organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl N-(2-benzoyl-4-chlorophenyl)ethanecarboximidate

H. P. Sumathi,^a A. S. Dayananda,^a Grzegorz Dutkiewicz,^b H. S. Yathirajan^a and Maciej Kubicki^{b*}

^aDepartment of Studies in Chemistry, University of Mysore, Mysore 570 006, India, and ^bDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

Correspondence e-mail: mkubicki@amu.edu.pl

Received 1 February 2012; accepted 21 February 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.117; data-to-parameter ratio = 17.6.

In the title compound, $C_{17}H_{16}CINO_2$, the N=C-O-C-C fragment is planar within 0.029 (1) Å, and makes dihedral angles of 66.71 (8) and 59.61 (8) $^{\circ}$ with the planes of the chlorophenyl and benzoyl rings, respectively. The carbonyl C=O bond is not coplanar with either of the aromatic rings; it makes angles of 42.5 and 23.5° with the normals to the ring planes. In the crystal, very weak C-H···O, C-H···Cl, C-H··· π and π - π [interplanar distance = 3.53 (1) Å] interactions are observed.

Related literature

For background to the medical applications of benzophenones, see, for instance: Evans et al. (1987); Revesz et al. (2004); Wiesner et al. (2002); Zeng et al. (2010). A similar structure has been described by Derieg et al. (1970)

Experimental

Crystal data C17H16CINO2

 $M_r = 301.76$

Triclinic, P1 V = 770.4 (2) Å³ a = 7.9674 (11) Å 7 - 2b = 8.6993 (17) ÅMo $K\alpha$ radiation c = 11.596 (2) Å $\mu = 0.25 \text{ mm}^{-1}$ $\alpha = 104.499 \ (17)^{\circ}$ T = 295 K $\beta = 94.871 \ (14)^{\circ}$ $0.35 \times 0.2 \times 0.15 \text{ mm}$ $\gamma = 95.001 \ (14)^{\circ}$

Data collection

gilent Xcalibur Eos diffractometer	13278 measured reflections
bsorption correction: multi-scan	3377 independent reflections
(CrysAlis PRO; Agilent, 2011)	2455 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.991, T_{\max} = 1.000$	$R_{int} = 0.028$

Refinement

A

$R[F^2 > 2\sigma(F^2)] = 0.044$	192 parameters
$wR(F^2) = 0.117$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
3377 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

CgA denotes the centroid of the phenyl ring C1-C6.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H5\cdots O22^{i}$	0.93	2.80	3.704 (2)	164
C6−H6···O14 ⁱⁱ	0.93	2.73	3.648 (2)	172
$C16-H16B\cdots O22^{iii}$	0.96	2.66	3.614 (3)	171
C27−H27···Cl4 ^{iv}	0.93	2.88	3.739 (2)	154
$C25-H25\cdots CgA^{v}$	0.93	2.90	3.744 (3)	151

Symmetry codes: (i) x, y + 1, z; (ii) -x + 2, -y + 1, -z + 1; (iii) x + 1, y, z; (iv) x + 1, y - 1, z; (v) -x + 2, -y + 1, -z + 2.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

ASD thanks the University of Mysore for research facilities. HSY thanks R. L. Fine Chem, Bengaluru, India, for the gift sample of the title compound.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2143).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Derieg, M. E., Blount, J. F., Fryer, R. I. & Hillery, S. S. (1970). Tetrahedron Lett. 11, 3869-3872.
- Evans, D., Cracknell, M. E., Saunders, J. C., Smith, C. E., Willamson, W. R. N., Dowson, W. & Sweatman, W. J. F. (1987). J. Med. Chem. 30, 1321-1327.
- Revesz, L., Blum, E., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U. & Rucklin, G. (2004). Bioorg. Med. Chem. Lett. 14, 3601-3605
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wiesner, J., Kettler, K., Jomaa, H. & Schlitzer, M. (2002). Bioorg. Med. Chem. Lett. 12, 543-545.
- Zeng, Z. S., He, Q. Q., Liang, Y. H., Chen, F. E., De Clercq, E., Balzarini, J. & Pannecouque, C. (2010). Bioorg. Med. Chem. 18, 5039-5047.

supporting information

Acta Cryst. (2012). E68, o916 [doi:10.1107/S1600536812007763]

