organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

rac-4-Carbamoylpiperidinium *cis*-2-carboxycyclohexane-1-carboxylate

Graham Smith* and Urs D. Wermuth

Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia Correspondence e-mail: g.smith@qut.edu.au

Received 14 January 2012; accepted 3 February 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.005 Å; R factor = 0.075; wR factor = 0.182; data-to-parameter ratio = 14.8.

In the title racemic salt, $C_6H_{13}N_2O^+$, $C_8H_{11}O_4^-$, formed from the reaction of *cis*-cyclohexane-1,2-dicarboxylic anhydride with isonipecotamide, the cations are linked into duplex chain substructures through both centrosymmetric cyclic head-tohead 'amide motif' hydrogen-bonding associations [graph set $R_2^2(8)$] and 'side-by-side' $R_2^2(14)$ associations. The anions are incorporated into the chains through cyclic $R_4^3(10)$ interactions involving amide and piperidinium $N-H\cdots O_{carboxyl}$ hydrogen bonds which, together with inter-anion carboxylic acid O- $H\cdots O_{carboxyl}$ hydrogen bonds, give a two-dimensional layered structure extending along (011).

Related literature

For examples of structures of 1:1 Lewis base salts of *cis*-cyclohexane-1,2-dicarboxylic acid, see: Smith & Wermuth (2011*a,b*). For examples of isonipecotamide proton-transfer salts, see: Smith & Wermuth (2010). For graph-set analysis, see: Etter *et al.* (1990). For hydrogen-bonding motifs, see: Allen *et al.* (1998).

Experimental

Crystal data

```
C_{6}H_{13}N_{2}O^{+}C_{8}H_{11}O_{4}^{-}

M_{r} = 300.35

Monoclinic, P2_{1}/c

a = 19.0097 (14) Å

b = 9.0667 (7) Å
```

c = 9.1999 (8) Å $\beta = 92.022 (7)^{\circ}$ $V = 1584.7 (2) \text{ Å}^{3}$ Z = 4Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 200 K

Data collection

Oxford Gemini-S CCD area-	10518 measured reflections
detector diffractometer	3100 independent reflections
Absorption correction: multi-scan	2146 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Oxford	$R_{\rm int} = 0.057$
Diffraction, 2010)	
$T_{\min} = 0.86, \ T_{\max} = 0.98$	

 $0.40 \times 0.35 \times 0.10 \text{ mm}$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.075$ H atoms treated by a mixture of
independent and constrained
refinementS = 1.06refinement3100 reflections $\Delta \rho_{max} = 0.43 \text{ e } \text{Å}^{-3}$
 $\Delta \rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H11A \cdots O41A^{i}$	0.97 (3)	1.95 (3)	2.861 (3)	155 (2)
$N1A - H12A \cdots O11$	0.99 (4)	1.64 (4)	2.588 (4)	158 (3)
$N41A - H41A \cdots O41A^{ii}$	0.86 (3)	2.14 (4)	2.996 (3)	174 (2)
$N41A - H42A \cdots O12^{iii}$	0.77 (3)	2.11 (3)	2.882 (4)	177 (3)
$O22-H22\cdots O12^{iv}$	0.93 (5)	1.64 (5)	2.571 (3)	173 (4)
Symmetry codes: (i) $x_{1} - y_{2} + \frac{5}{2}$, $z_{1} + \frac{1}{2}$.	x, -y+1, -z;	(ii) $-x, -y$	x, -z; (iii) $x,$	y - 1, z; (iv)

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *WinGX* (Farrugia, 1999); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

The authors acknowledge financial support from the Australian Research Council, and the Science and Engineering Faculty and the University Library, Queensland University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2139).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Smith, G. & Wermuth, U. D. (2010). Acta Cryst. C66, o614-o618.

Smith, G. & Wermuth, U. D. (2011a). Acta Cryst. E67, o1900.

