organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Benzyl-*N*-methylpiperazine-1carbothioamide

Amer M. Alanazi,^a‡Ali A. El-Emam,^a Nasser R. El-Brollosy,^a Seik Weng Ng^b§ and Edward R. T. Tiekink^b*

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 3 February 2012; accepted 8 February 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.087; data-to-parameter ratio = 16.6.

The asymmetric unit in the title thiourea derivative, $C_{13}H_{19}N_3S$, comprises three independent molecules (A, B) and C). The thiourea groups are superimposable for the three molecules, but there are significant conformational differences. Molecules A and B are approximate mirror images of each other, and molecule C has an intermediate conformation. The dihedral angles between the thiourea groups and the phenyl rings are 52.10 (5), 63.29 (5) and 66.46 (6)° in molecules A, B and C, respectively. Each independent molecule self-associates into a supramolecular chain along [100] via N- $H \cdots S$ hydrogen bonds. Molecules of A and B assemble into layers four molecules thick in the *ac* plane *via* $C-H \cdot \cdot \cdot S$ and $C-H \cdot \cdot \pi$ interactions. Molecules of C self-assemble into layers in the *ac* plane via $C-H \cdot \cdot \cdot S$ interactions. The layers stack along the b axis with no specific interactions between them.

Related literature

For the various biological activities exhibited by 1,4-disubstituted piperazine derivatives, see: Kadi *et al.* (2010); Al Hussainy *et al.* (2011); Moussa *et al.* (2011); Kamiński *et al.* (2011); Sheng *et al.* (2011); Yang *et al.* (2011); Liu *et al.* (2011).

[‡] Additional correspondence author, e-mail: elemam5@hotmail.com. § Current address: Chemistry Department, Faculty of Science, King Abdulaziz

Crystal data

 $C_{13}H_{19}N_3S$ $M_r = 249.37$ Monoclinic, Cc a = 5.8472 (1) Å b = 80.3936 (9) Å c = 8.6219 (1) Å $\beta = 103.292$ (1)°

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan

(*CrysAlis PRO*; Agilent, 2011) $T_{\min} = 0.497, T_{\max} = 0.687$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.087$ S = 1.037865 reflections 475 parameters 5 restraints $V = 3944.39 (9) Å^{3}$ Z = 12Cu K\alpha radiation $\mu = 2.03 \text{ mm}^{-1}$ T = 100 K $0.40 \times 0.30 \times 0.20 \text{ mm}$

45632 measured reflections 7865 independent reflections 7864 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

```
H atoms treated by a mixture of
independent and constrained
refinement
\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}
\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}
Absolute structure: Flack (1983),
3714 Friedel pairs
Flack parameter: 0.020 (8)
```

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg1 is the centroid of the C21-C26 ring.

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots$ N1-H1S1 ⁱ 0.87 (1) 2.59 (2) 3.387 (2) 153 (2) N4-H4S2 ⁱ 0.88 (1) 2.64 (2) 3.367 (2) 140 (2) N7-H7S3 ⁱⁱ 0.87 (1) 2.65 (2) 3.397 (2) 144 (2) C3-H3bS1 ⁱⁱⁱ 0.99 2.83 3.8213 (17) 175 C2-H22S2 ^{iv} 0.95 2.87 3.7867 (17) 163					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$N1 - H1 \cdots S1^{i}$ $N4 - H4 \cdots S2^{i}$ $N7 - H7 \cdots S3^{ii}$ $C3 - H3b \cdots S1^{iii}$ $C22 - H22 \cdots S2^{iv}$ $C29 - H29b \cdots S3^{v}$ $C10 - H00 - C1^{i}$	$\begin{array}{c} 0.87 \ (1) \\ 0.88 \ (1) \\ 0.87 \ (1) \\ 0.99 \\ 0.95 \\ 0.99 \\ 0.95 \\ 0.99 \\ 0.95 \\ \end{array}$	2.59 (2) 2.64 (2) 2.65 (2) 2.83 2.87 2.86 2.86	3.387 (2) 3.367 (2) 3.397 (2) 3.8213 (17) 3.7867 (17) 3.8007 (17)	153 (2) 140 (2) 144 (2) 175 163 160

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) x, y, z - 1; (v) $x, -y + 2, z - \frac{1}{2}$; (vi) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001), *DIAMOND* (Brandenburg, 2006) and *Qmol* (Gans & Shalloway, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2388).

University, PO Box 80203 Jeddah, Saudi Arabia.

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Al Hussainy, R., Verbeek, J., Van der Born, D., Booij, J. & Herscheid, J. D. M. (2011). Eur. J. Med. Chem. 46, 5728–5735.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.
- Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.
- Kamiński, K., Rzepka, S. & Obniska, J. (2011). Bioorg. Med. Chem. Lett. 21, 5800–5803.
- Liu, F., Majo, V. J., Prabhakaran, J., Milak, M. S., Mann, J. J. & Parsey, R. V. (2011). *Bioorg. Med. Chem.* **19**, 5255–5259.
- Moussa, I. A., Banister, S. D., Akladios, F. N., Chua, S. W. & Kassiou, M. (2011). *Bioorg. Med. Chem. Lett.* 21, 5707–5710.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
 Sheng, C., Che, X., Wang, W., Wang, S., Cao, Y. & Miao, Z. (2011). Eur. J. Med. Chem. 46, 5276–5282.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, J. S., Song, D., Lee, B., Ko, W. J., Park, S.-K., Won, M., Lee, K., Kim, H. M. & Han, G. (2011). *Eur. J. Med. Chem.* **46**, 2861–2866.

