organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diethyl 2,6-dimethyl-4-(5-phenyl-1*H*pyrazol-4-yl)-1,4-dihydropyridine-3,5dicarboxylate

Hoong-Kun Fun,^a*‡ Chin Wei Ooi,^a Shridhar Malladi,^b K. N. Shivananda^c and Arun M. Isloor^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India, and ^cSchulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 32000, Israel

Correspondence e-mail: hkfun@usm.my

Received 21 February 2012; accepted 23 February 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.041; wR factor = 0.118; data-to-parameter ratio = 27.7.

In the title compound, $C_{22}H_{25}N_3O_4$, the dihydropyridine ring adopts a flattened boat conformation. The pyrazole ring makes a dihedral angle of 29.04 (5)° with the benzene ring. The molecular structure is stabilized by an intramolecular C– $H \cdots O$ hydrogen bond which generates an S(9) ring motif. In the crystal, molecules are linked *via* N– $H \cdots O$ and C– $H \cdots N$ hydrogen bonds into a two-dimensional network parallel to the *ab* plane. The crystal structure is further consolidated by weak C– $H \cdots \pi$ interactions.

Related literature

For details and applications of dihydropyridine, see: Stout & Meyers (1982); Böcker & Guengerich (1986); Vo *et al.* (1995). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For ring conformation, see: Cremer & Pople (1975). For a related structure, see: Fun *et al.* (2011). For bond-length data, see: Allen *et al.* (1987). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data $C_{22}H_{25}N_3O_4$ $M_r = 395.45$ Monoclinic, $P2_1/c$ a = 9.7700 (4) Å b = 8.6431 (4) Å c = 24.8878 (9) Å $\beta = 105.646$ (2)°

Data collection

Bruker APEX DUO CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *T*_{min} = 0.972, *T*_{max} = 0.982

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.118$ S = 1.047361 reflections $V = 2023.73 (14) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K 0.32 \times 0.32 \times 0.20 mm

7361 independent reflections 5987 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$

27563 measured reflections

266 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.47 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1	and	Cg2	are	the	centro	ids o	of 1	the	N1/	N2/	'C7-	-C9	and	C1-	-C6	rings.
- (7		- (7														

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3-H1···O3 ⁱ	0.89	2.09	2.9597 (12)	167
$N1 - H2 \cdots O1^{n}$	0.90	1.96	2.8506 (10)	171
$C3-H3A\cdots N2^{m}$	0.93	2.51	3.4202 (13)	164
$C5-H5A\cdots O4$	0.93	2.50	3.4266 (12)	172
$C21 - H21C \cdot \cdot \cdot N2^{W}$	0.96	2.45	3.3300 (14)	153
$C16 - H16A \cdots Cg1^{\vee}$	0.97	2.80	3.5318 (11)	133
$C17 - H17C \cdots Cg2$	0.96	2.99	3.7750 (15)	140
$C19-H19A\cdots Cg2^{**}$	0.97	2.88	3.7079 (11)	144

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y - 1, z; (iii) x - 1, y, z; (iv) x, y + 1, z; (v) -x + 1, -y + 1, -z; (vi) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). CWO thanks the Malaysian government and USM for the award of the post of research assistant under the Research

[‡] Thomson Reuters ResearcherID: A-3561-2009.

University Grant (No. 1001/PFIZIK/811151). AMI is grateful to the Director of the National Institute of Technology Karnataka, Surathkal, India, for providing research facilities. AMI also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, and the government of India for the Young Scientist award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5081).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Böcker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596-1603.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Fun, H.-K., Hemamalini, M., Vijesh, A. M., Isloor, A. M. & Malladi, S. (2011). Acta Cryst. E67, 01417–01418.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stout, D. M. & Meyers, A. I. (1982). Chem. Rev. 82, 223-243.
- Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859.

supporting information

Acta Cryst. (2012). E68, 0892-0893 [doi:10.1107/S1600536812008173]

Diethyl 2,6-dimethyl-4-(5-phenyl-1*H*-pyrazol-4-yl)-1,4-dihydropyridine-3,5-dicarboxylate

Hoong-Kun Fun, Chin Wei Ooi, Shridhar Malladi, K. N. Shivananda and Arun M. Isloor

S1. Comment

1,4-Dihydropyridine (DHP) (Stout & Meyers, 1982) scaffold is a heterocyclic unit with remarkable pharmacological efficiency. They are widely used clinically as calcium channel blockers for the treatment of cardiovascular diseases. For example, nifedipine and nitrendipine are used for the treatment of hypertension and angina pectorism with nisoldipine being a potent vasodilator and nimodipine exhibiting selectivity for cerebral vasculature (Böcker & Guengerich, 1986). A number of DHP derivatives are employed as potential drug candidates for the treatment of congestive heart failure (Vo *et al.*, 1995). Prompted by the diverse activities of 1,4-dihydropyridines, we have synthesized the title compound to study its crystal structure.

In the title compound (Fig. 1), the dihydropyridine (N3/C10–C14) ring adopts a flattened boat conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.2966 (9) Å, θ = 73.57 (17)° and φ = 185.61 (19)°. The pyrazole ring (N1/N2/C7–C9) is essentially planar [maximum deviation of 0.003 (1) Å at atoms C8 and C9] and makes a dihedral angle of 29.04 (5)° with the benzene ring (C1–C6). The molecular structure is stabilized by an intramolecular C5–H5A···O4 hydrogen bond (Table 1) which generates an S(9) ring motif (Bernstein *et al.*, 1995). The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges are comparable to the related structure (Fun *et al.*, 2011).

In the crystal structure (Fig. 2), the molecules are linked *via* intermolecular N3—H1···O3, N1—H2···O1, C3—H3A···N2 and C21—H21C···N2 hydrogen bonds (Table 1) into two-dimensional networks parallel to the *ab* plane. The crystal structure is further consolidated by weak C—H··· π interactions, involving the centroids of the pyrazole ring (N1/N2/C7–C9; *Cg*1; Table 1) and benzene ring (C1–C6; *Cg*2; Table 1).

S2. Experimental

3-Phenyl-1*H*-pyrazole-4-carbaldehyde (0.172 g, 1.0 mmol), ethylacetoacetate (0.26 g, 2.0 mmol) and ammonium acetate (0.092 g, 1.2 mmol) in ethanol (7 ml) were refluxed for 5 h. After the completion of the reaction, the reaction mixture was concentrated and poured into crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from ethanol: water mixture. Yield: 0.285 g, 72.15%. *M.p.*: 476–478 K.

S3. Refinement

Atoms H1 and H2 were located in a difference map and were fixed at their found positions with $U_{iso}(H) = 1.2 U_{eq}(N)$ (N —H = 0.8870 and 0.9024 Å). The remaining H atoms were positioned geometrically and refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$ (C—H = 0.93–0.98 Å). A rotating group model was applied to the methyl groups. In the final refinement, the outliners (1 3 3), (-2 3 0) and (-2 3 10) were omitted.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular hydrogen bond was shown as dash line.