Smith, G. & Wermuth, U. D. (2011b). Acta Cryst. E67, o2794.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.

supporting information

Acta Cryst. (2012). E68, o660 [doi:10.1107/S1600536812004710]

rac-4-Carbamoylpiperidinium cis-2-carboxycyclohexane-1-carboxylate

Graham Smith and Urs D. Wermuth

S1. Comment

cis-Cyclohexane-1,2-dicarboxylic anhydride (*cis*-CHDC anhydride) forms racemic 1:1 salts with some Lewis bases and the structures of a few of these have been reported, e.g. with 2-aminopyridine (Smith & Wermuth, 2011*a*) and 4-aminopyridine (Smith & Wermuth, 2011*b*). The 1:1 stoichiometric reaction of *cis*-CHDC anhydride with piperidine-4-carboxamide (isonipecotamide) also gave a racemic salt, the title compound, $C_6H_{12}N_2O^+$. $C_8H_{11}O_4^-$ and the structure is reported here.

In this compound (Fig. 1) the *cis*-configuration of the anion is found as expected, with the cations linked into duplex ribbon substructures through both centrosymmetric cyclic head-to-head hydrogen-bonding associations [the `amide' motif (Allen *et al.*, 1998)] [graph set $R_2^2(8)$ (Etter *et al.*, 1990)] and `side-by-side' $R_2^2(14)$ associations (Table 1, Fig. 2). Both of these associations have been found in the structures of Lewis base salts of isonipecotamide (Smith & Wermuth, 2010). In the present structure, the monoanions are incorporated into the ribbons through cyclic $R_3^4(10)$ amide and piperidinium N—H···O_{carboxyl} associations and together with inter-anion carboxylic acid O—H···O_{carboxyl} hydrogen bonds down *c* (Fig. 3), give a two-dimensional layered structure extending along (011).

S2. Experimental

The title compound was synthesized by heating together under reflux for 15 min, 1 mmol quantities of cyclohexane-1,2dicarboxylic anhydride and piperidine-4-carboxamide (isonipecotamide) in 50 ml of methanol. After volume reduction to 30 ml, the hot-filtered solution was allowed evaporate to dryness at room temperature, giving a white amorphous powder. Minor colourless crystal plates were obtained in the residual viscous residue after evaporation of a solution of the compound in 80% propane-2-ol–water.

S3. Refinement

H atoms potentially involved in hydrogen-bonding associations were located in a difference Fourier analysis and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement at calculated positions [C—H = 0.97–0.98 Å] with $U_{iso}(H) = 1.2U_{eq}(C)$, using a riding-model approximation.

Figure 1

Molecular conformation of the cation and anion in the title compound, with the inter-ion hydrogen bond shown as a dashed line. Displacement ellipsoids are drawn at the 40% probability level.

Figure 2

The hydrogen-bonded ribbon substructure in the title salt showing the isonipicotamide cation $R_2^2(8)$ and $R_2^2(14)$ cyclic associations and the $R_4^3(10)$ incorporation of the monoanion. For symmetry codes, see Table 1.

Figure 3

A view of the two-dimensional hydrogen-bonded layered structure looking down the b axial direction, showing the interribbon carboxylic acid···carboxyl hydrogen-bonding extensions down c.