Ethyl N-(2-benzoyl-4-chlorophenyl)ethanecarboximidate

H. P. Sumathi, A. S. Dayananda, Grzegorz Dutkiewicz, H. S. Yathirajan and Maciej Kubicki

S1. Comment

Benzophenone and related analogues have been reported to act as antiallergic, anti-inflammatory, antiasthamatic, antimalarial, anti-microbial and antianaphylactic agents (Evans *et al.*, 1987; Wiesner *et al.*, 2002). The competence of benzophenones as chemotherapeutic agents, especially as inhibitors of HIV-1 reverse transcriptase RT, cancer and inflammation, is well established and their chemistry has been studied extensively (Revesz *et al.*, 2004, Zeng *et al.*, 2010). The title compound - *N*-(2-Benzoyl-4-chloro-phenyl)-acetimidic acid ethyl ester (1, Scheme 1) - is an intermediate in the synthesis of certain anxiolytic, anticonvulsant and sedative drugs.

The conformation of *N*-(2-Benzoyl-4-chloro-phenyl)-acetimidic acid ethyl ester (**1**, Scheme 1) can be described by the dihedral angles between the approximately planar fragments: two aromatic rings (A and B, *cf.* Fig. 1), and the N=C—O—C—C chain (C, which is planar within 0.029 (1) Å). All these angles are close to 60° : A/B 69.14 (5) $^{\circ}$, A/C 66.71 (8) $^{\circ}$, B/C 59.61 (8) $^{\circ}$. Interestingly, the C21=O22 double bond is not coplanar with either A or B phenyl rings, the C2—C21(=O22)—C23 plane makes the dihedral angle 52.81 (6) $^{\circ}$ with the ring A and 25.51 (8) $^{\circ}$ with ring B. Quite similar conformation was observed in the crystal structure of related compound, 2-benzoyl-4-chloroformanilide triacetyl-hydrazide (Derieg *et al.*, 1970).

In the crystal only some weak but directional C—H···O, C—H···Cl and C—H··· π interaction can be found (*cf.* Table), and they to some extent influence the packing together with van der Waals interactions. Also the phenyl rings B from molecules related by the center of symmetry stack to some extent with the interplanar distance of *ca* 3.53 Å.

S2. Experimental

The title compound was obtained as a gift sample from R. L. Fine Chem., Bengaluru, India. The compound was recrystallized from dichloromethane by slow evaporation (m.p: 323 K).

S3. Refinement

Hydrogen atoms were put in the idealized positions, and refined as riding model. Their isotropic thermal parameters were set at 1.2 times U_{eq} 's of appropriate carrier atoms.

Figure 1

Anisotropic ellipsoid representation of 1, drawn at 50% probability level.

Figure 2

The crystal packing as seen approximately along the a-axis direction. Weak C-H…Cl hydrogen bonds are depicted as dashed lines.

Ethyl N-(2-benzoyl-4-chlorophenyl)ethanecarboximidate

Crystal data	
$C_{17}H_{16}CINO_2$ $M_r = 301.76$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 7.9674 (11) Å b = 8.6993 (17) Å c = 11.596 (2) Å $a = 104.499 (17)^{\circ}$ $\beta = 94.871 (14)^{\circ}$ $\gamma = 95.001 (14)^{\circ}$ $V = 770.4 (2) \text{ Å}^3$	Z = 2 F(000) = 316 $D_x = 1.301 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.7107 \text{ Å}$ Cell parameters from 1885 reflections $\theta = 2.9-27.8^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 295 K Block, colourless $0.35 \times 0.2 \times 0.15 \text{ mm}$
Data collection Agilent Xcalibur Eos	13278 measured reflections
diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1544 pixels mm ⁻¹ ω -scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011) $T_{\min} = 0.991, T_{\max} = 1.000$	3377 independent reflections 2455 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 28.2^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.117$	neighbouring sites
S = 1.05	H-atom parameters constrained
3377 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0479P)^2 + 0.1642P]$
192 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.20 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.21 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. Address for R L Fine Chemicals:

No 15, R L Fine Chem, KHB Industrial Area, Yelahanka New Town, Bengaluru-560 106, India. Website: http://www.rlfinechem.com