supporting information

Acta Cryst. (2012). E68, o712-o713 [doi:10.1107/S1600536812005685]

4-Benzyl-N-methylpiperazine-1-carbothioamide

Amer M. Alanazi, Ali A. El-Emam, Nasser R. El-Brollosy, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

1,4-Disubstituted piperazine derivatives are known for their diverse biological activities such as a *CNS* stimulant (Al Hussainy *et al.*, 2011; Moussa *et al.*, 2011), anti-convulsant (Kamiński *et al.*, 2011), anti-microbial (Sheng *et al.*, 2011), anti-cancer (Yang *et al.* 2011) and histamine antagonist (Liu *et al.*, 2011). In continuation of our interest in the chemical and pharmacological properties of 1,4-piperazine derivatives (Kadi *et al.*, 2010), we synthesized the title compound, (I), as an intermediate for potential chemotherapeutic agents.

Three independent molecules comprise the asymmetric unit of (I), Fig. 1. There are significant differences in conformation between these as highlighted in Fig. 2. The independent molecules containing the S1 and S2 are approximately mirror images of each other and the conformation of the S3 containing molecule is intermediate between those of the others. The dihedral angles formed between the thiourea moiety and the phenyl rings are 52.10 (5), 63.29 (5) and 66.46 (6)°, respectively. Each piperazine ring has a chair conformation.

Each independent molecule self-associates into a supramolecular chain *via* N—H^{...}S hydrogen bonds, Table 1. Chains are orientated along the *a* axis and an example is illustrated for the S1-containing molecule in Fig. 3. In the crystal packing, the S1- and S2-containing chains are connected into layers four molecules thick *via* C—H^{...}S and C—H^{...} π interactions. The S3-containing molecules are also connected into layers *via* C—H^{...}S interactions. Globally, layers, which are formed in the *ac* plane, stack along the *b* axis, Fig. 4, with no specific interactions between them.

S2. Experimental

Methyl isothiocyanate (3.66 g, 0.05 mol) was added to a solution of 1-benzylpiperazine (8.81 g, 0.05 mol) in ethanol (15 ml). The mixture was stirred for 5 min. at room temperature and allowed to stand for 1 h. The separated crude product was filtered, washed with cold ethanol, dried and crystallized from ethanol to yield 11.60 g (93%) of the title compound as colourless crystals. *M.p.*: 365–367 K.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, $U_{iso}(H) = 1.2$ to $1.5U_{eq}(C)$] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88 (1) Å; their U_{iso} values were refined.

Figure 1

The three independent molecules of (I) showing displacement ellipsoids at the 70% probability level.

Figure 2

An overlay diagram of the three independent molecules in (I). The S1-, S2- and S3-containing molecules are shown as red, green and blue images, respectively. The diagram was drawn so that the thiourea SN_2 planes were superimposed.

Figure 3

A view of the linear supramolecular chain along [100] in (I) for the S1-containing molecule. The N—H…S hydrogen bonds are shown as orange dashed lines.

Figure 4

A view in projection down the *a* axis of the unit-cell contents for (I). The N—H…S, C—H…S and C—H… π interactions are shown as orange, blue and purple dashed lines, respectively.

4-Benzyl-N-methylpiperazine-1-carbothioamide

Crystal data	
$C_{13}H_{19}N_3S$	F(000) = 1608
$M_r = 249.37$	$D_{\rm x} = 1.260 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, Cc	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
Hall symbol: C -2yc	Cell parameters from 33030 reflections
a = 5.8472 (1) Å	$\theta = 3.3 - 76.0^{\circ}$
b = 80.3936 (9) Å	$\mu = 2.03 \text{ mm}^{-1}$
c = 8.6219(1) Å	T = 100 K
$\beta = 103.292 \ (1)^{\circ}$	Prism, colourless
$V = 3944.39 (9) Å^3$	$0.40 \times 0.30 \times 0.20 \text{ mm}$
Z = 12	

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011)	$T_{\min} = 0.497, T_{\max} = 0.687$ $45632 \text{ measured reflections}$ $7865 \text{ independent reflections}$ $7864 \text{ reflections with } I > 2\sigma(I)$ $R_{\text{int}} = 0.023$ $\theta_{\text{max}} = 76.2^{\circ}, \theta_{\text{min}} = 3.3^{\circ}$ $h = -7 \rightarrow 7$ $k = -100 \rightarrow 100$ $l = -10 \rightarrow 9$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.087$ S = 1.03 7865 reflections 475 parameters 5 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier	Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0617P)^2 + 2.8424P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.17$ e Å ⁻³ $\Delta\rho_{min} = -0.28$ e Å ⁻³ Absolute structure: Flack (1983), 3714 Friedel pairs
map	Absolute structure parameter: 0.020 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.50009 (7)	0.777950 (5)	1.00020 (5)	0.01532 (9)	
S2	0.87096 (7)	0.897767 (5)	0.78870 (6)	0.02086 (10)	
S3	1.18962 (7)	0.971979 (5)	0.91464 (5)	0.01999 (10)	
N1	0.0947 (3)	0.776304 (18)	1.08448 (19)	0.0173 (3)	
N2	0.1815 (2)	0.753280 (17)	0.94877 (18)	0.0144 (3)	
N3	0.2430 (2)	0.718795 (17)	1.03126 (17)	0.0140 (3)	
N4	0.4150 (3)	0.90408 (2)	0.7317 (2)	0.0228 (3)	
N5	0.5198 (3)	0.88474 (2)	0.5646 (2)	0.0240 (3)	
N6	0.4284 (3)	0.869454 (18)	0.25554 (19)	0.0191 (3)	
N7	1.6534 (3)	0.974994 (19)	1.0019 (2)	0.0197 (3)	
N8	1.4576 (3)	0.999011 (19)	0.9073 (2)	0.0198 (3)	
N9	1.4317 (3)	1.034283 (18)	0.94704 (19)	0.0173 (3)	
C1	0.1387 (4)	0.79283 (2)	1.1550 (2)	0.0225 (4)	
H1A	0.0044	0.7963	1.1975	0.034*	
H1B	0.1608	0.8008	1.0734	0.034*	
H1C	0.2806	0.7925	1.2415	0.034*	
C2	0.2449 (3)	0.76844 (2)	1.0126 (2)	0.0137 (3)	
C3	0.3403 (3)	0.74281 (2)	0.8827 (2)	0.0150 (3)	
H3A	0.4718	0.7496	0.8629	0.018*	
H3B	0.2548	0.7380	0.7799	0.018*	
C4	0.4367 (3)	0.72882 (2)	0.9992 (2)	0.0141 (3)	
H4A	0.5424	0.7217	0.9535	0.017*	
H4B	0.5289	0.7336	1.1001	0.017*	