rac-4-Carbamoylpiperidinium cis-2-carboxycyclohexane-1-carboxylate

Crystal data	
$C_{6}H_{13}N_{2}O^{+}C_{8}H_{11}O_{4}^{-}$ $M_{r} = 300.35$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc $a = 19.0097 (14) \text{ Å}$ $b = 9.0667 (7) \text{ Å}$ $c = 9.1999 (8) \text{ Å}$ $\beta = 92.022 (7)^{\circ}$ $V = 1584.7 (2) \text{ Å}^{3}$ $Z = 4$	F(000) = 644 $D_x = 1.255 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3793 reflections $\theta = 3.2-28.9^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 200 K Plate, colourless $0.40 \times 0.35 \times 0.10 \text{ mm}$
Data collection	
Oxford Gemini-S CCD area-detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator Detector resolution: 16.077 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2010) $T_{min} = 0.86, T_{max} = 0.98$	10518 measured reflections 3100 independent reflections 2146 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.2^{\circ}$ $h = -23 \rightarrow 22$ $k = -11 \rightarrow 11$ $l = -11 \rightarrow 11$
RefinementRefinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.075$ $wR(F^2) = 0.182$ $S = 1.06$ 3100 reflections210 parameters0 restraintsPrimary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0845P)^2 + 0.9949P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.43$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
011	0.21833 (13)	0.8455 (3)	0.0243 (3)	0.0522 (9)
012	0.23582 (11)	1.0432 (3)	-0.1098 (2)	0.0415 (8)
O21	0.25201 (12)	1.1290 (3)	0.2369 (3)	0.0487 (9)
O22	0.31747 (13)	1.3299 (3)	0.2117 (3)	0.0485 (9)
C1	0.33119 (16)	0.9592 (3)	0.0442 (4)	0.0362 (10)
C2	0.35236 (15)	1.1183 (4)	0.0836 (4)	0.0337 (10)
C3	0.42799 (19)	1.1251 (5)	0.1462 (5)	0.0634 (16)
C4	0.4392 (2)	1.0232 (6)	0.2741 (6)	0.086 (2)
C5	0.4211 (2)	0.8668 (6)	0.2325 (6)	0.085 (2)
C6	0.3456 (2)	0.8519 (4)	0.1711 (5)	0.0586 (14)
C11	0.25621 (15)	0.9481 (3)	-0.0177 (3)	0.0306 (9)
C21	0.30223 (16)	1.1903 (4)	0.1864 (3)	0.0337 (10)
O41A	-0.00706 (10)	0.2052 (2)	-0.0339 (2)	0.0298 (7)
N1A	0.13089 (14)	0.6330 (3)	-0.0339 (3)	0.0293 (8)
N41A	0.08655 (16)	0.0589 (3)	-0.0669 (3)	0.0286 (8)
C2A	0.11125 (16)	0.5811 (3)	-0.1821 (3)	0.0290 (9)
C3A	0.06735 (15)	0.4418 (3)	-0.1727 (3)	0.0257 (9)
C4A	0.10386 (14)	0.3218 (3)	-0.0845 (3)	0.0251 (8)
C5A	0.12773 (16)	0.3800 (3)	0.0645 (3)	0.0292 (9)
C6A	0.17115 (17)	0.5201 (3)	0.0524 (3)	0.0325 (10)
C41A	0.05649 (14)	0.1901 (3)	-0.0612 (3)	0.0236 (8)
H1	0.36180	0.92850	-0.03370	0.0430*
H2	0.35070	1.17570	-0.00670	0.0400*
H22	0.288 (3)	1.369 (5)	0.281 (5)	0.082 (15)*
H31	0.46020	1.09850	0.07100	0.0760*
H32	0.43860	1.22540	0.17640	0.0760*
H41	0.41000	1.05460	0.35270	0.1030*
H42	0.48800	1.02810	0.30850	0.1030*
H51	0.42710	0.80410	0.31750	0.1020*
H52	0.45340	0.83290	0.16040	0.1020*
H61	0.31300	0.87170	0.24740	0.0700*
H62	0.33780	0.75160	0.13760	0.0700*
H4A	0.14530	0.28900	-0.13600	0.0300*
H11A	0.0869 (17)	0.663 (3)	0.007 (3)	0.027 (8)*
H12A	0.161 (2)	0.722 (4)	-0.035 (4)	0.061 (11)*
H21A	0.15340	0.56100	-0.23520	0.0350*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H22A	0.08450	0.65690	-0.23390	0.0350*	
H31A	0.02300	0.46550	-0.12910	0.0310*	
H32A	0.05690	0.40530	-0.27020	0.0310*	
H41A	0.0623 (18)	-0.017 (4)	-0.045 (3)	0.037 (10)*	
H42A	0.1263 (17)	0.054 (3)	-0.082 (3)	0.017 (8)*	
H51A	0.08680	0.40010	0.12130	0.0350*	
H52A	0.15560	0.30510	0.11510	0.0350*	
H61A	0.18260	0.55830	0.14880	0.0390*	
H62A	0.21480	0.49810	0.00550	0.0390*	

