organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(4-Bromophenylimino)methyl]-4,6-diiodophenol

Hao Ji, Hua-Ping Ma, Yong-An Yang and Hai-Liang Zhu*

State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China, and Jiangsu Tiansheng Pharmaceutical Company Limited, Jurong Jiangsu 212415, People's Republic of China Correspondence e-mail: hailiang_zhu@163.com

Received 7 February 2012; accepted 7 February 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.032; wR factor = 0.094; data-to-parameter ratio = 19.1.

The title compound, $C_{13}H_8BrI_2NO$, was prepared by the reaction of 3,5-diiodosalicylaldehyde with 4-bromophenylamine in ethanol. There is an intramolecular $O-H\cdots N$ hydrogen bond in the molecule, which generates an S(6) ring. The dihedral angle between the benzene rings is 2.6 (3)°.

Related literature

For the biological activities of Schiff bases, see: Chohan *et al.* (2012); Yan *et al.* (2011); Zhang *et al.* (2011). For the coordination of Schiff bases, see: You *et al.* (2008); Xu *et al.* (2009); Chen *et al.* (2010); Cui *et al.* (2011). For reference bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data $C_{13}H_8BrI_2NO$ $M_r = 527.91$

Triclinic, $P\overline{1}$ a = 7.9870 (13) Å

b = 8.9811 (14) Å c = 11.3907 (18) Å $\alpha = 91.093 (2)^{\circ}$ $\beta = 99.873 (2)^{\circ}$ $\gamma = 114.570 (2)^{\circ}$ $V = 728.4 (2) \text{ Å}^{3}$	Z = 2 Mo K\alpha radiation $\mu = 7.05 \text{ mm}^{-1}$ $T = 298 \text{ K}$ $0.17 \times 0.15 \times 0.15 \text{ mm}$		
 Data collection Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.380, T_{max} = 0.418 	6174 measured reflections 3125 independent reflections 2425 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$		
Refinement			
$R[F^{2} > 2\sigma(F^{2})] = 0.032$ wR(F ²) = 0.094	164 parameters H-atom parameters constrained		

Table 1

3125 reflections

S = 1.07

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots N1$	0.82	1.85	2.576 (5)	148

 $\Delta \rho_{\text{max}} = 1.26 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.76 \text{ e } \text{\AA}^{-3}$

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2053).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, W., Li, Y.-G., Cui, Y.-M., Zhang, X.-A., Zhu, H.-L. & Zeng, Q.-F. (2010). Eur. J. Med. Chem. 45, 4473–4478.
- Chohan, Z. H., Shad, H. A. & Supuran, C. T. (2012). J. Enzyme Inhib. Med. Chem. 27, 58–68.
- Cui, Y.-M., Li, Y.-G., Cai, Y.-J., Chen, W. & Zhu, H.-L. (2011). J. Coord. Chem. 64, 610–616.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Xu, S.-P., Lv, P.-C., Fang, R.-Q. & Zhu, H.-L. (2009). J. Coord. Chem. 62, 2048– 2057.
- Yan, L., Liu, F. W. & Liu, H. M. (2011). Chin. J. Org. Chem. 31, 1639-1642.
- You, Z.-L., Shi, D.-H., Xu, C., Zhang, Q. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 862–871.
- Zhang, H.-J., Qin, X., Liu, K., Zhu, D.-D., Wang, X.-M. & Zhu, H.-L. (2011). Bioorg. Med. Chem. 19, 5708–5715.

supporting information

Acta Cryst. (2012). E68, o788 [doi:10.1107/S160053681200551X]

2-[(4-Bromophenylimino)methyl]-4,6-diiodophenol

Hao Ji, Hua-Ping Ma, Yong-An Yang and Hai-Liang Zhu

S1. Comment

Schiff bases have been extensively studied for their biological activities (Chohan *et al.*, 2012; Yan *et al.*, 2011; Zhang *et al.*, 2011). In addition, Schiff bases are versatile ligands for the preparation of metal complexes (You *et al.*, 2008; Xu *et al.*, 2009; Chen *et al.*, 2010; Cui *et al.*, 2011). In the present paper, the new title compound is reported.

The molecule of the compound exists in a *trans* configuration with respect to the methylidene unit (Fig. 1). There is an intramolecular O1—H1…N1 hydrogen bond in the molecule (Table 1). The dihedral angle between the C1–C6 and C8–C13 benzene rings is $2.6 (3)^{\circ}$. The bond distances are within the normal range (Allen *et al.*, 1987).

S2. Experimental

3,5-Diiodosalicylaldehyde (0.37 g, 1 mmol) and 4-bromophenylamine (0.17 g, 1 mmol) were mixed in ethanol (20 ml). The mixture was stirred at room temperature for 30 min to give a yellow solution. Yellow block-shaped single crystals were obtained by slow evaporation of the solution in air.