C5	0.0859 (3)	0.72945 (2)	1.0969 (2)	0.0160 (3)
H5A	0.1731	0.7344	1.1986	0.019*
H5B	-0.0447	0.7227	1.1191	0.019*
C6	-0.0130 (3)	0.74327 (2)	0.9801 (2)	0.0162 (3)
H6A	-0.1043	0.7384	0.8793	0.019*
H6B	-0.1194	0.7504	1.0254	0.019*
C7	0.3317 (3)	0.70532 (2)	1.1436 (2)	0.0180 (3)
H7A	0.1977	0.7001	1.1777	0.022*
H7B	0.4381	0.7101	1.2394	0.022*
C8	0.4621 (3)	0.69206 (2)	1.0749 (2)	0.0156 (3)
C9	0.3552 (3)	0.68384 (2)	0.9342 (2)	0.0190 (3)
H9	0.1998	0.6867	0.8803	0.023*
C10	0.4738 (3)	0.67146 (2)	0.8724 (2)	0.0206 (4)
H10	0.3994	0.6660	0.7763	0.025*
C11	0.7005 (3)	0.66696 (2)	0.9502 (2)	0.0224 (4)
H11	0.7811	0.6585	0.9078	0.027*
C12	0.8083 (3)	0.67501 (3)	1.0903 (3)	0.0270 (4)
H12	0.9631	0.6720	1.1445	0.032*
C13	0.6897 (3)	0.68752 (2)	1.1513 (2)	0.0221 (4)
H13	0.7653	0.6930	1.2468	0.027*
C14	0.4563 (4)	0.91684 (3)	0.8541 (3)	0.0289 (4)
H14A	0.3138	0.9235	0.8450	0.043*
H14B	0.5859	0.9240	0.8406	0.043*
H14C	0.4972	0.9116	0.9594	0.043*
C15	0.5853 (3)	0.89524 (2)	0.6890 (2)	0.0183 (3)
C16	0.6725 (3)	0.87163 (2)	0.5276 (2)	0.0217 (4)
H16A	0.6189	0.8607	0.5584	0.026*
H16B	0.8353	0.8735	0.5897	0.026*
C17	0.6683 (3)	0.87160 (2)	0.3512 (2)	0.0197 (4)
H17A	0.7333	0.8822	0.3222	0.024*
H17B	0.7686	0.8625	0.3277	0.024*
C18	0.2841 (3)	0.88317 (2)	0.2911 (2)	0.0250 (4)
H18A	0.1219	0.8820	0.2258	0.030*
H18B	0.3480	0.8938	0.2622	0.030*
C19	0.2787 (3)	0.88349 (3)	0.4658 (3)	0.0288 (4)
H19A	0.1848	0.8931	0.4871	0.035*
H19B	0.2035	0.8732	0.4934	0.035*
C20	0.4227 (3)	0.86947 (2)	0.0847 (2)	0.0218 (4)
H20A	0.4999	0.8797	0.0582	0.026*
H20B	0.2571	0.8697	0.0238	0.026*
C21	0.5437(3)	0.85450(2)	0.0335 (2)	0.0174(3)
C22	0.7283(3)	0.85659(2)	-0.0422(2)	0.0218(4)
H22	0.7796	0.8675	-0.0605	0.026*
C23	0.8382(3)	0.84281(3)	-0.0912(2)	0.0261(4)
H23	0.9624	0.8443	-0.1442	0.031*
C24	0.7663(4)	0.82698 (3)	-0.0626(2)	0.0273(4)
H24	0.8430	0.8176	-0.0944	0.033*
C25	0.5821 (4)	0.82472 (2)	0.0124(2)	0.0241 (4)
	··		~~~ ~ • (~)	J.J