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.7628 (2)	0.41768 (19)	0.70454 (14)	0.0376 (4)
C2	0.6659 (2)	0.33697 (19)	0.77071 (14)	0.0361 (4)
C3	0.5286 (2)	0.4041 (2)	0.82141 (15)	0.0411 (4)
Н3	0.4601	0.3484	0.8619	0.049*
C4	0.4940 (2)	0.5531 (2)	0.81170 (15)	0.0422 (4)
Cl4	0.32629 (7)	0.63863 (7)	0.87998 (5)	0.0670 (2)
C5	0.5910 (2)	0.6367 (2)	0.74955 (16)	0.0464 (4)
Н5	0.5671	0.7374	0.7439	0.056*
C6	0.7238 (2)	0.5683 (2)	0.69612 (16)	0.0463 (4)
H6	0.7890	0.6236	0.6535	0.056*
N11	0.90172 (18)	0.34957 (17)	0.65447 (13)	0.0428 (4)
C12	0.9091 (2)	0.3070 (2)	0.54356 (16)	0.0432 (4)
C13	0.7813 (3)	0.3131 (3)	0.44432 (18)	0.0663 (6)
H13A	0.6819	0.3528	0.4768	0.099*
H13B	0.7517	0.2077	0.3923	0.099*
H13C	0.8278	0.3828	0.3997	0.099*
014	1.04660 (16)	0.24308 (16)	0.50072 (10)	0.0514 (3)
C15	1.1748 (3)	0.2175 (3)	0.58734 (18)	0.0611 (6)
H15A	1.1248	0.1528	0.6353	0.073*
H15B	1.2242	0.3191	0.6404	0.073*
C16	1.3068 (3)	0.1356 (3)	0.5231 (2)	0.0828 (8)
H16A	1.2558	0.0387	0.4668	0.124*

H16B	1.3885	0.1107	0.5794	0.124*	
H16C	1.3621	0.2040	0.4810	0.124*	
C21	0.7012 (2)	0.1754 (2)	0.78588 (15)	0.0398 (4)	
O22	0.58787 (18)	0.06586 (16)	0.76157 (14)	0.0632 (4)	
C23	0.8739 (2)	0.15418 (19)	0.83424 (14)	0.0368 (4)	
C24	0.9812 (2)	0.2816 (2)	0.90603 (16)	0.0455 (4)	
H24	0.9479	0.3840	0.9217	0.055*	
C25	1.1373 (3)	0.2576 (3)	0.95454 (18)	0.0587 (5)	
H25	1.2078	0.3432	1.0049	0.070*	
C26	1.1892 (3)	0.1075 (3)	0.9288 (2)	0.0655 (6)	
H26	1.2951	0.0917	0.9613	0.079*	
C27	1.0850 (3)	-0.0190 (3)	0.8554 (2)	0.0672 (6)	
H27	1.1214	-0.1202	0.8365	0.081*	
C28	0.9271 (3)	0.0033 (2)	0.80965 (18)	0.0533 (5)	
H28	0.8554	-0.0835	0.7619	0.064*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0369 (9)	0.0398 (9)	0.0377 (9)	0.0072 (7)	0.0026 (7)	0.0122 (7)
C2	0.0353 (9)	0.0371 (8)	0.0365 (8)	0.0070 (7)	0.0002 (7)	0.0111 (7)
C3	0.0375 (9)	0.0466 (10)	0.0428 (9)	0.0092 (8)	0.0051 (8)	0.0165 (8)
C4	0.0411 (10)	0.0466 (10)	0.0420 (9)	0.0175 (8)	0.0043 (8)	0.0133 (8)
Cl4	0.0666 (4)	0.0787 (4)	0.0720 (4)	0.0447 (3)	0.0256 (3)	0.0314 (3)
C5	0.0540 (11)	0.0403 (9)	0.0498 (10)	0.0164 (9)	0.0026 (9)	0.0181 (8)
C6	0.0505 (11)	0.0437 (10)	0.0520 (10)	0.0090 (9)	0.0088 (9)	0.0235 (8)
N11	0.0417 (8)	0.0502 (9)	0.0418 (8)	0.0141 (7)	0.0086 (7)	0.0174 (7)
C12	0.0384 (10)	0.0510 (10)	0.0443 (10)	0.0086 (8)	0.0075 (8)	0.0175 (8)
C13	0.0553 (13)	0.0958 (17)	0.0489 (11)	0.0261 (12)	0.0009 (10)	0.0165 (11)
O14	0.0427 (7)	0.0750 (9)	0.0404 (7)	0.0197 (7)	0.0082 (6)	0.0165 (6)
C15	0.0527 (12)	0.0842 (15)	0.0502 (11)	0.0284 (11)	0.0031 (10)	0.0184 (10)
C16	0.0640 (15)	0.118 (2)	0.0739 (15)	0.0435 (15)	0.0100 (13)	0.0262 (15)
C21	0.0429 (10)	0.0360 (9)	0.0418 (9)	0.0070 (8)	0.0063 (8)	0.0112 (7)
O22	0.0490 (8)	0.0447 (7)	0.0956 (11)	-0.0023 (7)	-0.0048 (8)	0.0242 (7)
C23	0.0421 (10)	0.0353 (8)	0.0375 (9)	0.0108 (7)	0.0074 (7)	0.0145 (7)
C24	0.0478 (11)	0.0410 (9)	0.0480 (10)	0.0105 (8)	0.0025 (9)	0.0114 (8)
C25	0.0486 (12)	0.0701 (14)	0.0584 (12)	0.0067 (10)	-0.0065 (10)	0.0223 (10)
C26	0.0476 (12)	0.0906 (17)	0.0721 (14)	0.0281 (12)	0.0055 (11)	0.0404 (13)
C27	0.0729 (15)	0.0616 (13)	0.0798 (15)	0.0405 (13)	0.0148 (13)	0.0286 (12)
C28	0.0621 (13)	0.0387 (10)	0.0623 (12)	0.0166 (9)	0.0062 (10)	0.0154 (9)