Figure 2

The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Diethyl 2,6-dimethyl-4-(5-phenyl-1*H*-pyrazol-4-yl)- 1,4-dihydropyridine-3,5-dicarboxylate

Crystal data	
$C_{22}H_{25}N_3O_4$	F(000) = 840
$M_r = 395.45$	$D_{\rm x} = 1.298 { m Mg} { m m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 8661 reflections
a = 9.7700 (4) Å	$\theta = 3.3 - 32.7^{\circ}$
b = 8.6431 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 24.8878 (9) Å	T = 100 K
$\beta = 105.646 \ (2)^{\circ}$	Block, colourless
V = 2023.73 (14) Å ³	$0.32 \times 0.32 \times 0.20$ mm
Z = 4	

Data collection

Bruker APEX DUO CCD area-detector	27563 measured reflections
diffractometer	7361 independent reflections
Radiation source: fine-focus sealed tube	5987 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.031$
φ and ω scans	$\theta_{max} = 32.7^{\circ}, \ \theta_{min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(<i>SADABS</i> ; Bruker, 2009)	$k = -13 \rightarrow 12$
$T_{\min} = 0.972, T_{\max} = 0.982$	$l = -37 \rightarrow 37$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.118$	neighbouring sites
S = 1.04	H-atom parameters constrained
7361 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0611P)^2 + 0.510P]$
266 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.47$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.19$ e Å ⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.58615 (8)	0.77001 (8)	0.04877 (3)	0.01973 (14)	
O2	0.46241 (7)	0.57230 (8)	0.07072 (3)	0.01770 (14)	
03	0.81230 (7)	0.30340 (9)	0.29673 (3)	0.02111 (15)	
04	0.59607 (7)	0.39878 (9)	0.25573 (3)	0.01732 (14)	
N1	0.64943 (8)	0.08372 (9)	0.08152 (3)	0.01486 (14)	
H2	0.6195	-0.0121	0.0695	0.018*	
N2	0.78581 (8)	0.12321 (10)	0.08546 (3)	0.01612 (15)	
N3	0.93751 (8)	0.59581 (10)	0.17656 (3)	0.01588 (15)	
H1	1.0205	0.6446	0.1854	0.019*	
C1	0.34348 (10)	0.08036 (11)	0.05798 (4)	0.01656 (16)	
H1A	0.3823	0.0415	0.0305	0.020*	
C2	0.20104 (10)	0.05325 (12)	0.05454 (4)	0.01944 (18)	
H2A	0.1454	-0.0036	0.0249	0.023*	
C3	0.14161 (10)	0.11085 (13)	0.09525 (4)	0.02181 (19)	