C26 0.4710 (3	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0		
	0.03040(2)	0.0601(2)	0.0199 (4)
H26 0.3449	0.8368	0.1111	0.024*
C27 1.6719 (4	4) 0.95786 (2)	1.0581 (3)	0.0270 (4)
H27A 1.8369	0.9544	1.0814	0.040*
H27B 1.5792	0.9506	0.9756	0.040*
H27C 1.6122	0.9570	1.1551	0.040*
C28 1.4467 (3	3) 0.98267 (2)	0.9419 (2)	0.0173 (3)
C29 1.2526 (3	3) 1.00855 (2)	0.8240 (2)	0.0190 (4)
H29A 1.1104	1.0015	0.8082	0.023*
H29B 1.2740	1.0119	0.7179	0.023*
C30 1.2203 (3	3) 1.02388 (2)	0.9194 (2)	0.0185 (3)
H30A 1.0835	1.0303	0.8606	0.022*
H30B 1.1889	1.0205	1.0229	0.022*
C31 1.6314 (3	3) 1.02468 (2)	1.0357 (2)	0.0198 (3)
H31A 1.6020	1.0213	1.1399	0.024*
H31B 1.7745	1.0317	1.0561	0.024*
C32 1.6704 (3	3) 1.00929 (2)	0.9431 (3)	0.0224 (4)
H32A 1.7117	1.0126	0.8425	0.027*
H32B 1.8028	1.0027	1.0065	0.027*
C33 1.3987 (3	3) 1.04941 (2)	1.0354 (2)	0.0211 (4)
H33A 1.5498	1.0555	1.0657	0.025*
H33B 1.3520	1.0462	1.1347	0.025*
C34 1.2144 (3	3) 1.06078 (2)	0.9392 (2)	0.0191 (3)
C35 1.0308 (3	3) 1.06664 (2)	1.0025 (2)	0.0228 (4)
H35 1.0206	1.0633	1.1065	0.027*
C36 0.8622 (4	4) 1.07731 (3)	0.9142 (3)	0.0293 (4)
H36 0.7379	1.0813	0.9584	0.035*
C37 0.8752 (4	4) 1.08209 (2)	0.7633 (3)	0.0291 (5)
H37 0.7604	1.0894	0.7038	0.035*
C38 1.0559 (4	4) 1.07622 (2)	0.6975 (3)	0.0258 (4)
H38 1.0638	1.0794	0.5928	0.031*
C39 1.2246 (3	3) 1.06567 (2)	0.7857 (2)	0.0224 (4)
H39 1.3484	1.0617	0.7410	0.027*
H1 -0.051 (2	2) 0.7729 (3)	1.067 (3)	0.028 (6)*
H4 0.267 (2)	0.9013 (4)	0.694 (3)	0.042 (8)*
H7 1.782 (3)	0.9792 (3)	0.983 (3)	0.023 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01399 (17)	0.01385 (17)	0.0188 (2)	-0.00057 (13)	0.00511 (14)	0.00019 (14)
S2	0.01745 (19)	0.0237 (2)	0.0202 (2)	-0.00384 (15)	0.00181 (15)	-0.00261 (17)
S3	0.0180 (2)	0.01849 (19)	0.0244 (2)	-0.00296 (15)	0.00670 (16)	-0.00357 (16)
N1	0.0150 (7)	0.0164 (7)	0.0226 (8)	0.0012 (5)	0.0084 (6)	-0.0018 (6)
N2	0.0134 (6)	0.0152 (7)	0.0162 (7)	-0.0008(5)	0.0063 (5)	-0.0001 (5)
N3	0.0135 (7)	0.0151 (6)	0.0143 (7)	0.0008 (5)	0.0050 (5)	0.0018 (5)
N4	0.0188 (7)	0.0241 (8)	0.0249 (9)	-0.0005 (6)	0.0039 (6)	-0.0082 (6)