Atomic displacement parameters $(Å^2)$

	<i>U</i> ^{/11}	1/22	L ³³	<i>U</i> ¹²	<i>U</i> ¹³	<i>L</i> /23
011	0.0308 (14)	0.0352 (14)	0.0811 (10)		(12)	0.0027 (13)
012	0.0370(14)	0.0552(14)	0.0011(19)	0.0102(11)	0.0035(13)	0.0027(13)
012	0.0305 (12)	0.0545 (16)	0.0393 (13)	-0.0007(11)	-0.0015 (10)	0.0068 (11)
O21	0.0385 (14)	0.0496 (15)	0.0590 (16)	-0.0112 (11)	0.0170 (12)	-0.0067 (12)
O22	0.0473 (15)	0.0479 (16)	0.0512 (15)	-0.0127 (12)	0.0156 (12)	-0.0159 (12)
C1	0.0240 (16)	0.0363 (19)	0.0483 (19)	0.0031 (14)	0.0016 (14)	-0.0011 (15)
C2	0.0211 (15)	0.0402 (19)	0.0398 (18)	-0.0042 (13)	0.0006 (13)	-0.0027 (14)
C3	0.028 (2)	0.074 (3)	0.088 (3)	-0.0069 (19)	-0.001 (2)	-0.025 (2)
C4	0.043 (3)	0.111 (5)	0.102 (4)	0.009 (3)	-0.035 (3)	-0.007 (3)
C5	0.053 (3)	0.097 (4)	0.103 (4)	0.028 (3)	-0.022 (3)	0.026 (3)
C6	0.046 (2)	0.047 (2)	0.082 (3)	0.0090 (18)	-0.008 (2)	0.020 (2)
C11	0.0273 (16)	0.0242 (16)	0.0403 (17)	-0.0002 (13)	-0.0005 (13)	-0.0073 (14)
C21	0.0277 (17)	0.0436 (19)	0.0294 (16)	-0.0014 (15)	-0.0036 (13)	-0.0003 (14)
O41A	0.0228 (11)	0.0265 (11)	0.0401 (12)	-0.0011 (9)	0.0010 (9)	0.0013 (9)
N1A	0.0274 (15)	0.0253 (14)	0.0351 (14)	0.0002 (12)	-0.0004 (11)	-0.0009 (11)
N41A	0.0188 (14)	0.0291 (15)	0.0381 (15)	-0.0049 (12)	0.0026 (11)	0.0020 (11)
C2A	0.0288 (16)	0.0317 (16)	0.0264 (15)	0.0014 (13)	-0.0010 (12)	0.0075 (13)
C3A	0.0257 (15)	0.0310 (16)	0.0200 (14)	-0.0011 (13)	-0.0046 (11)	0.0013 (12)
C4A	0.0217 (14)	0.0258 (15)	0.0278 (15)	0.0000 (12)	-0.0006 (12)	0.0001 (12)
C5A	0.0326 (17)	0.0284 (16)	0.0259 (15)	0.0002 (13)	-0.0092 (12)	0.0037 (12)
C6A	0.0378 (18)	0.0270 (16)	0.0318 (16)	-0.0027 (14)	-0.0123 (13)	0.0051 (13)
C41A	0.0240 (15)	0.0253 (15)	0.0211 (14)	-0.0014 (12)	-0.0063 (11)	0.0014 (12)

Geometric parameters (Å, °)

