organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5,6-Dimethyl-4-(thiophen-2-yl)-1Hpyrazolo[3,4-b]pyridin-3-amine

Hatem A. Abdel-Aziz,^a Khalid A. Al-Rashood,^a Hazem A. Ghabbour,^a Suchada Chantrapromma^b‡ and Hoong-Kun Fun^c*§

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 26 January 2012; accepted 31 January 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.048; wR factor = 0.139; data-to-parameter ratio = 12.9.

In the title molecule, $C_{12}H_{12}N_4S$, the thiophene ring is disordered over two orientations with a refined site-occupancy ratio of 0.777 (4):0.223 (4). The pyrazolopyridine ring system is essentially planar with an r.m.s. deviation of 0.0069 (3) Å and makes dihedral angles of 82.8 (2) and 72.6 (5) $^{\circ}$, respectively, with the major and minor components of the thiophene ring. In the crystal, molecules are linked into a chain along the *a* axis by a pair of $N-H \cdots N(pyrazole)$ hydrogen bonds and a pair of $N-H \cdots N(pyridine)$ hydrogen bonds, both having a centrosymmetric $R_2^2(8)$ graph-set motif. A C-H··· π interaction is also present.

Related literature

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For background to and bioactivity of pyrazole derivatives, see: Ali (2009); Bharate et al. (2008); Fu et al. (2010); Thumar & Patel (2011). For a related structure, see: Fun et al. (2011).

[‡] Thomson Reuters ResearcherID: A-5085-2009.

Crystal data

β

$C_{12}H_{12}N_4S$	V = 1216.06 (5) Å ³
$M_r = 244.33$	Z = 4
Monoclinic, $P2_1/c$	Cu Ka radiation
a = 10.0688 (2) Å	$\mu = 2.22 \text{ mm}^{-1}$
b = 8.0116 (2) Å	T = 296 K
c = 15.7479 (3) Å	$0.44 \times 0.33 \times 0.14 \text{ mm}$
$\beta = 106.809 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.445, T_{\max} = 0.746$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.139$ S = 1.052379 reflections 185 parameters 8 restraints

15551 measured reflections

2379 independent reflections 2073 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C3/N1/C5/C6 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline & \mathbf{N2} - \mathbf{H2}A \cdots \mathbf{N1}^{i} \\ \mathbf{N4} - \mathbf{H1}N4 \cdots \mathbf{N3}^{ii} \\ \mathbf{C12} - \mathbf{H1}2B \cdots Cg1^{iii} \end{array}$	0.86 0.93 (2) 0.96	2.08 2.13 (2) 2.94	2.937 (2) 3.056 (3) 3.717 (2)	171 176 (2) 139

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y, -z + 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank King Saud University and the Universiti Sains Malaysia for the Research University grant No. 1001/ PFIZIK/811160. HKF thanks the King Saud University, Riyadn, Saudi Arabia, for the award of a visiting professorship (23 December 2011 to 14 January 2012). The authors also thank the Deanship of Scientific Research and Research Center, College of Pharmacy, King Saud University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5063).

References

- Ali, T. E. (2009). Eur. J. Med. Chem. 44, 4385-4392.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bharate, S. B., Mahajan, T. R., Gole, Y. R., Nambiar, M., Matan, T. T., Kulkarni-Almeida, A., Balachandran, S., Junjappa, H., Balakrishnan, A. &

[§] College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

- Vishwakarma, R. A. (2008). *Bioorg. Med. Chem.* 16, 7167–7176. Bruker (2009). *APEX2, SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fu, R.-G., You, Q.-D., Yang, L., Wu, W.-T., Jiang, C. & Xu, X.-L. (2010). Bioorg. Med. Chem. 18, 8035–8043.
- Fun, H.-K., Hemamalini, M., Abdel-Aziz, H. A. & Aboul-Fadl, T. (2011). Acta Cryst. E67, o2145-o2146.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). *Acta Cryst.* D65, 148–155. Thumar, N. J. & Patel, M. P. (2011). *Saudi Pharm. J.* 19, 75–83.

supporting information

Acta Cryst. (2012). E68, o612-o613 [doi:10.1107/S1600536812004126]

5,6-Dimethyl-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine

Hatem A. Abdel-Aziz, Khalid A. Al-Rashood, Hazem A. Ghabbour, Suchada Chantrapromma and Hoong-Kun Fun

S1. Comment

The synthesis of pyrazole derivatives have attracted a lot of interests in medicinal chemistry owing to their biological properties such as anti-cancer (Fu *et al.*, 2010), anti-inflammatory (Bharate *et al.*, 2008) and antimicrobial activities (Ali, 2009; Thumar & Patel, 2011). Pyrazolopyridine, a fused heterocycle, is of interest as a component of potential bioactive molecules. Our on-going research on biological activity of pyrazolone Schiff bases led us to synthesize the title compound (I). Herein, its crystal structure was reported.