N5	0.0162 (7)	0.0268 (8)	0.0273 (9)	0.0014 (6)	0.0016 (6)	-0.0106 (7)
N6	0.0176 (7)	0.0171 (7)	0.0220 (8)	0.0016 (6)	0.0032 (6)	-0.0040 (6)
N7	0.0180 (7)	0.0173 (7)	0.0256 (8)	-0.0002 (5)	0.0085 (6)	0.0028 (6)
N8	0.0135 (7)	0.0189 (7)	0.0268 (8)	0.0001 (5)	0.0041 (6)	0.0037 (6)
N9	0.0146 (7)	0.0184 (7)	0.0192 (7)	0.0010 (5)	0.0044 (5)	0.0015 (6)
C1	0.0272 (9)	0.0157 (8)	0.0284 (10)	0.0031 (7)	0.0143 (8)	-0.0031 (7)
C2	0.0158 (8)	0.0139 (7)	0.0107 (8)	0.0027 (6)	0.0015 (6)	0.0030 (6)
C3	0.0178 (8)	0.0160 (7)	0.0122 (8)	0.0000 (6)	0.0057 (6)	-0.0010 (6)
C4	0.0132 (7)	0.0157 (7)	0.0140 (8)	-0.0007 (6)	0.0043 (6)	-0.0009 (6)
C5	0.0153 (8)	0.0177 (8)	0.0162 (8)	-0.0010 (6)	0.0063 (6)	0.0015 (6)
C6	0.0126 (7)	0.0160 (7)	0.0203 (9)	0.0004 (6)	0.0045 (6)	0.0008 (6)
C7	0.0216 (8)	0.0180 (8)	0.0153 (8)	0.0014 (7)	0.0063 (6)	0.0033 (6)
C8	0.0185 (8)	0.0149 (7)	0.0137 (8)	-0.0006 (6)	0.0044 (6)	0.0027 (6)
C9	0.0187 (8)	0.0188 (8)	0.0174 (9)	0.0002 (6)	-0.0003 (7)	0.0023 (6)
C10	0.0266 (9)	0.0168 (8)	0.0158 (9)	-0.0019 (7)	-0.0004 (7)	0.0000 (6)
C11	0.0262 (9)	0.0181 (8)	0.0209 (10)	0.0047 (7)	0.0013 (7)	-0.0002 (7)
C12	0.0211 (9)	0.0299 (10)	0.0256 (10)	0.0090 (8)	-0.0038 (8)	-0.0047 (8)
C13	0.0202 (9)	0.0234 (8)	0.0194 (9)	0.0023 (7)	-0.0026 (7)	-0.0039 (7)
C14	0.0329 (11)	0.0267 (9)	0.0252 (11)	0.0062 (8)	0.0026 (8)	-0.0086 (8)
C15	0.0190 (8)	0.0166 (8)	0.0190 (9)	-0.0022 (6)	0.0039 (7)	0.0005 (6)
C16	0.0181 (8)	0.0208 (8)	0.0251 (10)	0.0007 (6)	0.0024 (7)	-0.0058 (7)
C17	0.0164 (8)	0.0146 (8)	0.0279 (10)	0.0006 (6)	0.0044 (7)	-0.0030 (6)
C18	0.0169 (8)	0.0250 (9)	0.0307 (11)	0.0042 (7)	0.0005 (8)	-0.0083 (8)
C19	0.0135 (8)	0.0385 (11)	0.0322 (11)	0.0017 (8)	0.0008 (8)	-0.0148 (9)
C20	0.0227 (9)	0.0188 (8)	0.0224 (9)	0.0038 (7)	0.0020 (7)	0.0012 (7)
C21	0.0177 (8)	0.0168 (8)	0.0153 (8)	0.0015 (6)	-0.0010 (6)	-0.0005 (6)
C22	0.0209 (8)	0.0234 (8)	0.0197 (9)	-0.0006 (7)	0.0016 (7)	0.0023 (7)
C23	0.0221 (9)	0.0395 (11)	0.0162 (9)	0.0040 (8)	0.0034 (7)	-0.0018 (8)
C24	0.0315 (10)	0.0285 (9)	0.0168 (9)	0.0118 (8)	-0.0052 (8)	-0.0084 (7)
C25	0.0284 (10)	0.0183 (8)	0.0202 (9)	-0.0012 (7)	-0.0053 (8)	-0.0031 (7)
C26	0.0209 (8)	0.0199 (8)	0.0174 (9)	-0.0016 (7)	0.0014 (7)	0.0003 (6)
C27	0.0230 (9)	0.0175 (9)	0.0388 (12)	0.0024 (7)	0.0038 (8)	0.0041 (7)
C28	0.0191 (8)	0.0192 (8)	0.0148 (8)	0.0000 (6)	0.0065 (6)	-0.0017 (6)
C29	0.0162 (8)	0.0195 (8)	0.0209 (9)	0.0017 (6)	0.0032 (7)	0.0030 (7)
C30	0.0144 (8)	0.0205 (8)	0.0206 (9)	0.0006 (6)	0.0041 (7)	0.0022 (7)
C31	0.0138 (8)	0.0222 (8)	0.0224 (9)	0.0001 (6)	0.0019 (7)	0.0040 (7)
C32	0.0155 (8)	0.0184 (8)	0.0338 (11)	0.0011 (6)	0.0062 (7)	0.0045 (7)
C33	0.0210 (9)	0.0215 (8)	0.0202 (9)	0.0005 (7)	0.0034 (7)	-0.0009 (7)
C34	0.0185 (8)	0.0156 (7)	0.0220 (9)	-0.0023 (6)	0.0026 (7)	-0.0023 (7)
C35	0.0204 (9)	0.0242 (8)	0.0238 (9)	-0.0008 (7)	0.0054 (7)	-0.0057 (7)
C36	0.0219 (9)	0.0279 (9)	0.0356 (12)	0.0042 (7)	0.0014 (8)	-0.0132 (8)
C37	0.0303 (10)	0.0178 (8)	0.0331 (12)	0.0042 (7)	-0.0054 (9)	-0.0054 (7)
C38	0.0310 (10)	0.0189 (8)	0.0241 (10)	-0.0033 (7)	-0.0006 (8)	0.0004 (7)
C39	0.0225 (9)	0.0197 (8)	0.0255 (10)	-0.0005 (7)	0.0063 (7)	-0.0004 (7)

Geometric parameters (Å, °)