011—C11	1.246 (4)	C3—H31	0.9700	
O12—C11	1.260 (4)	C3—H32	0.9700	
O21—C21	1.211 (4)	C4—H42	0.9700	
O22—C21	1.317 (4)	C4—H41	0.9700	
O22—H22	0.93 (5)	C5—H52	0.9700	
O41A-C41A	1.250 (3)	C5—H51	0.9700	
N1A—C6A	1.490 (4)	C6—H62	0.9700	
N1A—C2A	1.478 (4)	C6—H61	0.9700	
N41A-C41A	1.322 (4)	C2A—C3A	1.518 (4)	
N1A—H12A	0.99 (4)	C3A—C4A	1.511 (4)	
N1A—H11A	0.97 (3)	C4A—C41A	1.515 (4)	

N41A—H41A	0.86 (3)	C4A—C5A	1.523 (4)
N41A—H42A	0.77 (3)	C5A—C6A	1.521 (4)
C1—C2	1.538 (5)	C2A—H21A	0.9700
C1—C6	1.537 (5)	C2A—H22A	0.9700
C1—C11	1.520 (4)	C3A—H31A	0.9700
C2—C3	1.531 (5)	C3A—H32A	0.9700
C2—C21	1.514 (5)	C4A—H4A	0.9800
C3—C4	1.505 (7)	C5A—H51A	0.9700
C4—C5	1.506 (8)	C5A—H52A	0.9700
C5-C6	1,530 (6)	C6A—H61A	0.9700
C1—H1	0.9800	C6A—H62A	0.9700
С2—Н2	0.9800	0011 110211	0.9700
02 112	0.9000		
C21—O22—H22	111 (3)	C4—C5—H51	109.00
C2A—N1A—C6A	112.4 (2)	C4—C5—H52	109.00
C6A—N1A—H11A	114.9 (16)	H51—C5—H52	108.00
H11A—N1A—H12A	106 (3)	C6—C5—H52	109.00
C6A—N1A—H12A	106 (2)	C1—C6—H62	109.00
C2A—N1A—H12A	112 (2)	C1—C6—H61	109.00
C2A—N1A—H11A	104.7 (17)	С5—С6—Н62	109.00
H41A—N41A—H42A	122 (3)	H61—C6—H62	108.00
C41A—N41A—H42A	119 (2)	C5—C6—H61	109.00
C41A—N41A—H41A	119 (2)	N1A—C2A—C3A	109.5 (2)
C6—C1—C11	112.5 (3)	C2A—C3A—C4A	112.7 (2)
C2-C1-C6	112.1 (3)	C3A—C4A—C41A	112.3 (2)
C2-C1-C11	112.6 (2)	C5A—C4A—C41A	107.8 (2)
C1 - C2 - C21	112.7 (3)	C3A—C4A—C5A	110.5(2)
C_{3} C_{2} C_{2} C_{2}	110.6 (3)	C4A—C5A—C6A	111.6 (2)
C1 - C2 - C3	1112(3)	N1A - C6A - C5A	110.1(2)
$C_{2} - C_{3} - C_{4}$	112.0(3)	O41A - C41A - C4A	121.7(2)
C_{3} C_{4} C_{5}	112.0(3) 110.8(4)	N41A—C41A—C4A	1163(2)
C4-C5-C6	1123(4)	O41A - C41A - N41A	121.9(3)
C1 - C6 - C5	112.3(1) 111.4(3)	NIA—C2A—H2IA	110.00
011 - C11 - 012	123.5(3)	NIA—C2A—H22A	110.00
011-C11-C1	118.6 (3)	C3A - C2A - H21A	110.00
012-C11-C1	118.0(3)	C3A - C2A - H22A	110.00
021-C21-C2	124.3 (3)	H21A - C2A - H22A	108.00
022 - C21 - C2	12.12(3)	C2A - C3A - H31A	109.00
021 - C21 - 022	123.0(3)	C2A - C3A - H32A	109.00
C6-C1-H1	106.00	C4A—C3A—H31A	109.00
$C^2 - C^1 - H^1$	106.00	C4A - C3A - H32A	109.00
C11—C1—H1	106.00	H31A—C3A—H32A	108.00
C3—C2—H2	107.00	C3A—C4A—H4A	109.00
C1—C2—H2	107.00	C5A—C4A—H4A	109.00
C21—C2—H2	107.00	C41A—C4A—H4A	109.00
C4—C3—H31	109.00	C4A - C5A - H51A	109.00
C2-C3-H31	109.00	C4A - C5A - H52A	109.00
H31—C3—H32	108.00	C6A - C5A - H51A	109.00
			102.00