C4 $0.22583 (10)$ $0.19531 (13)$ $0.13937 (4)$ $0.02233 (19)$ H4A 0.1863 0.2343 0.1667 $0.027*$ C5 $0.36860 (10)$ $0.22241 (12)$ $0.14327 (4)$ $0.01388 (17)$ H5A 0.4239 0.2786 0.1732 $0.022*$ C6 $0.42916 (9)$ $0.16544 (10)$ $0.10232 (4)$ $0.01384 (15)$ C7 $0.58005 (9)$ $0.18941 (10)$ $0.10518 (3)$ $0.01267 (15)$ C8 $0.80244 (9)$ $0.25795 (11)$ $0.11222 (4)$ $0.01455 (15)$ H8A 0.8866 0.3143 0.1208 $0.017*$ C9 $0.67828 (9)$ $0.30610 (10)$ $0.12621 (3)$ $0.01229 (14)$ H10A 0.5715 0.4685 0.1599 $0.015*$ C11 $0.77430 (9)$ $0.45646 (10)$ $0.21308 (3)$ $0.01313 (15)$ C12 $0.90530 (9)$ $0.51818 (11)$ $0.22054 (4)$ $0.01474 (16)$ C13 $0.83443 (9)$ $0.65451 (10)$ $0.1212 (13)$ $0.01304 (15)$ C14 $0.69904 (9)$ $0.59162 (10)$ $0.1212 (13)$ $0.01304 (15)$ C15 $0.58227 (9)$ $0.65490 (10)$ $0.02448 (4)$ $0.02195 (19)$ H16A 0.3235 0.7369 0.0341 $0.026*$ C17 $0.21408 (12)$ $0.5514 (17)$ 0.0341 $0.026*$ C18 $0.73457 (9)$ $0.37847 (11)$ $0.2995 (4)$ $0.0148 (15)$ C19 $0.54490 (10)$ $0.32281 (13)$ $0.3065 (4)$ $0.0249 (18)$ H17A 0.1310 0.5647 <td< th=""><th>H3A</th><th>0.0463</th><th>0.0930</th><th>0.0930</th><th>0.026*</th></td<>	H3A	0.0463	0.0930	0.0930	0.026*
H4A 0.1863 0.2343 0.1667 0.027^* C5 $0.36860(10)$ $0.22241(12)$ $0.14327(4)$ $0.01838(17)$ H5A 0.4239 0.2786 0.1732 0.022^* C6 $0.42916(9)$ $0.16544(10)$ $0.10232(4)$ $0.01384(15)$ C7 $0.58005(9)$ $0.18941(10)$ $0.10232(4)$ $0.01455(15)$ C8 $0.80244(9)$ $0.25795(11)$ $0.11222(4)$ $0.01455(15)$ H8A 0.8866 0.3143 0.1208 0.017^* C9 $0.67828(9)$ $0.30610(10)$ $0.1560(3)$ $0.01229(14)$ H10A 0.5715 0.4685 0.1599 $0.01183(15)$ C12 $0.90530(9)$ $0.51818(11)$ $0.22054(4)$ $0.01474(16)$ C13 $0.83443(9)$ $0.64531(10)$ $0.13003(4)$ $0.01427(15)$ C14 $0.69904(9)$ $0.59162(10)$ $0.7756(4)$ $0.01430(15)$ C15 $0.5827(9)$ $0.65490(10)$ $0.7696(4)$ $0.01430(15)$ C16 $0.33872(10)$ $0.62787(13)$ $0.0244(4)$ $0.026*$ C17 $0.21408(12)$ $0.53514(17)$ $0.03417(6)$ $0.0380(3)$ H17A 0.1310 0.5647 0.0054 $0.057*$ C18 $0.73457(9)$ $0.3787(11)$ $0.23931(4)$ $0.01416(15)$ C19 $0.54490(10)$ $0.33281(13)$ $0.30055(4)$ $0.0224*$ C18 $0.73457(9)$ $0.3787(11)$ $0.23931(4)$ $0.0240(2)$ H17B 0.1985 0.5542 0.7011 $0.057*$ C18 <td>C4</td> <td>0.22583 (10)</td> <td>0.19531 (13)</td> <td>0.13937 (4)</td> <td>0.02233 (19)</td>	C4	0.22583 (10)	0.19531 (13)	0.13937 (4)	0.02233 (19)
C5 0.36860 (10) 0.22241 (12) 0.14327 (4) 0.01838 (17) H5A 0.4239 0.2786 0.1732 0.022* C6 0.42916 (9) 0.16544 (10) 0.1032 (4) 0.01384 (15) C7 0.58005 (9) 0.18941 (10) 0.11222 (4) 0.01455 (15) C8 0.80244 (9) 0.25795 (11) 0.11222 (4) 0.01267 (15) C9 0.67828 (9) 0.30610 (10) 0.12621 (3) 0.01229 (14) H10A 0.5715 0.4685 0.1599 0.015* C11 0.77430 (9) 0.45464 (10) 0.21308 (3) 0.01313 (15) C12 0.90530 (9) 0.51818 (11) 0.22054 (4) 0.01477 (16) C13 0.83443 (9) 0.64531 (10) 0.13003 (4) 0.01427 (15) C14 0.69904 (9) 0.59162 (10) 0.12121 (3) 0.01304 (15) C16 0.33872 (10) 0.62787 (13) 0.02484 (4) 0.026* C17 0.21408 (12) 0.5314 (17) 0.0341 0.026* C17 0.2327	H4A	0.1863	0.2343	0.1667	0.027*
H5A 0.4239 0.2786 0.1732 $0.022*$ C6 0.42916 (9) 0.16544 (10) 0.10232 (4) 0.01384 (15)C7 0.58005 (9) 0.18941 (10) 0.10232 (4) 0.01455 (15)C8 0.80244 (9) 0.25795 (11) 0.11222 (4) 0.01455 (15)C8 0.80244 (9) 0.25795 (11) 0.11222 (4) 0.01455 (15)C9 0.67828 (9) 0.30610 (10) 0.12621 (3) 0.01221 (15)C10 0.66775 (8) 0.45725 (10) 0.15560 (3) 0.0122 (14)H10A 0.5715 0.4685 0.1599 $0.015*$ C11 0.77430 (9) 0.45646 (10) 0.21308 (3) 0.01313 (15)C12 0.90530 (9) 0.51818 (11) 0.22054 (4) 0.01474 (16)C13 0.83443 (9) 0.64531 (10) 0.13003 (4) 0.01427 (15)C14 0.69904 (9) 0.59162 (10) 0.12121 (3) 0.01340 (15)C16 0.33872 (10) 0.62787 (13) 0.02848 (4) 0.02195 (19)H16A 0.3522 0.6144 -0.0084 $0.026*$ C17 0.21408 (12) 0.53514 (17) 0.03417 (6) 0.0380 (3)H17B 0.1985 0.5542 0.0701 $0.057*$ H17B 0.1985 0.5542 0.0701 $0.057*$ H17C 0.2327 0.4271 0.3006 $0.025*$ C17 0.21408 (10) 0.337817 (11) 0.22951 (4) 0.01416 (15)C18 0.73457 (9) 0.37847 (11) </td <td>C5</td> <td>0.36860 (10)</td> <td>0.22241 (12)</td> <td>0.14327 (4)</td> <td>0.01838 (17)</td>	C5	0.36860 (10)	0.22241 (12)	0.14327 (4)	0.01838 (17)
C6 $0.42916 (9)$ $0.16544 (10)$ $0.10232 (4)$ $0.01384 (15)$ C7 $0.58005 (9)$ $0.18941 (10)$ $0.10518 (3)$ $0.01267 (15)$ C8 $0.80244 (9)$ $0.25795 (11)$ $0.11222 (4)$ $0.01455 (15)$ C9 $0.67828 (9)$ $0.30610 (10)$ $0.12621 (3)$ $0.01221 (15)$ C10 $0.66775 (8)$ $0.45725 (10)$ $0.15560 (3)$ $0.01229 (14)$ H10A 0.5715 0.46855 0.1599 $0.0134 (15)$ C11 $0.77430 (9)$ $0.45646 (10)$ $0.21308 (3)$ $0.01313 (15)$ C12 $0.90530 (9)$ $0.51818 (11)$ $0.22054 (4)$ $0.01474 (16)$ C13 $0.83443 (9)$ $0.64531 (10)$ $0.13003 (4)$ $0.01427 (15)$ C14 $0.69904 (9)$ $0.59162 (10)$ $0.12121 (3)$ $0.01304 (15)$ C15 $0.58227 (9)$ $0.65490 (10)$ $0.0766 (4)$ $0.01430 (15)$ C16 $0.33872 (10)$ $0.62787 (13)$ $0.02848 (4)$ $0.02195 (19)$ H16A 0.3522 0.6144 -0.0084 $0.026*$ C17 $0.21408 (12)$ $0.5514 (17)$ $0.3341 (6)$ $0.337 (16)$ H17B 0.1985 0.5542 0.0701 $0.057*$ H17C 0.2327 0.4271 0.3306 $0.025*$ C19 $0.54490 (10)$ $0.33281 (13)$ $0.30055 (4)$ $0.0249 (18)$ H17A 0.1990 $0.33747 (11)$ $0.25931 (4)$ $0.01416 (15)$ C19 0.54420 0.3777 0.3365 $0.025*$ C19 0.5482	H5A	0.4239	0.2786	0.1732	0.022*