S1—C2	1.7021 (18)	C13—H13	0.9500
S2—C15	1.7058 (19)	C14—H14A	0.9800
S3—C28	1.7003 (19)	C14—H14B	0.9800
N1—C2	1.344 (2)	C14—H14C	0.9800
N1—C1	1.459 (2)	C16—C17	1.516 (3)
N1—H1	0.873 (10)	C16—H16A	0.9900
N2—C2	1.353 (2)	C16—H16B	0.9900
N2—C3	1.462 (2)	C17—H17A	0.9900
N2—C6	1.468 (2)	C17—H17B	0.9900
N3—C5	1.462 (2)	C18—C19	1.515 (3)
N3—C4	1.467 (2)	C18—H18A	0.9900
N3—C7	1.466 (2)	C18—H18B	0.9900
N4—C15	1.342 (2)	C19—H19A	0.9900
N4—C14	1.452 (2)	C19—H19B	0.9900
N4—H4	0.879 (10)	C20—C21	1.512 (2)
N5—C15	1.349 (2)	C20—H20A	0.9900
N5—C16	1.463 (2)	C20—H20B	0.9900
N5—C19	1.474 (2)	C21—C26	1.398 (2)
N6—C20	1.466 (3)	C21—C22	1.394 (3)
N6—C17	1.465 (2)	C22—C23	1.394 (3)
N6—C18	1.463 (2)	C22—H22	0.9500
N7—C28	1.350 (2)	C23—C24	1.380 (3)
N7—C27	1.456 (2)	C23—H23	0.9500
N7—H7	0.874 (10)	C24—C25	1.390 (3)
N8—C28	1.352 (2)	C24—H24	0.9500
N8—C29	1.464 (2)	C25—C26	1.387 (3)
N8—C32	1.466 (2)	С25—Н25	0.9500
N9—C31	1.461 (2)	C26—H26	0.9500
N9—C30	1.465 (2)	C27—H27A	0.9800
N9—C33	1.471 (2)	C27—H27B	0.9800
C1—H1A	0.9800	С27—Н27С	0.9800
C1—H1B	0.9800	C29—C30	1.518 (2)
C1—H1C	0.9800	С29—Н29А	0.9900
C3—C4	1.527 (2)	C29—H29B	0.9900
С3—НЗА	0.9900	C30—H30A	0.9900
С3—Н3В	0.9900	C30—H30B	0.9900
C4—H4A	0.9900	C31—C32	1.518 (3)
C4—H4B	0.9900	C31—H31A	0.9900
C5—C6	1.521 (2)	C31—H31B	0.9900
С5—Н5А	0.9900	C32—H32A	0.9900
С5—Н5В	0.9900	C32—H32B	0.9900
С6—Н6А	0.9900	C33—C34	1.508 (3)
С6—Н6В	0.9900	С33—Н33А	0.9900
С7—С8	1.509 (2)	С33—Н33В	0.9900
С7—Н7А	0.9900	C34—C35	1.393 (3)
С7—Н7В	0.9900	C34—C39	1.395 (3)

supporting information

C8—C13	1.391 (3)	C35—C36	1.394 (3)
C8—C9	1.397 (2)	С35—Н35	0.9500
C9—C10	1.388 (3)	C36—C37	1.375 (3)
С9—Н9	0.9500	С36—Н36	0.9500
C10—C11	1,389 (3)	C37—C38	1.391 (3)
C10—H10	0.9500	C37—H37	0.9500
C_{11} C_{12}	1 387 (3)	C_{38} C_{39}	1 388 (3)
C11_H11	0.9500	C38_H38	0.9500
C_{12} C_{13}	1 302 (3)	C30 H30	0.9500
C12 H12	0.0500	039-1139	0.9500
C12—H12	0.9500		
C2 - N1 - C1	123 32 (15)	N6-C17-C16	110 94 (15)
C_2 N1—H1	119 3 (17)	N6-C17-H17A	109.5
C1-N1-H1	115.2 (18)	C_{16} C_{17} H_{17A}	109.5
$C_2 = N_2 = C_3$	113.2(10) 122 50(14)	N6 C17 H17R	109.5
$C_2 = N_2 = C_3$	122.30(14) 124.76(15)	$C_{16} C_{17} H_{17} H_{17} H_{17}$	109.5
$C_2 = N_2 = C_0$	124.70(13)	$\frac{117}{117}$	109.5
$C_3 = N_2 = C_0$	110.14 (13)	HI/A = CI/=HI/B	108.0
C5 - N3 - C4	109.39 (13)	N6-C18-C19	111.49 (17)
C5—N3—C7	109.60 (13)	N6-C18-H18A	109.3
C4—N3—C7	111.04 (13)	С19—С18—Н18А	109.3
C15—N4—C14	124.31 (17)	N6—C18—H18B	109.3
C15—N4—H4	120 (2)	C19—C18—H18B	109.3
C14—N4—H4	115 (2)	H18A—C18—H18B	108.0
C15—N5—C16	123.23 (16)	N5—C19—C18	109.87 (16)
C15—N5—C19	124.14 (16)	N5—C19—H19A	109.7
C16—N5—C19	112.05 (15)	C18—C19—H19A	109.7
C20—N6—C17	111.29 (15)	N5—C19—H19B	109.7
C20—N6—C18	109.20 (15)	C18—C19—H19B	109.7
C17—N6—C18	108.50 (14)	H19A—C19—H19B	108.2
C28—N7—C27	123.50 (16)	N6-C20-C21	112.84 (15)
C28—N7—H7	119.0 (17)	N6-C20-H20A	109.0
C27—N7—H7	115.4 (17)	C21—C20—H20A	109.0
C28—N8—C29	122.84 (15)	N6—C20—H20B	109.0
C28—N8—C32	125 57 (16)	C21—C20—H20B	109.0
$C_{29} = N_8 = C_{32}$	111 57 (14)	H20A—C20—H20B	107.8
$C_{31} = N_{9} = C_{30}$	109.05(14)	$C_{26} = C_{21} = C_{22}$	119.05(17)
$C_{31} N_{9} C_{33}$	110.49 (15)	$C_{26} = C_{21} = C_{20}$	120.58(17)
C_{30} No C_{33}	110.49(13) 110.48(14)	$C_{20} = C_{21} = C_{20}$	120.30(17) 120.37(16)
$N_1 C_1 H_1 A$	100.5	$C_{22} = C_{21} = C_{20}$	120.37(10) 120.40(18)
NI CI HIP	109.5	$C_{23} = C_{22} = C_{21}$	120.49 (18)
	109.5	C23-C22-H22	119.0
HIA—CI—HIB	109.5	C21—C22—H22	119.8
NI-CI-HIC	109.5	$C_{24} = C_{23} = C_{22}$	119.85 (19)
HIA-UI-HIU	109.5	$C_{24} = C_{23} = H_{23}$	120.1
HIB-CI-HIC	109.5	C22—C23—H23	120.1
N1—C2—N2	117.68 (15)	C23—C24—C25	120.29 (18)
N1—C2—S1	119.53 (13)	C23—C24—H24	119.9
N2—C2—S1	122.76 (13)	C25—C24—H24	119.9
N2-C3-C4	109.83 (14)	C26—C25—C24	120.01 (18)