S3. Refinement

H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and with $U_{iso}(H)$ set to $1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level. The intramolecular hydrogen bond is indicated by a dashed line.

2-[(4-Bromophenylimino)methyl]-4,6-diiodophenol

Crystal data

 $C_{13}H_8BrI_2NO$ $M_r = 527.91$ Triclinic, *P*1 a = 7.9870 (13) Å b = 8.9811 (14) Å c = 11.3907 (18) Å $a = 91.093 (2)^{\circ}$ $\beta = 99.873 (2)^{\circ}$ $\gamma = 114.570 (2)^{\circ}$ $V = 728.4 (2) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector	6174 measured reflections
Dediction courses fine feeus cooled tube	2425 reflections with $L > 2 - (1)$
Countitor source: The focus sealed tube	2423 reflections with $I \ge 2\delta(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
ω scans	$\theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Sheldrick, 1996)	$k = -10 \rightarrow 11$
$T_{\min} = 0.380, \ T_{\max} = 0.418$	$l = -14 \rightarrow 14$
Refinement	

Z = 2

F(000) = 484

 $\theta = 2.5 - 25.1^{\circ}$

 $\mu = 7.05 \text{ mm}^{-1}$

Block, yellow

 $0.17 \times 0.15 \times 0.15$ mm

T = 298 K

 $D_{\rm x} = 2.407 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1027 reflections

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.094$	neighbouring sites
S = 1.07	H-atom parameters constrained
3125 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0399P)^2 + 1.2928P]$
164 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.26 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.76 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.87298 (7)	0.30448 (5)	-0.38474 (3)	0.06516 (15)	
Br1	0.27660 (10)	0.16630 (8)	0.47166 (5)	0.0712 (2)	
I2	1.20768 (6)	1.02378 (4)	-0.20734 (4)	0.06502 (15)	
N1	0.6508 (5)	0.3888 (5)	0.0440 (3)	0.0403 (9)	

01	0.7124 (6)	0.2911 (4)	-0.1515 (3)	0.0532 (9)	
H1	0.6635	0.2839	-0.0929	0.080*	
C1	0.8487 (7)	0.5748 (6)	-0.0729 (4)	0.0390 (10)	
C2	0.8205 (6)	0.4496 (6)	-0.1604 (4)	0.0380 (10)	
C3	0.9082 (7)	0.4926 (6)	-0.2583 (4)	0.0421 (11)	
C4	1.0185 (7)	0.6550 (6)	-0.2713 (4)	0.0444 (11)	
H4	1.0764	0.6820	-0.3371	0.053*	
C5	1.0422 (7)	0.7773 (6)	-0.1854 (4)	0.0418 (11)	
C6	0.9621 (7)	0.7389 (6)	-0.0865 (4)	0.0416 (11)	
H6	0.9830	0.8220	-0.0282	0.050*	
C7	0.7600 (7)	0.5360 (6)	0.0313 (4)	0.0419 (11)	
H7	0.7836	0.6202	0.0894	0.050*	
C8	0.5660 (6)	0.3466 (6)	0.1464 (4)	0.0397 (10)	
C9	0.5782 (8)	0.4581 (7)	0.2364 (5)	0.0554 (14)	
Н9	0.6453	0.5703	0.2325	0.066*	
C10	0.4912 (8)	0.4041 (7)	0.3323 (5)	0.0548 (14)	
H10	0.4986	0.4796	0.3922	0.066*	
C11	0.3947 (7)	0.2400 (7)	0.3386 (4)	0.0469 (12)	
C12	0.3773 (8)	0.1262 (7)	0.2497 (5)	0.0547 (14)	
H12	0.3098	0.0143	0.2545	0.066*	
C13	0.4618 (8)	0.1808 (7)	0.1527 (5)	0.0517 (13)	
H13	0.4484	0.1048	0.0910	0.062*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
I1	0.0980 (3)	0.0439 (2)	0.0485 (2)	0.0182 (2)	0.0335 (2)	0.00210 (15)
Br1	0.0904 (5)	0.0621 (4)	0.0500 (3)	0.0110 (3)	0.0415 (3)	0.0074 (3)
I2	0.0833 (3)	0.0366 (2)	0.0657 (3)	0.01060 (18)	0.0292 (2)	0.01196 (16)
N1	0.041 (2)	0.044 (2)	0.039 (2)	0.0172 (18)	0.0162 (17)	0.0086 (17)
01	0.067 (2)	0.0355 (18)	0.047 (2)	0.0065 (16)	0.0266 (18)	0.0060 (15)
C1	0.041 (3)	0.042 (3)	0.037 (2)	0.018 (2)	0.0134 (19)	0.0135 (19)
C2	0.039 (2)	0.036 (2)	0.038 (2)	0.0129 (19)	0.0105 (19)	0.0054 (18)
C3	0.049 (3)	0.044 (3)	0.036 (2)	0.020 (2)	0.013 (2)	0.007 (2)
C4	0.053 (3)	0.043 (3)	0.040 (2)	0.019 (2)	0.018 (2)	0.013 (2)
C5	0.047 (3)	0.032 (2)	0.046 (3)	0.013 (2)	0.018 (2)	0.012 (2)
C6	0.044 (3)	0.040 (3)	0.043 (2)	0.019 (2)	0.010(2)	0.004 (2)
C7	0.049 (3)	0.043 (3)	0.040 (2)	0.022 (2)	0.017 (2)	0.008 (2)
C8	0.037 (2)	0.047 (3)	0.038 (2)	0.017 (2)	0.0153 (19)	0.010(2)
C9	0.070 (4)	0.041 (3)	0.049 (3)	0.012 (3)	0.028 (3)	0.005 (2)
C10	0.070 (4)	0.047 (3)	0.042 (3)	0.016 (3)	0.022 (3)	-0.002(2)
C11	0.049 (3)	0.051 (3)	0.038 (2)	0.015 (2)	0.019 (2)	0.007 (2)
C12	0.063 (3)	0.043 (3)	0.053 (3)	0.011 (2)	0.027 (3)	0.007 (2)
C13	0.063 (3)	0.045 (3)	0.049 (3)	0.020 (3)	0.026 (3)	0.005 (2)