In the molecule, $C_{12}H_{12}N_4S$, the thiophene ring is disordered over two positions with the refined site-occupancy ratio of 0.777 (4):0.223 (4). The pyrazolo[3,4-*b*]pyridine moiety (C1–C6/N1–N3) is planar with an *r.m.s.* deviation of 0.0069 (3) Å and the dihedral angle between the pyrazole and pyridine rings is 1.16 (9)°. This planar unit makes dihedral angles of 82.8 (2) and 77.6 (5)° with the major and minor components of the thiophene rings, respectively. The amine and two methyl substituents are co-planar with the pyrazolo[3,4-*b*]pyridine with an *r.m.s.* deviation of 0.0122 (3) Å for the 12 non-H atoms (C1–C6/N1–N4/C11-C12). The bond distances in (I) are within normal ranges (Allen *et al.*, 1987) and comparable to the related structure (Fun *et al.*, 2011).

In the crystal packing, (Fig. 2), the molecules are linked by N2—H2A···N1 and N4—H1N4···N3 hydrogen bonds (Table 1) into cyclic centrosymmetric $R^2_2(8)$ dimers (Bernstein *et al.*, 1995). These dimers are linked into a chain along the *a* axis (Fig. 2). A weak C—H··· π interaction is also observed (Table 1).

S2. Experimental

A mixture of 2-chloro-5,6-dimethyl-4-(thiophen-2-yl)nicotinonitrile (0.248 g, 1 mmol) and hydrazine hydrate (0.5 mL, 99%) in absolute ethanol (20 ml) was refluxed for 16 h. The reaction mixture was cooled and poured onto ice/water mixture. The precipitate that formed was filtered off, washed with water, dried and crystallized from EtOH/DMF to give yellow crystals of the title compound in 69% yield. Orange block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from ETOH/DMF (3:1 v/v) by the slow evaporation of the solvent at room temperature after several days.

S3. Refinement

Amine H atoms were located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with N—H = 0.86 Å, and C—H = 0.93 for aromatic and 0.96 Å for CH₃ groups. The U_{iso} (H) values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The thiophene ring is disordered over two positions with the refined site-occupancy ratio of 0.777 (4):0.223 (4). In the refinement, SAME and FLAT restraints were used for the minor component. The thermal ellipsoids of C9B and C10B were made to be the same.

Figure 1

The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor *B* component.

Figure 2

The crystal packing of the title compound viewed along the b axis, showing chains along the [1 0 0]. Only the major component was shown. N—H···N hydrogen bonds are shown as dashed lines.

5,6-Dimethyl-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine

Crystal data

C₁₂H₁₂N₄S $M_r = 244.33$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.0688 (2) Å b = 8.0116 (2) Å c = 15.7479 (3) Å $\beta = 106.809$ (1)° V = 1216.06 (5) Å³ Z = 4

Data collection

Bruker APEX DUO CCD area-detector diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.445, T_{\max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.139$ S = 1.05 F(000) = 512 $D_x = 1.334 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 2379 reflections $\theta = 4.6-72.1^{\circ}$ $\mu = 2.22 \text{ mm}^{-1}$ T = 296 KBlock, orange $0.44 \times 0.33 \times 0.14 \text{ mm}$

15551 measured reflections 2379 independent reflections 2073 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 72.1^{\circ}, \ \theta_{min} = 4.6^{\circ}$ $h = -11 \rightarrow 12$ $k = -9 \rightarrow 9$ $l = -19 \rightarrow 18$