N2—C3—H3A	109.7	C26—C25—H25	120.0
С4—С3—НЗА	109.7	C24—C25—H25	120.0
N2—C3—H3B	109.7	C25—C26—C21	120.32 (18)
C4—C3—H3B	109.7	С25—С26—Н26	119.8
НЗА—СЗ—НЗВ	108.2	C21—C26—H26	119.8
N3—C4—C3	110.15 (13)	N7—C27—H27A	109.5
N3—C4—H4A	109.6	N7—C27—H27B	109.5
C3—C4—H4A	109.6	H27A—C27—H27B	109.5
N3—C4—H4B	109.6	N7—C27—H27C	109.5
C3—C4—H4B	109.6	H27A—C27—H27C	109.5
H4A—C4—H4B	108.1	H27B—C27—H27C	109.5
N3—C5—C6	110.40 (14)	N7—C28—N8	116.46 (16)
N3—C5—H5A	109.6	N7—C28—S3	120.46 (14)
C6-C5-H5A	109.6	N8-C28-S3	123.08 (14)
N3—C5—H5B	109.6	N8-C29-C30	110 46 (15)
C6-C5-H5B	109.6	N8—C29—H29A	109.6
H5A—C5—H5B	108.1	C30-C29-H29A	109.6
N2-C6-C5	109 26 (14)	N8—C29—H29B	109.6
N2-C6-H6A	109.8	C30-C29-H29B	109.6
C5-C6-H6A	109.8	H29A—C29—H29B	108.1
N2—C6—H6B	109.8	N9-C30-C29	110.24 (15)
C5-C6-H6B	109.8	N9-C30-H30A	109.6
H6A—C6—H6B	108.3	C29—C30—H30A	109.6
N3-C7-C8	113.36 (14)	N9—C30—H30B	109.6
N3—C7—H7A	108.9	C29—C30—H30B	109.6
C8—C7—H7A	108.9	H30A—C30—H30B	108.1
N3—C7—H7B	108.9	N9-C31-C32	110.76 (16)
C8—C7—H7B	108.9	N9—C31—H31A	109.5
H7A—C7—H7B	107.7	C32—C31—H31A	109.5
C13—C8—C9	118.39 (16)	N9—C31—H31B	109.5
C13—C8—C7	120.94 (16)	C32—C31—H31B	109.5
C9—C8—C7	120.66 (16)	H31A—C31—H31B	108.1
C10—C9—C8	120.64 (17)	N8—C32—C31	110.32 (15)
С10—С9—Н9	119.7	N8—C32—H32A	109.6
С8—С9—Н9	119.7	С31—С32—Н32А	109.6
C9—C10—C11	120.47 (17)	N8—C32—H32B	109.6
С9—С10—Н10	119.8	C31—C32—H32B	109.6
C11—C10—H10	119.8	H32A—C32—H32B	108.1
C12—C11—C10	119.41 (18)	N9—C33—C34	112.23 (15)
C12—C11—H11	120.3	N9—C33—H33A	109.2
C10—C11—H11	120.3	С34—С33—Н33А	109.2
C11—C12—C13	120.02 (18)	N9—C33—H33B	109.2
C11—C12—H12	120.0	С34—С33—Н33В	109.2
C13—C12—H12	120.0	H33A—C33—H33B	107.9
C8—C13—C12	121.07 (17)	C35—C34—C39	118.79 (18)
C8—C13—H13	119.5	C35—C34—C33	120.46 (18)
C12—C13—H13	119.5	C39—C34—C33	120.75 (17)
N4—C14—H14A	109.5	C34—C35—C36	120.4 (2)