C7 0.58005 (9) 0.18941 (10) 0.10518 (3) 0.01267 (15)C8 0.80244 (9) 0.25795 (11) 0.11222 (4) 0.01455 (15)H8A 0.8866 0.3143 0.1208 $0.017*$ C9 0.67828 (9) 0.30610 (10) 0.12621 (3) 0.01221 (15)C10 0.66775 (8) 0.45725 (10) 0.15560 (3) 0.01229 (14)H10A 0.5715 0.4685 0.1599 $0.015*$ C11 0.77430 (9) 0.51818 (11) 0.22054 (4) 0.01474 (16)C13 0.83443 (9) 0.64531 (10) 0.1303 (3) 0.01427 (15)C14 0.69904 (9) 0.59162 (10) 0.12121 (3) 0.01304 (15)C15 0.58227 (9) 0.65490 (10) 0.07696 (4) 0.01430 (15)C16 0.33872 (10) 0.62787 (13) 0.02848 (4) 0.02195 (19)H16A 0.3522 0.6144 -0.0084 $0.026*$ C17 0.21408 (12) 0.53514 (17) 0.03417 (6) 0.0380 (3)H17A 0.1310 0.5647 0.0054 $0.057*$ H17B 0.1985 0.5542 0.0701 $0.057*$ H17C 0.2327 0.4271 0.3365 $0.022*$ C19 0.54490 (10) 0.33281 (13) 0.30055 (4) 0.0249 (18)H19B 0.5482 0.2207 0.2995 $0.025*$ C19 0.54490 (10) 0.33793 (14) 0.29101 (4) 0.0240 (2)H20A 0.3571 0.3525 0.3209 $0.036*$	C6	0.42916 (9)	0.16544 (10)	0.10232 (4)	0.01384 (15)
C8 0.80244 (9) 0.25795 (11) 0.11222 (4) 0.01455 (15)H8A 0.8866 0.3143 0.1208 $0.017*$ C9 0.67828 (9) 0.30610 (10) 0.12621 (3) 0.01221 (15)C10 0.66775 (8) 0.45725 (10) 0.15560 (3) 0.01229 (14)H10A 0.5715 0.4685 0.1599 $0.015*$ C11 0.77430 (9) 0.45646 (10) 0.21308 (3) 0.01313 (15)C12 0.90530 (9) 0.51818 (11) 0.22054 (4) 0.01474 (16)C13 0.83443 (9) 0.64531 (10) 0.13003 (4) 0.01427 (15)C14 0.69904 (9) 0.59162 (10) 0.12121 (3) 0.01304 (15)C15 0.58227 (9) 0.65490 (10) 0.07696 (4) 0.01304 (15)C16 0.33872 (10) 0.62787 (13) 0.02848 (4) 0.02195 (19)H16A 0.3522 0.6144 -0.0084 $0.026*$ C17 0.21408 (12) 0.5314 (17) 0.3417 (6) 0.3380 (3)H17A 0.1310 0.5647 0.0054 $0.057*$ H17B 0.1985 0.5542 0.0701 $0.057*$ H17B 0.1985 0.37847 (11) 0.2391 (4) 0.01416 (15)C19 0.54490 (10) 0.33281 (13) 0.30055 (4) 0.02049 (18)H19A 0.6029 0.3677 0.3365 $0.025*$ H19B 0.5482 0.2207 0.2995 $0.025*$ C20 0.39406 (10) 0.33783 0.25656 0.0	C7	0.58005 (9)	0.18941 (10)	0.10518 (3)	0.01267 (15)
H8A 0.8866 0.3143 0.1208 0.017* C9 0.67828 (9) 0.30610 (10) 0.12621 (3) 0.01221 (15) C10 0.66775 (8) 0.45725 (10) 0.15560 (3) 0.01229 (14) H10A 0.5715 0.4685 0.1599 0.015* C11 0.77430 (9) 0.45646 (10) 0.21308 (3) 0.01131 (15) C12 0.90530 (9) 0.51818 (11) 0.22054 (4) 0.01474 (16) C13 0.83443 (9) 0.64531 (10) 0.12121 (3) 0.01304 (15) C14 0.69904 (9) 0.59162 (10) 0.12121 (3) 0.01430 (15) C15 0.58227 (9) 0.65490 (10) 0.07696 (4) 0.01430 (15) C16 0.33721 (0) 0.62787 (13) 0.02848 (4) 0.02195 (19) H16A 0.3235 0.7369 0.0341 0.026* C17 0.21408 (12) 0.5541 (17) 0.0341 (0) 0.057* 0.1174 H17B 0.1395 0.5542 0.0701 (0) 0.057* 0.1174 H17B 0.1395 (10)	C8	0.80244 (9)	0.25795 (11)	0.11222 (4)	0.01455 (15)
C9 0.67828 (9) 0.30610 (10) 0.12621 (3) 0.01221 (15) C10 0.66775 (8) 0.45725 (10) 0.15560 (3) 0.01229 (14) H10A 0.5715 0.4685 0.1599 0.015* C11 0.77430 (9) 0.45646 (10) 0.21308 (3) 0.01313 (15) C12 0.90530 (9) 0.51818 (11) 0.22054 (4) 0.01474 (16) C13 0.83443 (9) 0.64531 (10) 0.13003 (4) 0.01427 (15) C14 0.69904 (9) 0.59162 (10) 0.12121 (3) 0.01304 (15) C15 0.58227 (9) 0.65490 (10) 0.07696 (4) 0.01430 (15) C16 0.33872 (10) 0.62787 (13) 0.02848 (4) 0.02195 (19) H16A 0.5522 0.6144 -0.0084 0.026* C17 0.21408 (12) 0.53514 (17) 0.03417 (6) 0.0380 (3) H17A 0.1310 0.5647 0.0054 0.057* H17B 0.1985 0.5542 0.0701 0.057* C18 0.73457 (9) 0.3	H8A	0.8866	0.3143	0.1208	0.017*
C10 0.66775 (8) 0.45725 (10) 0.15560 (3) 0.01229 (14) H10A 0.5715 0.4685 0.1599 0.015* C11 0.77430 (9) 0.45646 (10) 0.21308 (3) 0.01313 (15) C12 0.90530 (9) 0.51818 (11) 0.22054 (4) 0.01474 (16) C13 0.83443 (9) 0.64531 (10) 0.13003 (4) 0.01427 (15) C14 0.69904 (9) 0.59162 (10) 0.12121 (3) 0.01304 (15) C15 0.58227 (9) 0.65490 (10) 0.02848 (4) 0.02195 (19) H16A 0.3522 0.6144 -0.0084 0.026* C17 0.21408 (12) 0.53514 (17) 0.0341 0.026* C17 0.21408 (12) 0.5542 0.0701 0.057* H17A 0.1310 0.5647 0.0054 0.057* H17B 0.1985 0.5542 0.0701 0.057* H17A 0.1310 0.30265 (4) 0.0219 (18) H17A 0.1387 (9) 0.37847 (11) 0.25931 (4) 0.02	С9	0.67828 (9)	0.30610 (10)	0.12621 (3)	0.01221 (15)
H10A 0.5715 0.4685 0.1599 $0.015*$ C11 $0.77430 (9)$ $0.45646 (10)$ $0.21308 (3)$ $0.01313 (15)$ C12 $0.90530 (9)$ $0.51818 (11)$ $0.22054 (4)$ $0.01474 (16)$ C13 $0.83443 (9)$ $0.64531 (10)$ $0.13003 (4)$ $0.01427 (15)$ C14 $0.69904 (9)$ $0.59162 (10)$ $0.12121 (3)$ $0.01304 (15)$ C15 $0.58227 (9)$ $0.65490 (10)$ $0.07696 (4)$ $0.01430 (15)$ C16 $0.33872 (10)$ $0.62787 (13)$ $0.02848 (4)$ $0.02195 (19)$ H16A 0.3522 0.6144 -0.0084 $0.026*$ C17 $0.21408 (12)$ $0.53514 (17)$ $0.03417 (6)$ $0.0380 (3)$ H17A 0.1310 0.5647 0.0054 $0.057*$ H17B 0.1985 0.5542 0.0701 $0.57*$ H17C 0.2327 0.4271 0.0306 $0.057*$ C18 $0.73457 (9)$ $0.37847 (11)$ $0.25931 (4)$ $0.01416 (15)$ C19 $0.54490 (10)$ $0.33281 (13)$ $0.30055 (4)$ $0.0249 (18)$ H19A 0.6029 0.3677 0.3365 $0.025*$ H19B 0.5482 0.2207 0.2995 $0.025*$ C20 $0.39406 (10)$ $0.38793 (14)$ $0.29101 (4)$ $0.0240 (2)$ H20A 0.3571 0.3525 0.3209 $0.36*$ H20B 0.3369 0.3475 0.2898 $0.036*$ H20C 0.3919 0.4989 0.2898 $0.028*$ L21A $0.8870 $	C10	0.66775 (8)	0.45725 (10)	0.15560 (3)	0.01229 (14)