2379 reflections185 parameters8 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0775P)^2 + 0.3031P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$
and constrained refinement	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	-0.02326 (14)	0.27878 (19)	0.44140 (10)	0.0528 (4)	
N2	0.17129 (16)	0.4642 (2)	0.48858 (12)	0.0599 (4)	
H2A	0.1338	0.5370	0.5145	0.072*	
N3	0.30572 (15)	0.4725 (2)	0.48332 (12)	0.0573 (4)	
N4	0.44670 (17)	0.3121 (3)	0.41915 (12)	0.0628 (5)	
C1	0.02348 (19)	0.0354 (2)	0.36199 (12)	0.0529 (4)	
C2	-0.06290 (18)	0.1345 (2)	0.39940 (12)	0.0521 (4)	
C3	0.10716 (17)	0.3269 (2)	0.44769 (11)	0.0479 (4)	
C4	0.32418 (17)	0.3387 (2)	0.43924 (11)	0.0482 (4)	
C5	0.20109 (16)	0.2394 (2)	0.41425 (10)	0.0445 (4)	
C6	0.15813 (17)	0.0883 (2)	0.37008 (10)	0.0464 (4)	
C7	0.2575 (2)	-0.0108 (2)	0.33742 (12)	0.0525 (4)	
C8A	0.3425 (11)	-0.1330 (14)	0.3854 (6)	0.119 (4)	0.777 (4)
H8AA	0.3419	-0.1694	0.4414	0.143*	0.777 (4)
C9A	0.4344 (5)	-0.1978 (6)	0.3355 (3)	0.0991 (16)	0.777 (4)
H9AA	0.4944	-0.2875	0.3540	0.119*	0.777 (4)
C10A	0.4219 (5)	-0.1147 (5)	0.2621 (3)	0.0750 (11)	0.777 (4)
H10A	0.4759	-0.1361	0.2244	0.090*	0.777 (4)
S1A	0.29738 (18)	0.03657 (17)	0.24181 (9)	0.0761 (4)	0.777 (4)
C8B	0.3177 (14)	0.0482 (17)	0.2633 (8)	0.038 (3)*	0.223 (4)
H8BA	0.2986	0.1484	0.2323	0.045*	0.223 (4)
C9B	0.411 (3)	-0.083 (3)	0.2509 (16)	0.131 (9)*	0.223 (4)
H9BA	0.4619	-0.0808	0.2102	0.157*	0.223 (4)
C10B	0.411 (3)	-0.204 (3)	0.3054 (15)	0.131 (9)*	0.223 (4)
H10B	0.4560	-0.3040	0.3027	0.157*	0.223 (4)
S1B	0.3270 (16)	-0.1710 (17)	0.3810 (8)	0.168 (5)	0.223 (4)
C11	-0.0320 (3)	-0.1256 (3)	0.31546 (18)	0.0809 (7)	
H11A	0.0367	-0.1750	0.2919	0.121*	
H11B	-0.1144	-0.1031	0.2680	0.121*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H11C	-0.0536	-0.2011	0.3569	0.121*	
C12	-0.2079 (2)	0.0787 (3)	0.39368 (16)	0.0687 (6)	
H12A	-0.2504	0.1587	0.4230	0.103*	
H12B	-0.2045	-0.0281	0.4219	0.103*	
H12C	-0.2612	0.0700	0.3325	0.103*	
H1N4	0.524 (2)	0.373 (3)	0.4497 (15)	0.067 (6)*	
H2N4	0.456 (3)	0.214 (4)	0.4039 (19)	0.085 (8)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0438 (7)	0.0573 (8)	0.0612 (8)	-0.0020 (6)	0.0212 (6)	-0.0079 (7)
N2	0.0477 (8)	0.0560 (9)	0.0829 (11)	-0.0053 (6)	0.0296 (8)	-0.0224 (8)
N3	0.0462 (8)	0.0569 (9)	0.0741 (10)	-0.0071 (6)	0.0259 (7)	-0.0156 (7)
N4	0.0468 (8)	0.0693 (11)	0.0791 (11)	-0.0066 (8)	0.0290 (8)	-0.0206 (9)
C1	0.0558 (10)	0.0527 (9)	0.0515 (9)	-0.0068 (7)	0.0177 (7)	-0.0069 (7)
C2	0.0481 (9)	0.0580 (10)	0.0514 (9)	-0.0072 (7)	0.0164 (7)	-0.0038 (7)
C3	0.0445 (8)	0.0484 (8)	0.0533 (9)	-0.0015 (7)	0.0184 (7)	-0.0052 (7)
C4	0.0433 (8)	0.0515 (9)	0.0526 (9)	-0.0011 (7)	0.0187 (7)	-0.0040 (7)
C5	0.0440 (8)	0.0467 (8)	0.0451 (8)	0.0012 (6)	0.0166 (6)	-0.0008 (6)
C6	0.0509 (9)	0.0483 (8)	0.0423 (8)	0.0006 (7)	0.0172 (7)	-0.0014 (6)
C7	0.0592 (10)	0.0499 (9)	0.0530 (9)	-0.0008 (8)	0.0235 (8)	-0.0081 (7)
C8A	0.153 (6)	0.121 (6)	0.117 (5)	0.085 (5)	0.092 (5)	0.027 (4)
C9A	0.118 (3)	0.107 (3)	0.083 (3)	0.069 (3)	0.047 (2)	0.003 (2)
C10A	0.081 (2)	0.073 (2)	0.090(2)	0.0043 (16)	0.0528 (19)	-0.0218 (18)
S1A	0.0992 (9)	0.0783 (6)	0.0670 (7)	0.0156 (5)	0.0495 (7)	0.0042 (5)
S1B	0.243 (11)	0.120 (5)	0.121 (5)	0.095 (6)	0.023 (5)	-0.004 (4)
C11	0.0786 (15)	0.0764 (14)	0.0926 (16)	-0.0228 (12)	0.0326 (12)	-0.0328 (13)
C12	0.0530 (11)	0.0785 (13)	0.0775 (13)	-0.0143 (10)	0.0235 (10)	-0.0093 (11)

