C11	-138.26 (15)	C16—C17—C18—C19	0.9 (4)
N12 ⁱ —Cd1—N11—C11	129.18 (15)	N14—C18—C19—C20	178.2 (2)
N12-Cd1-N11-C11	-3.22 (13)	C17—C18—C19—C20	-1.5 (4)
N11 ⁱ —Cd1—N11—S11	-90.16 (16)	C18—C19—C20—C15	0.4 (4)
N1 ⁱ —Cd1—N11—S11	132.68 (15)	C16—C15—C20—C19	1.1 (4)
N1—Cd1—N11—S11	57.01 (18)	S11-C15-C20-C19	-179.6 (2)
N12 ⁱ —Cd1—N11—S11	-35.56 (17)	N11 ⁱ —Cd1—N1—C5	93.2 (2)
N12—Cd1—N11—S11	-168.0(2)	N11—Cd1—N1—C5	-48.3(2)
N11 ⁱ —Cd1—N12—C12	49.8 (4)	N1 ⁱ —Cd1—N1—C5	-175.5 (3)
N11—Cd1—N12—C12	168.7 (4)	N12 ⁱ —Cd1—N1—C5	47.6 (2)
$N1^{i}$ —Cd1—N12—C12	-53.3 (4)	N12—Cd1—N1—C5	-103.2(2)
N1—Cd1—N12—C12	-117.5 (4)	$N11^{i}$ —Cd1—N1—C1	-94.7(2)
$N12^{i}$ —Cd1—N12—C12	100.5 (4)	N11—Cd1—N1—C1	123.7 (2)
$N11^{i}$ —Cd1—N12—C11	-115.75(15)	$N1^{i}$ —Cd1—N1—C1	-3.43(14)
N11—Cd1—N12—C11	3 18 (13)	$N12^{i}$ Cd1 $N1$ Cl	-1403(2)
$N1^{i}$ —Cd1—N12—C11	141 18 (15)	N12 Cd1 $N1$ C1	688(2)
N1 - Cd1 - N12 - C11	77.01.(17)	C_{5} N1 $-C_{1}$ $-C_{2}$	25(4)
$N12^{i}$ Cd1 $N12$ C11	-65.01(13)	Cd1 $N1$ $C1$ $C2$	-169.96(19)
C14 N13 $C11$ N12	-19(4)	$C_{1} = 11 = C_{1} = C_{2}$	-1784(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.7 (4)	C_{d1} N1 C_{1} C_{1}^{i}	91(4)
C12 N12 C11 N13	1/0.0(2)	$\frac{1}{1} \frac{1}{1} \frac{1}$	-15(4)
C_{12} N_{12} C_{11} N_{13} C_{41} N_{12} C_{11} N_{13}	2.0(4)	NI - CI - C2 - C3	1.3(4)
$C_{11} = N_{12} = C_{11} = N_{13}$	1/4.2(2) 1768(2)	C1 - C1 - C2 - C3	1/9.3(3)
C_{12} N_{12} C_{11} N_{11}	-1/0.0(2)	C1 = C2 = C3 = C4	-0.8(4)
CdI—NI2—CII—NII	-4.64 (19)	C1 = C2 = C3 = C6	1/8.1 (2)
SII—NII—CII—NI3	-6.4(3)	$C_2 = C_3 = C_4 = C_5$	1.9 (4)
CdI—NII—CII—NI3	-1/3.6(2)	C6-C3-C4-C5	-17/.0(3)
S11—N11—C11—N12	1/2.46 (1/)	C1—N1—C5—C4	-1.3(5)
Cd1—N11—C11—N12	5.3 (2)	Cd1 - N1 - C5 - C4	170.8 (2)
C11—N12—C12—C13	-0.1 (4)	C3-C4-C5-N1	-1.0 (5)
Cd1—N12—C12—C13	-163.8 (3)	C7D—N2—C7—O1	8.8 (9)
N12—C12—C13—C14	-1.6 (4)	C8—N2—C7—O1	174.5 (5)
C11—N13—C14—C13	-0.1 (4)	C9—N2—C7—O1	-3.4(8)

supporting information

C12-C13-C14-N13	1.7 (4)	C7—N2—C7D—O1D	24.3 (8)
O11—S11—C15—C16	3.6 (2)	C8—N2—C7D—O1D	4.4 (16)
O12—S11—C15—C16	-122.4 (2)	C9—N2—C7D—O1D	-164.8 (10)

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	D—H···A
N14—H14 <i>B</i> ····O1 <i>D</i> ⁱⁱ	0.95 (1)	2.10(1)	3.034 (7)	169 (3)
N14—H14 <i>B</i> ···O1 ⁱⁱ	0.95 (1)	1.99 (2)	2.853 (5)	151 (3)
N14—H14A…O11 ⁱⁱⁱ	0.95 (1)	2.00(1)	2.950 (3)	176 (3)
C12—H12…O12 ^{iv}	0.95	2.48	3.393 (3)	162
C6—H6 <i>C</i> ···O1 ^v	0.98	2.58	3.487 (5)	154
C6—H6A···N13 ^{vi}	0.98	2.63	3.558 (4)	159
C8—H8A····O11 ^{vii}	0.98	2.55	3.497 (4)	161

Symmetry codes: (ii) -x+1, -y, -z+1; (iii) -x+1/2, y-1/2, -z+1/2; (iv) x+1/2, -y+1/2, z+1/2; (v) -x+1, -y+1, -z+1; (vi) -x+1/2, y+1/2, -z+1/2; (vii) -x+1/2, -y+1/2, -z+1.