C4—C3—H32	109.00	C6A—C5A—H52A	109.00
С2—С3—Н32	109.00	H51A—C5A—H52A	108.00
C5—C4—H42	109.00	N1A—C6A—H61A	110.00
C3—C4—H42	110.00	N1A—C6A—H62A	110.00
H41—C4—H42	108.00	C5A—C6A—H61A	110.00
C5—C4—H41	110.00	C5A—C6A—H62A	110.00
C3—C4—H41	109.00	H61A—C6A—H62A	108.00
C6—C5—H51	109.00		
C2A—N1A—C6A—C5A	-58.9 (3)	C3—C2—C21—O22	59.5 (4)
C6A—N1A—C2A—C3A	58.5 (3)	C1—C2—C21—O21	2.3 (5)
C11—C1—C2—C3	179.7 (3)	C2—C3—C4—C5	57.2 (5)
C11—C1—C2—C21	55.0 (4)	C3—C4—C5—C6	-56.7 (5)
C6—C1—C2—C21	-73.1 (3)	C4—C5—C6—C1	53.8 (5)
C11—C1—C6—C5	-179.3 (3)	N1A—C2A—C3A—C4A	-55.6 (3)
C2-C1-C11-O11	-137.0 (3)	C2A—C3A—C4A—C5A	53.0 (3)
C2-C1-C11-O12	43.4 (4)	C2A—C3A—C4A—C41A	173.4 (2)
C6-C1-C11-O11	-9.1 (4)	C41A—C4A—C5A—C6A	-175.6 (2)
C6-C1-C11-O12	171.3 (3)	C3A—C4A—C41A—O41A	-40.5 (4)
C2-C1-C6-C5	-51.1 (4)	C3A—C4A—C41A—N41A	141.6 (3)
C6—C1—C2—C3	51.7 (4)	C5A—C4A—C41A—O41A	81.5 (3)
C1—C2—C3—C4	-54.8 (5)	C5A—C4A—C41A—N41A	-96.5 (3)
C21—C2—C3—C4	71.2 (4)	C3A—C4A—C5A—C6A	-52.5 (3)
C1—C2—C21—O22	-175.4 (3)	C4A—C5A—C6A—N1A	55.2 (3)
C3—C2—C21—O21	-122.8 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1A—H11A····O41A ⁱ	0.97 (3)	1.95 (3)	2.861 (3)	155 (2)
N1A—H12A…O11	0.99 (4)	1.64 (4)	2.588 (4)	158 (3)
N41A— $H41A$ ···· $O41A$ ⁱⁱ	0.86(3)	2.14 (4)	2.996 (3)	174 (2)
N41 <i>A</i> —H42 <i>A</i> ···O12 ⁱⁱⁱ	0.77 (3)	2.11 (3)	2.882 (4)	177 (3)
O22—H22…O12 ^{iv}	0.93 (5)	1.64 (5)	2.571 (3)	173 (4)
C4A— $H4A$ ···O21 ^v	0.98	2.49	3.340 (4)	145
C2A—H21 A ···O21 ^v	0.97	2.57	3.389 (4)	143
C2A—H22A····O41A ^{vi}	0.97	2.59	3.413 (3)	143
С3—Н32…О22	0.97	2.52	2.884 (5)	102
С6А—Н61А…О12 ^{vii}	0.97	2.58	3.351 (3)	137

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) -*x*, -*y*, -*z*; (iii) *x*, *y*-1, *z*; (iv) *x*, -*y*+5/2, *z*+1/2; (v) *x*, -*y*+3/2, *z*-1/2; (vi) -*x*, *y*+1/2, -*z*-1/2; (vii) *x*, -*y*+3/2, *z*+1/2.