Geometric parameters (Å, °)

N1—C2	1.334 (2)	C7—S1A	1.709 (2)
N1—C3	1.344 (2)	C8A—C9A	1.472 (6)
N2—C3	1.342 (2)	C8A—H8AA	0.9300
N2—N3	1.381 (2)	C9A—C10A	1.308 (5)
N2—H2A	0.8600	С9А—Н9АА	0.9300
N3—C4	1.319 (2)	C10A—S1A	1.706 (4)
N4—C4	1.376 (2)	C10A—H10A	0.9300
N4—H1N4	0.93 (2)	C8B—C9B	1.462 (19)
N4—H2N4	0.83 (3)	C8B—H8BA	0.9300
C1—C6	1.391 (2)	C9B—C10B	1.290 (17)
C1—C2	1.425 (3)	C9B—H9BA	0.9300
C1-C11	1.508 (3)	C10B—S1B	1.669 (17)
C2—C12	1.504 (3)	C10B—H10B	0.9300
C3—C5	1.397 (2)	C11—H11A	0.9600
C4—C5	1.429 (2)	C11—H11B	0.9600
C5—C6	1.401 (2)	C11—H11C	0.9600

C6—C7	1.481 (2)	C12—H12A	0.9600
C7—C8A	1.374 (9)	C12—H12B	0.9600
C7—S1B	1.527 (11)	C12—H12C	0.9600
C7—C8B	1.537 (14)		
C2—N1—C3	115.52 (14)	S1B—C7—S1A	112.9 (5)
C3—N2—N3	110.79 (14)	C7—C8A—C9A	110.2 (5)
C3—N2—H2A	124.6	C7—C8A—H8AA	124.9
N3—N2—H2A	124.6	С9А—С8А—Н8АА	124.9
C4—N3—N2	106.36 (14)	C10A—C9A—C8A	112.2 (4)
C4—N4—H1N4	118.1 (15)	С10А—С9А—Н9АА	123.9
C4—N4—H2N4	113 (2)	С8А—С9А—Н9АА	123.9
H1N4—N4—H2N4	120 (2)	C9A—C10A—S1A	113.9 (3)
C6—C1—C2	119.20 (15)	C9A—C10A—H10A	123.1
C6—C1—C11	121.27 (17)	S1A-C10A-H10A	123.1
C2—C1—C11	119.53 (18)	C10A—S1A—C7	91.41 (17)
N1—C2—C1	123.84 (16)	C9B—C8B—C7	106.8 (12)
N1—C2—C12	115.67 (17)	C9B—C8B—H8BA	126.6
C1-C2-C12	120.49 (17)	C7—C8B—H8BA	126.6
N2-C3-N1	126.49 (15)	C10B—C9B—C8B	109 (2)
$N_2 - C_3 - C_5$	107 94 (15)	C10B $C9B$ $H9BA$	125 5
$N_1 - C_3 - C_5$	125 56 (15)	C8B-C9B-H9BA	125.5
N3-C4-N4	121.28 (16)	C9B-C10B-S1B	117 1 (19)
$N_3 - C_4 - C_5$	110 77 (15)	C9B-C10B-H10B	121.5
N4-C4-C5	127.88 (16)	S1B $C10B$ $H10B$	121.5
C_{3} C_{5} C_{6}	127.00 (10)	C7 = S1B = C10B	94.1(11)
$C_3 C_5 C_4$	104.14(14)	$C_1 = C_{11} = H_{11A}$	100 5
C_{3}	104.14(14) 137.45(15)	C1 = C11 = H11R	109.5
$C_{0} = C_{0} = C_{1}$	137.43(15)		109.5
C1 - C6 - C7	117.49 (15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_1 = C_0 = C_7$	122.94(10) 110.52(15)		109.5
C_{3}	119.52 (15)	HIA-CII-HIIC	109.5
C(-C7 - C0)	124.5 (3)		109.5
	124.2 (5)	C_2 — C_{12} — H_{12} A	109.5
$C_{8A} - C_{7} - C_{8B}$	108.5 (6)		109.5