C110.77430 (9)0.45646 (10)0.21308 (3)0.01313 (15)C120.90530 (9)0.51818 (11)0.22054 (4)0.01474 (16)C130.83443 (9)0.64531 (10)0.13003 (4)0.01427 (15)C140.69904 (9)0.59162 (10)0.12121 (3)0.01304 (15)C150.58227 (9)0.65490 (10)0.07696 (4)0.01430 (15)C160.33872 (10)0.62787 (13)0.02848 (4)0.02195 (19)H16A0.35220.6144-0.00840.026*C170.21408 (12)0.53514 (17)0.03417 (6)0.0380 (3)H17A0.13100.56470.00540.057*C180.73457 (9)0.37847 (11)0.25931 (4)0.01416 (15)C190.54490 (10)0.33281 (13)0.30055 (4)0.0249 (18)H19A0.60290.36770.33650.025*H19B0.54820.2070.29950.026*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.83780.73540.09840.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H21B0.98700.50490.30460.033*H21B0.98700.50490.3046<	H10A	0.5715	0.4685	0.1599	0.015*
C12 0.90530 (9) 0.51818 (11) 0.22054 (4) 0.01474 (16)C13 0.83443 (9) 0.64531 (10) 0.13003 (4) 0.01427 (15)C14 0.69904 (9) 0.59162 (10) 0.12121 (3) 0.01304 (15)C15 0.58227 (9) 0.65490 (10) 0.07696 (4) 0.01430 (15)C16 0.33872 (10) 0.62787 (13) 0.02848 (4) 0.02195 (19)H16A 0.3522 0.6144 -0.0084 $0.026*$ C17 0.21408 (12) 0.53514 (17) 0.03417 (6) 0.0380 (3)H17A 0.1310 0.5647 0.0054 $0.057*$ H17B 0.1985 0.5542 0.0701 $0.057*$ H17B 0.1985 0.5542 0.0701 $0.057*$ H17C 0.2327 0.4271 0.0306 $0.057*$ C18 0.73457 (9) 0.37847 (11) 0.25931 (4) 0.01416 (15)C19 0.54490 (10) 0.33281 (13) 0.30055 (4) 0.0249 (18)H19A 0.6029 0.3677 0.3365 $0.025*$ C20 0.39406 (10) 0.38793 (14) 0.29101 (4) 0.0240 (2)H20A 0.3571 0.3525 0.3209 $0.36*$ H20B 0.3369 0.3475 0.2563 $0.036*$ H20B 0.3369 0.3475 0.2563 $0.036*$ H21B 0.9885 0.7354 0.09897 (4) 0.01890 (17)H21A 0.8767 0.8594 0.1048 $0.028*$ C21 0.2486 (10)	C11	0.77430 (9)	0.45646 (10)	0.21308 (3)	0.01313 (15)
C130.83443 (9)0.64531 (10)0.13003 (4)0.01427 (15)C140.69904 (9)0.59162 (10)0.12121 (3)0.01304 (15)C150.58227 (9)0.65490 (10)0.07696 (4)0.01430 (15)C160.33872 (10)0.62787 (13)0.02848 (4)0.02195 (19)H16A0.35220.6144-0.00840.026*C170.21408 (12)0.53514 (17)0.03417 (6)0.0380 (3)H17A0.13100.56470.00540.057*H17B0.19850.55420.07010.057*H17C0.23270.42710.03060.057*C180.73457 (9)0.37847 (11)0.25931 (4)0.01416 (15)C190.54490 (10)0.33281 (13)0.30055 (4)0.02049 (18)H19A0.60290.36770.33650.025*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20B0.36900.34750.25630.036*H20B0.36910.75484 (12)0.09397 (4)0.01890 (17)H21A0.88730 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.87670.55490.00560.028*C210.2466 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033* <td>C12</td> <td>0.90530 (9)</td> <td>0.51818 (11)</td> <td>0.22054 (4)</td> <td>0.01474 (16)</td>	C12	0.90530 (9)	0.51818 (11)	0.22054 (4)	0.01474 (16)
C140.69904 (9)0.59162 (10)0.12121 (3)0.01304 (15)C150.58227 (9)0.65490 (10)0.07696 (4)0.01430 (15)C160.33872 (10)0.62787 (13)0.02848 (4)0.02195 (19)H16A0.35220.6144-0.00840.026*H16B0.32350.73690.03410.026*C170.21408 (12)0.53514 (17)0.03417 (6)0.0380 (3)H17A0.13100.56470.00540.057*H17B0.19850.55420.07010.057*H17C0.23270.42710.03060.057*C180.73457 (9)0.37847 (11)0.25931 (4)0.01416 (15)C190.54490 (10)0.33281 (13)0.30055 (4)0.02049 (18)H19A0.60290.36770.33650.025*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*C210.8930 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.83780.73980.05860.028*H21B0.98550.73540.09840.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*	C13	0.83443 (9)	0.64531 (10)	0.13003 (4)	0.01427 (15)
C150.58227 (9)0.65490 (10)0.07696 (4)0.01430 (15)C160.33872 (10)0.62787 (13)0.02848 (4)0.02195 (19)H16A0.35220.6144-0.00840.026*H16B0.32350.73690.03410.026*C170.21408 (12)0.53514 (17)0.03417 (6)0.0380 (3)H17A0.13100.56470.00540.057*H17B0.19850.55420.07010.057*H17C0.23270.42710.03060.057*C180.73457 (9)0.37847 (11)0.25931 (4)0.01416 (15)C190.54490 (10)0.33281 (13)0.30055 (4)0.02049 (18)H19A0.60290.36770.33650.025*H19B0.54820.22070.29950.036*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.11890 (17)H21A0.83780.73980.05560.028*H21B0.98850.73540.09840.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*	C14	0.69904 (9)	0.59162 (10)	0.12121 (3)	0.01304 (15)
C160.33872 (10)0.62787 (13)0.02848 (4)0.02195 (19)H16A0.35220.6144-0.00840.026*H16B0.32350.73690.03410.026*C170.21408 (12)0.53514 (17)0.03417 (6)0.0380 (3)H17A0.13100.56470.00540.057*H17B0.19850.55420.07010.057*H17C0.23270.42710.03060.057*C180.73457 (9)0.37847 (11)0.25931 (4)0.01416 (15)C190.54490 (10)0.33281 (13)0.30055 (4)0.02049 (18)H19A0.60290.36770.33650.025*H19B0.54820.22070.29950.025*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*C210.88930 (10)0.75444 (12)0.09397 (4)0.11890 (17)H21A0.83780.73540.09840.028*H21B0.98850.73540.09840.028*H21B0.98700.50490.30460.033*H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	C15	0.58227 (9)	0.65490 (10)	0.07696 (4)	0.01430 (15)
H16A0.35220.6144-0.00840.026*H16B0.32350.73690.03410.026*C170.21408 (12)0.53514 (17)0.03417 (6)0.0380 (3)H17A0.13100.56470.00540.057*H17B0.19850.55420.07010.057*H17C0.23270.42710.03060.057*C180.73457 (9)0.37847 (11)0.25931 (4)0.01416 (15)C190.54490 (10)0.33281 (13)0.30055 (4)0.02049 (18)H19A0.60290.36770.33650.025*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.83780.73540.09840.028*H21B0.98850.73540.09840.028*H21B0.98850.73540.09840.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*	C16	0.33872 (10)	0.62787 (13)	0.02848 (4)	0.02195 (19)
H16B0.32350.73690.03410.026*C170.21408 (12)0.53514 (17)0.03417 (6)0.0380 (3)H17A0.13100.56470.00540.057*H17B0.19850.55420.07010.057*H17C0.23270.42710.03060.057*C180.73457 (9)0.37847 (11)0.25931 (4)0.01416 (15)C190.54490 (10)0.33281 (13)0.30055 (4)0.02049 (18)H19A0.60290.36770.33650.025*H19B0.54820.22070.29950.025*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.1890 (17)H21A0.83780.73980.05560.028*H21B0.98850.73540.09840.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	H16A	0.3522	0.6144	-0.0084	0.026*