	100 5	C24 C25 1125	110.0
N4—C14—H14B	109.5	С34—С35—Н35	119.8
H14A—C14—H14B	109.5	С36—С35—Н35	119.8
N4—C14—H14C	109.5	C37—C36—C35	120.2 (2)
H14A—C14—H14C	109.5	С37—С36—Н36	119.9
H14B—C14—H14C	109.5	С35—С36—Н36	119.9
N4—C15—N5	117.16 (16)	C36—C37—C38	120.24 (19)
N4—C15—S2	120.08 (14)	С36—С37—Н37	119.9
N5—C15—S2	122.76 (15)	C38—C37—H37	119.9
N5-C16-C17	110.51 (16)	C39—C38—C37	119.6 (2)
N5-C16-H16A	109.5	C39—C38—H38	120.2
C_{17} C_{16} H_{16A}	109.5	C_{37} C_{38} H_{38}	120.2
N5 C16 H16P	109.5	$C_{38}^{28} = C_{30}^{20} = C_{34}^{24}$	120.2
	109.5	$C_{38} = C_{39} = C_{34}$	120.79 (19)
	109.5	C34 C39 H39	119.6
H16A—C16—H16B	108.1	C34—C39—H39	119.6
C1 - N1 - C2 - N2	-17860(16)	C16—N5—C19—C18	-542(2)
C1 N1 C2 S1	-0.4(2)	N6 C18 C19 N5	573(2)
$C_1 = N_1 = C_2 = S_1$	-172 20 (15)	10 - 13 - 19 - 103	57.5(2)
$C_5 = N_2 = C_2 = N_1$	-175.39(15) 12.5 (2)	C17 - 100 - C20 - C21	172 20 (15)
$C_0 = N_2 = C_2 = N_1$	-15.5(2)	C18 - N0 - C20 - C21	-1/5.20(13)
$C_3 = N_2 = C_2 = S_1$	8.5 (2)	N6-C20-C21-C26	57.5(2)
C6—N2—C2—S1	168.43 (13)	N6—C20—C21—C22	-123.02 (18)
C2—N2—C3—C4	103.74 (18)	C26—C21—C22—C23	0.3 (3)
C6—N2—C3—C4	-58.78 (18)	C20—C21—C22—C23	-179.21 (17)
C5—N3—C4—C3	-58.61 (17)	C21—C22—C23—C24	-1.0 (3)
C7—N3—C4—C3	-179.71 (14)	C22—C23—C24—C25	1.1 (3)
N2-C3-C4-N3	58.52 (18)	C23—C24—C25—C26	-0.5 (3)
C4—N3—C5—C6	59.46 (17)	C24—C25—C26—C21	-0.2(3)
C7—N3—C5—C6	-178.57 (14)	C22—C21—C26—C25	0.3 (3)
$C_{2}-N_{2}-C_{6}-C_{5}$	-102.90(18)	C20-C21-C26-C25	179.78 (16)
$C_{3} = N_{2} = C_{6} = C_{5}$	59 14 (18)	$C_{27} N_{7} C_{28} N_{8}$	174 58 (18)
N_{3} C_{5} C_{6} N_{2}	-59.65(18)	$C_{27} N_{7} C_{28} S_{3}$	-49(3)
$C_{5} = N_{2} = C_{5} = C_{6} = N_{2}$	170.22(14)	$C_{27} = N_{7} = C_{28} = S_{5}$	172 40 (17)
C_{3} N3 C_{7} C_{8}	1/0.23(14)	$C_{29} = 108 = C_{20} = 107$	1/2.40(17)
C4 - N3 - C7 - C8	-08.80(18)	C_{32} No C_{20} N/	-0.1(3)
$N_{3} - C_{7} - C_{8} - C_{13}$	125.55 (18)	C_{29} N8 C_{28} S3	-8.1(3)
N3	-55.6 (2)	C32—N8—C28—S3	1/3.38 (15)
C13—C8—C9—C10	-0.1 (3)	C28—N8—C29—C30	125.94 (18)
C7—C8—C9—C10	-178.96 (16)	C32—N8—C29—C30	-55.4 (2)
C8—C9—C10—C11	0.4 (3)	C31—N9—C30—C29	-60.03 (19)
C9—C10—C11—C12	-0.2 (3)	C33—N9—C30—C29	178.35 (14)
C10-C11-C12-C13	-0.3 (3)	N8—C29—C30—N9	57.94 (19)
C9—C8—C13—C12	-0.4 (3)	C30—N9—C31—C32	59.9 (2)
C7—C8—C13—C12	178.45 (18)	C33—N9—C31—C32	-178.47 (15)
C11—C12—C13—C8	0.6 (3)	C28—N8—C32—C31	-126.48(19)
C14—N4—C15—N5	-174.97 (19)	C29—N8—C32—C31	54.9 (2)
C14—N4—C15—S2	4.0 (3)	N9—C31—C32—N8	-57.3 (2)
C16—N5—C15—N4	-165.25 (18)	C31—N9—C33—C34	172.72 (15)
C19 - N5 - C15 - N4	54(3)	C_{30} N9 C_{33} C_{34}	-6652(19)
C16 N5 C15 S2	15.8 (3)	$N0 - C_{33} - C_{34} - C_{35}^{35}$	128 22 (19)
010-10-010-02	10.0(0)	117 - 033 - 037 - 033	120.33 (10)

supporting information

C19—N5—C15—S2	-173.59 (16)	N9-C33-C34-C39	-51.8 (2)
C15—N5—C16—C17	-133.87 (19)	C39—C34—C35—C36	-0.6 (3)
C19—N5—C16—C17	54.5 (2)	C33—C34—C35—C36	179.21 (17)
C20-N6-C17-C16	179.77 (15)	C34—C35—C36—C37	0.3 (3)
C18—N6—C17—C16	59.61 (19)	C35—C36—C37—C38	0.4 (3)
N5-C16-C17-N6	-57.42 (19)	C36—C37—C38—C39	-0.7 (3)
C20-N6-C18-C19	178.58 (15)	C37—C38—C39—C34	0.4 (3)
C17—N6—C18—C19	-60.0 (2)	C35—C34—C39—C38	0.3 (3)
C15—N5—C19—C18	134.3 (2)	C33—C34—C39—C38	-179.54 (17)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C21–C26 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1···S1 ⁱ	0.87 (1)	2.59 (2)	3.387 (2)	153 (2)
$N4$ — $H4$ ···· $S2^{i}$	0.88 (1)	2.64 (2)	3.367 (2)	140 (2)
N7—H7····S3 ⁱⁱ	0.87 (1)	2.65 (2)	3.397 (2)	144 (2)
C3—H3b····S1 ⁱⁱⁱ	0.99	2.83	3.8213 (17)	175
C22—H22····S2 ^{iv}	0.95	2.87	3.7867 (17)	163
C29—H29b…S3 ^v	0.99	2.86	3.8007 (17)	160
C10—H10···· $Cg1^{vi}$	0.95	2.64	3.5665 (18)	164

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*-1/2, -*y*+3/2, *z*-1/2; (iv) *x*, *y*, *z*-1; (v) *x*, -*y*+2, *z*-1/2; (vi) *x*-1/2, -*y*+3/2, *z*+1/2.