C6-C/-C8B	123.6 (5)	H12A - C12 - H12B	109.5
SIB-C/-C8B	111.7 (7)	C2—C12—H12C	109.5
C8A—C/—SIA	112.1 (3)	H12A—C12—H12C	109.5
C6—C7—S1A	122.78 (14)	H12B—C12—H12C	109.5
C3 - N2 - N3 - C4	-0.3(2)	C5-C6-C7-C84	90.8 (7)
$C_3 = N_2 = N_3 = C_4$	-0.6(3)	C_{1} C_{6} C_{7} $S_{1}B$	-72.2(8)
$C_3 = N_1 = C_2 = C_1$	178.03(17)	$C_{1} = C_{0} = C_{1} = S_{1}B$	105.4(8)
C_{5} C_{1} C_{2} N_{1}	1/0.75(1/) 1/0.(3)	$C_{1} = C_{0} = C_{1} = C_{1} = C_{1}$	103.4(0) 116.5(6)
$C_{1} = C_{1} = C_{2} = N_{1}$	1.0(3) -1707(2)	$C_1 = C_0 = C_1 = C_0 B$	-660(6)
$C_{1} = C_{1} = C_{2} = C_{12}$	-1/9.7(2)	$C_{1} = C_{1} = C_{1} = C_{1} = C_{1}$	-00.0(0)
$C_{11} = C_{12} = C_{12}$	-1/8.55(18)	$C_1 - C_0 - C_1 - S_1 A$	103.4(2)
$\bigcup_{i=1}^{i=1} \bigcup_{j=1}^{i=1} \bigcup_{i=1}^{i=1} \bigcup_{j=1}^{i=1} $	0.7(3)	C = C = C = C = A	-79.1(2)
$N_3 - N_2 - C_3 - N_1$	1/8.90 (17)	$C_0 - C_1 - C_8 A - C_9 A$	-1/6.1(5)
N3—N2—C3—C5	0.3 (2)	S1B—C/—C8A—C9A	91 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.20 (18) 0.1 (3) 177.36 (18) 0.2 (2) 178.62 (15) 0.0 (3) -0.21 (19) -178.79 (17) 0.0 (2) -176.92 (19) -178.47 (19) 4.6 (3) -0.8 (2) 179.96 (19) 176.76 (17) -2.5 (3) 0.3 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -16.4 \ (11) \\ -5.3 \ (10) \\ 5.6 \ (11) \\ -3.3 \ (8) \\ 0.2 \ (4) \\ 3.1 \ (6) \\ 174.1 \ (2) \\ -9.9 \ (7) \\ 76 \ (3) \\ 19.9 \ (13) \\ 179.8 \ (10) \\ 7.5 \ (12) \\ -91 \ (3) \\ 0.2 \ (18) \\ -7 \ (2) \\ -87 \ (3) \\ 177.9 \ (10) \end{array}$
C11—C1—C6—C7 C3—C5—C6—C1 C4—C5—C6—C1 C3—C5—C6—C1 C4—C5—C6—C7 C4—C5—C6—C7 C1—C6—C7—C8A	-2.5 (3) 0.3 (2) 178.65 (19) -177.34 (16) 1.0 (3) -86.7 (7)	C8A—C7—S1B—C10B C6—C7—S1B—C10B C8B—C7—S1B—C10B S1A—C7—S1B—C10B C9B—C10B—S1B—C7	-87 (3) 177.9 (10) -9.9 (13) 1.9 (13) 11 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C5/N1 ring.

D—H···A	D—H	H…A	D····A	D—H··· A
N2—H2A····N1 ⁱ	0.86	2.08	2.937 (2)	171
N4—H1 <i>N</i> 4····N3 ⁱⁱ	0.93 (2)	2.13 (2)	3.056 (3)	176 (2)
C12—H12 <i>B</i> ··· <i>C</i> g1 ⁱⁱⁱ	0.96	2.94	3.717 (2)	139

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*, -*y*, -*z*+1.