C170.21408 (12)0.53514 (17)0.03417 (6)0.0380 (3)H17A0.13100.56470.00540.057*H17B0.19850.55420.07010.057*H17C0.23270.42710.03060.057*C180.73457 (9)0.37847 (11)0.25931 (4)0.01416 (15)C190.54490 (10)0.33281 (13)0.30055 (4)0.02049 (18)H19A0.60290.36770.33650.025*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.1890 (17)H21A0.83780.73540.09840.028*H21B0.98850.73540.09840.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	H16B	0.3235	0.7369	0.0341	0.026*
H17A0.13100.56470.00540.057*H17B0.19850.55420.07010.057*H17C0.23270.42710.03060.057*C180.73457 (9)0.37847 (11)0.25931 (4)0.01416 (15)C190.54490 (10)0.33281 (13)0.30055 (4)0.02049 (18)H19A0.60290.36770.33650.025*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.83780.73540.09840.028*H21B0.98850.73540.10480.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	C17	0.21408 (12)	0.53514 (17)	0.03417 (6)	0.0380 (3)
H17B0.19850.55420.07010.057*H17C0.23270.42710.03060.057*C180.73457 (9)0.37847 (11)0.25931 (4)0.01416 (15)C190.54490 (10)0.33281 (13)0.30055 (4)0.02049 (18)H19A0.60290.36770.33650.025*H19B0.54820.22070.29950.025*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.1890 (17)H21A0.83780.73540.09840.028*H21B0.98850.73540.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	H17A	0.1310	0.5647	0.0054	0.057*
H17C0.23270.42710.03060.057*C180.73457 (9)0.37847 (11)0.25931 (4)0.01416 (15)C190.54490 (10)0.33281 (13)0.30055 (4)0.02049 (18)H19A0.60290.36770.33650.025*H19B0.54820.22070.29950.0240 (2)C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.11890 (17)H21A0.83780.73540.09840.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	H17B	0.1985	0.5542	0.0701	0.057*
C180.73457 (9)0.37847 (11)0.25931 (4)0.01416 (15)C190.54490 (10)0.33281 (13)0.30055 (4)0.02049 (18)H19A0.60290.36770.33650.025*H19B0.54820.22070.29950.025*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.83780.73540.09840.028*H21B0.98850.73540.09840.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22B1.07780.61020.27610.033*H22B1.07780.61020.27190.033*	H17C	0.2327	0.4271	0.0306	0.057*
C190.54490 (10)0.33281 (13)0.30055 (4)0.02049 (18)H19A0.60290.36770.33650.025*H19B0.54820.22070.29950.025*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.83780.73980.05560.028*H21D0.98850.73540.10480.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	C18	0.73457 (9)	0.37847 (11)	0.25931 (4)	0.01416 (15)
H19A0.60290.36770.33650.025*H19B0.54820.22070.29950.025*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.83780.73980.05560.028*H21B0.98850.73540.09840.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	C19	0.54490 (10)	0.33281 (13)	0.30055 (4)	0.02049 (18)
H19B0.54820.22070.29950.025*C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.83780.73980.05560.028*H21B0.98850.73540.09840.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	H19A	0.6029	0.3677	0.3365	0.025*
C200.39406 (10)0.38793 (14)0.29101 (4)0.0240 (2)H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.83780.73980.05560.028*H21B0.98850.73540.09840.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	H19B	0.5482	0.2207	0.2995	0.025*
H20A0.35710.35250.32090.036*H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.83780.73980.05560.028*H21B0.98850.73540.09840.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	C20	0.39406 (10)	0.38793 (14)	0.29101 (4)	0.0240 (2)
H20B0.33690.34750.25630.036*H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.83780.73980.05560.028*H21B0.98850.73540.09840.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	H20A	0.3571	0.3525	0.3209	0.036*
H20C0.39190.49890.28980.036*C210.88930 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.83780.73980.05560.028*H21B0.98850.73540.09840.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	H20B	0.3369	0.3475	0.2563	0.036*
C210.88930 (10)0.75484 (12)0.09397 (4)0.01890 (17)H21A0.83780.73980.05560.028*H21B0.98850.73540.09840.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	H20C	0.3919	0.4989	0.2898	0.036*
H21A0.83780.73980.05560.028*H21B0.98850.73540.09840.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	C21	0.88930 (10)	0.75484 (12)	0.09397 (4)	0.01890 (17)
H21B0.98850.73540.09840.028*H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	H21A	0.8378	0.7398	0.0556	0.028*
H21C0.87670.85940.10480.028*C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	H21B	0.9885	0.7354	0.0984	0.028*
C221.02486 (10)0.51553 (13)0.27302 (4)0.02183 (19)H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	H21C	0.8767	0.8594	0.1048	0.028*
H22A0.98700.50490.30460.033*H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	C22	1.02486 (10)	0.51553 (13)	0.27302 (4)	0.02183 (19)
H22B1.07780.61020.27610.033*H22C1.08640.42970.27190.033*	H22A	0.9870	0.5049	0.3046	0.033*
H22C 1.0864 0.4297 0.2719 0.033*	H22B	1.0778	0.6102	0.2761	0.033*
	H22C	1.0864	0.4297	0.2719	0.033*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0228 (3)	0.0136 (3)	0.0205 (3)	-0.0022 (3)	0.0019 (3)	0.0027 (2)
02	0.0125 (3)	0.0169 (3)	0.0205 (3)	-0.0013 (2)	-0.0009(2)	0.0040 (2)
O3	0.0191 (3)	0.0240 (4)	0.0201 (3)	0.0072 (3)	0.0052 (2)	0.0062 (3)
O4	0.0129 (3)	0.0244 (4)	0.0156 (3)	0.0005 (2)	0.0055 (2)	0.0038 (2)