Geometric parameters (Å, °)

C1—C2	1.398 (2)	C15—C16	1.472 (3)
C1—C6	1.398 (2)	C15—H15A	0.9700
C1—N11	1.402 (2)	C15—H15B	0.9700
С2—С3	1.390 (2)	C16—H16A	0.9600
C2—C21	1.506 (2)	C16—H16B	0.9600

C2 C4	1 270 (2)		0.000
C3—C4	1.379 (2)	C16—H16C	0.9600
С3—Н3	0.9300	C21—O22	1.214 (2)
C4—C5	1.380 (3)	C21—C23	1.486 (2)
C4—C14	1.7391 (17)	C23—C24	1.380 (2)
C5—C6	1.376 (2)	C23—C28	1.383 (2)
С5—Н5	0.9300	C24—C25	1 375 (3)
С6—Н6	0.9300	C_{24} H24	0.9300
N11 C12	1.254(2)	$C_{24} = 1124$	1.272(2)
$\frac{12}{12} = 014$	1.234(2)	C25—C20	1.373 (3)
	1.348 (2)	C25—H25	0.9300
C12—C13	1.485 (3)	C26—C27	1.370 (3)
C13—H13A	0.9600	С26—Н26	0.9300
C13—H13B	0.9600	C27—C28	1.372 (3)
C13—H13C	0.9600	С27—Н27	0.9300
O14—C15	1.442 (2)	C28—H28	0.9300
C2—C1—C6	118.80 (15)	C16—C15—H15A	109.9
$C_{2}-C_{1}-N_{11}$	119 15 (14)	014-C15-H15B	109.9
C_{1} C_{1} N_{11}	121.05 (16)	C16 C15 H15B	109.9
C_{2} C_{2} C_{1}	121.95(10) 110.58(15)	$H_{15A} = C_{15} = H_{15B}$	109.9
$C_3 = C_2 = C_1$	119.30 (13)		100.5
$C_{3} = C_{2} = C_{21}$	118.18 (15)		109.5
C1—C2—C21	122.20 (15)	C15—C16—H16B	109.5
C4—C3—C2	120.03 (16)	H16A—C16—H16B	109.5
С4—С3—Н3	120.0	C15—C16—H16C	109.5
С2—С3—Н3	120.0	H16A—C16—H16C	109.5
C3—C4—C5	121.20 (16)	H16B—C16—H16C	109.5
C3—C4—Cl4	119.55 (14)	O22—C21—C23	120.95 (16)
C5—C4—C14	119.25 (13)	O22—C21—C2	119.91 (16)
C6—C5—C4	118.86 (16)	C23—C21—C2	119.12 (15)
С6—С5—Н5	120.6	C_{24} C_{23} C_{28}	119.12(17)
C_4 C_5 H_5	120.6	$C_{24} = C_{23} = C_{20}$	117.14(17) 121.28(15)
$C_{2} = C_{2} = C_{1}$	120.0	$C_{24} = C_{23} = C_{21}$	121.20(15) 110.57(16)
	121.44 (17)	$C_{20} = C_{23} = C_{21}$	119.37(10)
С5—С6—Н6	119.3	C25—C24—C23	120.16 (17)
С1—С6—Н6	119.3	C25—C24—H24	119.9
C12—N11—C1	122.68 (15)	C23—C24—H24	119.9
N11—C12—O14	119.97 (16)	C26—C25—C24	120.2 (2)
N11—C12—C13	129.03 (17)	С26—С25—Н25	119.9
O14—C12—C13	110.99 (15)	С24—С25—Н25	119.9
С12—С13—Н13А	109.5	C27—C26—C25	120.0 (2)
C12—C13—H13B	109.5	С27—С26—Н26	120.0
H13A—C13—H13B	109.5	C25—C26—H26	120.0
C12—C13—H13C	109.5	$C_{26} - C_{27} - C_{28}$	120.08 (19)
$H_{13} - C_{13} - H_{13} C_{13}$	109.5	$C_{26} = C_{27} = H_{27}$	120.00 (19)
H13R C13 H13C	100.5	$C_{20} C_{27} H_{27}$	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.3 116.92 (14)	$C_{20} = C_{21} = \Pi_{21}$	120.0
12 - 014 - 015	110.82 (14)	(2) - (23 - (23))	120.4 (2)
014-015-016	108.70(17)	$U_2/-U_2 = H_2 \delta$	119.8
O14—C15—H15A	109.9	C23—C28—H28	119.8
C6—C1—C2—C3	3.2 (2)	C13—C12—O14—C15	-174.91 (18)