Geometric parameters (Å, °)

2 003 (5)	C5 C6	1 360 (7)
2.095 (5)	C6—H6	0.9300
2,101 (5)	C7—H7	0.9300
1.273 (6)	C8—C9	1.382 (7)
1.427 (6)	C8-C13	1.382 (7)
1.340 (6)	C9—C10	1.382 (7)
0.8200	С9—Н9	0.9300
1.401 (7)	C10—C11	1.360 (8)
1.406 (7)	C10—H10	0.9300
1.460 (6)	C11—C12	1.373 (7)
1.394 (6)	C12—C13	1.385 (7)
1.382 (7)	C12—H12	0.9300
1.387 (7)	C13—H13	0.9300
0.9300		
122.4 (4)	N1—C7—H7	119.4
109.5	C1—C7—H7	119.4
119.6 (4)	C9—C8—C13	118.8 (4)
119.6 (4)	C9—C8—N1	125.0 (5)
120.8 (4)	C13—C8—N1	116.1 (4)
119.6 (4)	C8—C9—C10	120.4 (5)
121.7 (4)	С8—С9—Н9	119.8
118.7 (4)	С10—С9—Н9	119.8
121.2 (4)	C11—C10—C9	119.7 (5)
120.4 (3)	C11—C10—H10	120.1
118.4 (4)	C9—C10—H10	120.1
119.3 (4)	C10—C11—C12	121.3 (5)
120.3	C10-C11-Br1	119.5 (4)
120.3	C12—C11—Br1	119.2 (4)
121.0 (4)	C11—C12—C13	118.9 (5)
120.1 (4)	C11—C12—H12	120.6
118.9 (3)	C13—C12—H12	120.6
120.2 (4)	C8—C13—C12	120.8 (5)
119.9	C8—C13—H13	119.6
119.9	C12—C13—H13	119.6
121.2 (4)		
	$\begin{array}{c} 2.093 \ (5) \\ 1.907 \ (5) \\ 2.101 \ (5) \\ 1.273 \ (6) \\ 1.427 \ (6) \\ 1.340 \ (6) \\ 0.8200 \\ 1.401 \ (7) \\ 1.406 \ (7) \\ 1.406 \ (7) \\ 1.460 \ (6) \\ 1.394 \ (6) \\ 1.382 \ (7) \\ 1.387 \ (7) \\ 0.9300 \\ \end{array}$ $\begin{array}{c} 122.4 \ (4) \\ 109.5 \\ 119.6 \ (4) \\ 120.8 \ (4) \\ 119.6 \ (4) \\ 121.7 \ (4) \\ 121.2 \ (4) \\ 120.4 \ (3) \\ 118.4 \ (4) \\ 119.3 \ (4) \\ 120.3 \\ 120.3 \\ 120.3 \\ 120.2 \ (4) \\ 119.9 \\ 119.9 \\ 119.9 \\ 119.9 \\ 121.2 \ (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
01—H1…N1	0.82	1.85	2.576 (5)	148