Acta Cryst. (2012). E68, 0892-0893

N1	0.0135 (3)	0.0128 (3)	0.0189 (3)	-0.0013 (3)	0.0055 (3)	-0.0025 (3)
N2	0.0128 (3)	0.0155 (4)	0.0205 (3)	-0.0002 (3)	0.0053 (3)	-0.0011 (3)
N3	0.0111 (3)	0.0180 (4)	0.0180 (3)	-0.0029 (3)	0.0031 (3)	0.0005 (3)
C1	0.0158 (4)	0.0175 (4)	0.0166 (4)	-0.0030 (3)	0.0046 (3)	-0.0020 (3)
C2	0.0148 (4)	0.0208 (4)	0.0214 (4)	-0.0044 (3)	0.0027 (3)	-0.0024 (3)
C3	0.0139 (4)	0.0231 (5)	0.0293 (5)	-0.0038 (3)	0.0073 (3)	-0.0022 (4)
C4	0.0173 (4)	0.0260 (5)	0.0268 (5)	-0.0043 (4)	0.0112 (3)	-0.0063 (4)
C5	0.0155 (4)	0.0208 (4)	0.0202 (4)	-0.0044 (3)	0.0071 (3)	-0.0052 (3)
C6	0.0128 (3)	0.0135 (4)	0.0157 (3)	-0.0022 (3)	0.0046 (3)	0.0000 (3)
C7	0.0124 (3)	0.0126 (4)	0.0134 (3)	-0.0010 (3)	0.0041 (3)	-0.0007 (3)
C8	0.0117 (3)	0.0141 (4)	0.0176 (4)	-0.0001 (3)	0.0035 (3)	0.0000 (3)
C9	0.0112 (3)	0.0120 (4)	0.0131 (3)	-0.0006 (3)	0.0028 (3)	0.0001 (3)
C10	0.0109 (3)	0.0125 (4)	0.0132 (3)	-0.0003 (3)	0.0027 (3)	-0.0006 (3)
C11	0.0114 (3)	0.0145 (4)	0.0132 (3)	0.0002 (3)	0.0028 (3)	-0.0007 (3)
C12	0.0122 (3)	0.0157 (4)	0.0158 (4)	-0.0008(3)	0.0028 (3)	-0.0020 (3)
C13	0.0140 (3)	0.0127 (4)	0.0163 (3)	-0.0007 (3)	0.0043 (3)	-0.0010 (3)
C14	0.0129 (3)	0.0115 (4)	0.0144 (3)	-0.0002 (3)	0.0031 (3)	-0.0004 (3)
C15	0.0147 (3)	0.0120 (4)	0.0157 (3)	-0.0006 (3)	0.0033 (3)	-0.0017 (3)
C16	0.0156 (4)	0.0219 (5)	0.0234 (4)	0.0011 (3)	-0.0033 (3)	0.0044 (4)
C17	0.0173 (5)	0.0401 (7)	0.0481 (7)	-0.0053 (5)	-0.0058 (5)	0.0133 (6)
C18	0.0129 (3)	0.0144 (4)	0.0150 (3)	0.0007 (3)	0.0035 (3)	-0.0015 (3)
C19	0.0205 (4)	0.0250 (5)	0.0185 (4)	-0.0006 (4)	0.0096 (3)	0.0046 (3)
C20	0.0181 (4)	0.0350 (6)	0.0214 (4)	-0.0031 (4)	0.0098 (3)	-0.0007 (4)
C21	0.0171 (4)	0.0170 (4)	0.0237 (4)	-0.0021 (3)	0.0074 (3)	0.0034 (3)
C22	0.0147 (4)	0.0285 (5)	0.0192 (4)	-0.0039 (4)	-0.0009 (3)	0.0004 (4)

Geometric parameters (Å, °)

01—C15	1.2239 (11)	C9—C10	1.5141 (12)	
O2—C15	1.3442 (11)	C10-C14	1.5219 (12)	
O2—C16	1.4529 (11)	C10-C11	1.5254 (11)	
O3—C18	1.2181 (11)	C10—H10A	0.9800	
O4—C18	1.3434 (10)	C11—C12	1.3524 (12)	
O4—C19	1.4560 (11)	C11—C18	1.4730 (12)	
N1—N2	1.3531 (10)	C12—C22	1.4993 (12)	
N1C7	1.3623 (11)	C13—C14	1.3626 (12)	
N1—H2	0.9024	C13—C21	1.4995 (13)	
N2—C8	1.3296 (12)	C14—C15	1.4613 (12)	
N3—C13	1.3817 (11)	C16—C17	1.4961 (16)	
N3—C12	1.3905 (11)	C16—H16A	0.9700	
N3—H1	0.8870	C16—H16B	0.9700	
C1—C2	1.3910 (12)	C17—H17A	0.9600	
C1—C6	1.4002 (12)	C17—H17B	0.9600	
C1—H1A	0.9300	C17—H17C	0.9600	
C2—C3	1.3887 (14)	C19—C20	1.5055 (14)	
C2—H2A	0.9300	C19—H19A	0.9700	
C3—C4	1.3886 (14)	C19—H19B	0.9700	
С3—НЗА	0.9300	C20—H20A	0.9600	