N11—C1—C2—C3	179.56 (15)	C12-014-C15-C16	175.44 (19)
C6-C1-C2-C21	-179.05 (16)	C3—C2—C21—O22	50.6 (2)
N11—C1—C2—C21	-2.6 (2)	C1—C2—C21—O22	-127.22 (19)
C1—C2—C3—C4	-3.4 (2)	C3—C2—C21—C23	-127.49 (17)
C21—C2—C3—C4	178.69 (16)	C1—C2—C21—C23	54.7 (2)
C2—C3—C4—C5	1.7 (3)	O22—C21—C23—C24	-153.15 (17)
C2-C3-C4-Cl4	-177.78 (13)	C2—C21—C23—C24	24.9 (2)
C3—C4—C5—C6	0.4 (3)	O22—C21—C23—C28	25.1 (3)
Cl4—C4—C5—C6	179.81 (14)	C2-C21-C23-C28	-156.77 (16)
C4—C5—C6—C1	-0.6 (3)	C28—C23—C24—C25	-1.5 (3)
C2-C1-C6-C5	-1.2 (3)	C21—C23—C24—C25	176.78 (17)
N11—C1—C6—C5	-177.46 (16)	C23—C24—C25—C26	2.0 (3)
C2-C1-N11-C12	116.53 (19)	C24—C25—C26—C27	-0.5 (3)
C6—C1—N11—C12	-67.2 (2)	C25—C26—C27—C28	-1.5 (3)
C1—N11—C12—O14	179.59 (15)	C26—C27—C28—C23	2.0 (3)
C1—N11—C12—C13	-1.7 (3)	C24—C23—C28—C27	-0.5 (3)
N11—C12—O14—C15	4.1 (3)	C21—C23—C28—C27	-178.80 (18)

Hydrogen-bond geometry (Å, °)

CgA denotes the centroid of the phenyl ring C1 - C6

D—H···A	D—H	H…A	$D \cdots A$	D—H···A
C5—H5…O22 ⁱ	0.93	2.80	3.704 (2)	164
С6—Н6…О14 ^{іі}	0.93	2.73	3.648 (2)	172
C16—H16B····O22 ⁱⁱⁱ	0.96	2.66	3.614 (3)	171
C27—H27····Cl4 ^{iv}	0.93	2.88	3.739 (2)	154
C25—H25···CgA ^v	0.93	2.90	3.744 (3)	151

Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z; (iv) x+1, y-1, z; (v) -x+2, -y+1, -z+2.