C4—C5	1.3918 (13)	C20—H20B	0.9600
C4—H4A	0.9300	C20—H20C	0.9600
C5—C6	1.3987 (12)	C21—H21A	0.9600
С5—Н5А	0.9300	C21—H21B	0.9600
C6—C7	1.4713 (11)	C21—H21C	0.9600
С7—С9	1.3933 (12)	C22—H22A	0.9600
C8—C9	1.4120 (12)	C22—H22B	0.9600
C8—H8A	0.9300	C22—H22C	0.9600
C15—O2—C16	115.90 (7)	C14—C13—N3	119.09 (8)
C18—O4—C19	116.48 (7)	C14—C13—C21	127.35 (8)
N2—N1—C7	113.24 (7)	N3—C13—C21	113.56 (7)
N2—N1—H2	118.7	C13—C14—C15	121.38 (8)
C7—N1—H2	127.2	C13—C14—C10	120.18 (8)
C8—N2—N1	104.02 (7)	C15—C14—C10	118.36(7)
C13—N3—C12	122.73 (7)	O1—C15—O2	121.75 (8)
C13—N3—H1	118.1	O1—C15—C14	126.70 (8)
C12—N3—H1	114.8	O2—C15—C14	111.53 (8)
C2—C1—C6	120.83 (8)	O2—C16—C17	107.09 (9)
C2—C1—H1A	119.6	O2—C16—H16A	110.3
C6—C1—H1A	119.6	C17—C16—H16A	110.3
C3—C2—C1	120.19 (9)	O2—C16—H16B	110.3
C3—C2—H2A	119.9	C17—C16—H16B	110.3
C1—C2—H2A	119.9	H16A—C16—H16B	108.6
C4—C3—C2	119.35 (8)	С16—С17—Н17А	109.5
C4—C3—H3A	120.3	C16—C17—H17B	109.5
С2—С3—НЗА	120.3	H17A—C17—H17B	109.5
C3—C4—C5	120.83 (9)	C16—C17—H17C	109.5
C3—C4—H4A	119.6	H17A—C17—H17C	109.5
C5—C4—H4A	119.6	H17B—C17—H17C	109.5
C4—C5—C6	120.19 (9)	O3—C18—O4	121.96 (8)
C4—C5—H5A	119.9	O3—C18—C11	126.86 (8)
С6—С5—Н5А	119.9	O4—C18—C11	111.18 (7)
C5—C6—C1	118.60 (8)	O4—C19—C20	106.20 (8)
C5—C6—C7	122.03 (8)	O4—C19—H19A	110.5
C1—C6—C7	119.36 (8)	С20—С19—Н19А	110.5
N1—C7—C9	105.97 (7)	O4—C19—H19B	110.5
N1—C7—C6	119.57 (8)	C20—C19—H19B	110.5
C9—C7—C6	134.41 (8)	H19A—C19—H19B	108.7
N2—C8—C9	112.62 (8)	C19—C20—H20A	109.5
N2—C8—H8A	123.7	C19—C20—H20B	109.5
С9—С8—Н8А	123.7	H20A-C20-H20B	109.5
C7—C9—C8	104.15 (7)	C19—C20—H20C	109.5
C7—C9—C10	132.57 (7)	H20A—C20—H20C	109.5
C8—C9—C10	123.24 (7)	H20B—C20—H20C	109.5
C9—C10—C14	109.67 (7)	C13—C21—H21A	109.5
C9—C10—C11	109.33 (7)	C13—C21—H21B	109.5
C14—C10—C11	109.94 (7)	H21A—C21—H21B	109.5

C9—C10—H10A	109.3	C13—C21—H21C	109.5
C14C10H10A	109.3	H21A—C21—H21C	109.5
C11—C10—H10A	109.3	H21B—C21—H21C	109.5
C12—C11—C18	120.81 (8)	C12—C22—H22A	109.5
C12—C11—C10	120.55 (8)	C12—C22—H22B	109.5
C18—C11—C10	118.53 (7)	H22A—C22—H22B	109.5
C11—C12—N3	119.27 (8)	C12—C22—H22C	109.5
C11—C12—C22	126.85 (8)	H22A—C22—H22C	109.5
N3—C12—C22	113.87 (8)	H22B—C22—H22C	109.5
C7—N1—N2—C8	-0.22 (10)	C18—C11—C12—N3	-177.72 (8)
C6—C1—C2—C3	0.12 (15)	C10-C11-C12-N3	6.18 (13)
C1—C2—C3—C4	-0.14 (16)	C18—C11—C12—C22	1.13 (15)
C2—C3—C4—C5	-0.14 (17)	C10-C11-C12-C22	-174.97 (9)
C3—C4—C5—C6	0.44 (16)	C13—N3—C12—C11	15.77 (13)
C4C5C1	-0.45 (15)	C13—N3—C12—C22	-163.22 (9)
C4—C5—C6—C7	-179.10 (9)	C12—N3—C13—C14	-13.03 (13)
C2-C1-C6-C5	0.17 (14)	C12—N3—C13—C21	167.59 (8)
C2-C1-C6-C7	178.86 (9)	N3-C13-C14-C15	171.93 (8)
N2—N1—C7—C9	-0.16 (10)	C21—C13—C14—C15	-8.78 (14)
N2—N1—C7—C6	177.68 (7)	N3-C13-C14-C10	-11.41 (13)
C5—C6—C7—N1	151.31 (9)	C21-C13-C14-C10	167.88 (8)
C1—C6—C7—N1	-27.33 (12)	C9—C10—C14—C13	-90.92 (9)
C5—C6—C7—C9	-31.60 (15)	C11—C10—C14—C13	29.33 (11)
C1—C6—C7—C9	149.76 (10)	C9-C10-C14-C15	85.84 (9)
N1—N2—C8—C9	0.52 (10)	C11—C10—C14—C15	-153.91 (7)
N1—C7—C9—C8	0.44 (9)	C16-02-C15-01	0.21 (13)
C6—C7—C9—C8	-176.93 (9)	C16—O2—C15—C14	178.67 (8)
N1-C7-C9-C10	178.03 (9)	C13—C14—C15—O1	-9.87 (14)
C6—C7—C9—C10	0.66 (17)	C10-C14-C15-O1	173.41 (9)
N2-C8-C9-C7	-0.62 (10)	C13—C14—C15—O2	171.76 (8)
N2-C8-C9-C10	-178.49 (8)	C10-C14-C15-O2	-4.96 (11)
C7—C9—C10—C14	-118.96 (10)	C15—O2—C16—C17	-171.85 (9)
C8—C9—C10—C14	58.24 (10)	C19—O4—C18—O3	2.98 (13)
C7—C9—C10—C11	120.42 (10)	C19—O4—C18—C11	-177.36 (8)
C8—C9—C10—C11	-62.38 (10)	C12—C11—C18—O3	-33.38 (14)
C9—C10—C11—C12	93.77 (10)	C10-C11-C18-O3	142.81 (9)
C14—C10—C11—C12	-26.69 (11)	C12—C11—C18—O4	146.98 (9)
C9-C10-C11-C18	-82.43 (9)	C10-C11-C18-O4	-36.83 (11)
C14—C10—C11—C18	157.11 (7)	C18—O4—C19—C20	172.95 (8)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/N2/C7–C9 and C1–C6 rings.

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N3—H1…O3 ⁱ	0.89	2.09	2.9597 (12)	167
N1—H2···O1 ⁱⁱ	0.90	1.96	2.8506 (10)	171
C3—H3A···N2 ⁱⁱⁱ	0.93	2.51	3.4202 (13)	164

supporting information

C5—H5A····O4	0.93	2.50	3.4266 (12)	172
C21—H21 C ···N2 ^{iv}	0.96	2.45	3.3300 (14)	153
C16—H16 A ··· $Cg1^{v}$	0.97	2.80	3.5318 (11)	133
C17—H17 <i>C</i> ··· <i>C</i> g2	0.96	2.99	3.7750 (15)	140
C19—H19 A ···Cg2 ^{vi}	0.97	2.88	3.7079 (11)	144

Symmetry codes: (i) -*x*+2, *y*+1/2, -*z*+1/2; (ii) *x*, *y*-1, *z*; (iii) *x*-1, *y*, *z*; (iv) *x*, *y*+1, *z*; (v) -*x*+1, -*y*+1, -*z*; (vi) -*x*+1, *y*+1/2, -*z*+1/2.