metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{ μ -5-[1,3-Bis(2,4,6-trimethylphenyl)-3Himidazolium-2-vl]-2-(2-oxoethenvl- $1\kappa C^{1}$)furan-3-yl- $2\kappa C^{3}$ - μ -hydrido-bis-(tetracarbonylrhenium) tetrahydrofuran 0.67-solvate

Marilé Landman, Belinda van der Westhuizen, Daniela I. Bezuidenhout and David C. Liles*

Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa

Correspondence e-mail: dave.liles@up.ac.za

Received 23 January 2012; accepted 14 February 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.015 Å; disorder in solvent or counterion; R factor = 0.042; wR factor = 0.137; data-toparameter ratio = 17.0

The title complex, $[Re_2(C_{27}H_{25}N_2O_2)H(CO)_8] \cdot 0.67C_4H_8O_7$ was formed as a product in the reaction of a rhenium(I)-Fischer carbene complex with a free NHC carbene. The coordination environment about the two Re atoms is slightly distorted octahedral, including a bridging H atom. The imidazolium and furan groups are almost coplanar, whereas the mesityl substituents show an almost perpendicular arrangement with respect to both heterocyclic units. Molecules of the complex pack in such a way as to form channels parallel with the bc unit-cell face diagonal running through the unit face diagonal. These channels are partially occupied by tetrahydrofuran solvent molecules.

Related literature

For other examples of ketenyl complexes, see: Kreissl et al. (1976, 1977); Li et al. (2006). Recent examples of dimesitylimidazol-2-vl groups bonded to a C atom have been reported by: Naeem et al. (2010); Chia et al. (2011).

11527 measured reflections

 $R_{\rm int} = 0.025$

7743 independent reflections

6404 reflections with $I > 2\sigma(I)$

Experimental

Crystal data	
[Re ₂ (C ₂₇ H ₂₅ N ₂ O ₂)H(CO) ₈]	$\beta = 77.680 \ (1)^{\circ}$
$0.67C_4H_8O$	$\gamma = 89.564 \ (1)^{\circ}$
$M_r = 1054.99$	$V = 2078.8 (2) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 12.7058 (7) Å	Mo $K\alpha$ radiation
b = 13.8293 (8) Å	$\mu = 5.87 \text{ mm}^{-1}$
c = 13.9679 (8) Å	T = 293 K
$\alpha = 60.760 \ (1)^{\circ}$	$0.27 \times 0.18 \times 0.06 \ \mathrm{mm}$

Data collection

Siemens P4 diffractometer with SMART 1000 CCD detector Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.366, T_{\max} = 0.703$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ wR(F²) = 0.137 456 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 2.10 \text{ e} \text{ Å}^2$ S = 1.167743 reflections $\Delta \rho_{\rm min} = -0.83 \text{ e } \text{\AA}^{-3}$

Table 1

r.m.s. deviations of atoms ($\delta_{r.m.s.}$, Å) and dihedral angles between planes (°) for selected mean planes.

Plane	Atoms	$\delta_{\rm r.m.s.}$	Plane:1	2	3	4
1 2 3 4 5	C20–C26 C29–C34 N1/N2/C15–C17 C10–C13/O14 Re1/Re2/C9–C11	0.001 0.011 0.003 0.004 0.041	- 34.8 (4) 84.8 (3) 79.3 (5)	- 86.2 (3) 87.3 (4)	- 5.5 (7) 11.1 (6)	- 5.7 (4)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), POV-RAY (Cason, 2004) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Funding received for this work from the University of Pretoria and the National Research Foundation is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2354).

References

- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cason, C. J. (2004). *POV-RAY for Windows*. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org.
- Chia, E. Y., Naeem, S., Delaude, L., White, A. J. P. & Wilton-Ely, J. D. E. T. (2011). *Dalton Trans.* 40, 6645–6658.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Kreissl, F. R., Eberl, K. & Uedelhoven, W. (1977). Chem. Ber. 110, 3782-3791.
- Kreissl, F. R., Frank, A., Schubert, U., Lindner, T. L. & Huttner, G. (1976). Angew. Chem. Int. Ed. Engl. 15, 632–633.
- Li, X., Schopf, M., Stephan, J., Kipke, J., Harms, K. & Sundermeyer, J. (2006). Organometallics, 25, 528–530.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Naeem, S., Delaude, L., White, A. J. P. & Wilton-Ely, J. D. E. T. (2010). Inorg. Chem. 49, 1784–1793.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, m308-m309 [doi:10.1107/S1600536812006587]

{ μ -5-[1,3-Bis(2,4,6-trimethylphenyl)-3*H*-imidazolium-2-yl]-2-(2oxoethenyl-1 κ C¹)furan-3-yl-2 κ C³}- μ -hydrido-bis(tetracarbonylrhenium) tetrahydrofuran 0.67-solvate

Marilé Landman, Belinda van der Westhuizen, Daniela I. Bezuidenhout and David C. Liles

S1. Comment

The title complex (1) was formed as a product in the reaction of a rhenium(I)–Fischer carbene complex with a free NHC carbene, prepared *in situ* by the deprotonation of *N*,*N*'-dimesitylimidazolium chloride (HIMesCl) with *n*-butyllithium. Formation of this complex is quite unique and involves four reaction sites. Rhenium complexes can mimic transition metal Lewis acids to catalyse Friedel–Crafts C—C bond formation. The catalytic activity of the rhenium complexes is initiated by decarbonylation under heating to form the active species [ReBr(CO)₄]. In complex **1** the position most susceptible to nucleophilic attack is the 2-position on the furan ring. This is attributed to the electron withdrawing effect of the carbene ligand on the ring. Subsequent C—H activation leads to hydride migration and Re—Re bond breaking. The resulting complex now contains both a Re—C and Re—H bond. The Re atom from the original Fischer carbene moiety is left with a vacant coordination site enabling the newly formed hydride to form a bridge between the two Re atoms. Ketenyl complexes of tungsten have been previously reported by Kreissl *et al.* (1976, 1977) and later these types of complexes were also described for rhenium(VII) complexes (Li *et al.*, 2006). The insertion of a bridging CO can lead to the ketene formation observed in complex **1**.

The geometry of the dimesitylimidazol-2-yl moiety is similar to those observed for previously published dimesitylimidazol-2-yl structures, in particular for some recent examples bonded to a C atom (Naeem *et al.*, 2010; Chia *et al.*, 2011). As usual, the planes of the rings of the mesityl substituents are close to perpendicular to that of the imidazole ring (Table 1). However, the furan ring is close to being coplanar with the imidazole ring (Table 1).

The overall shape of the molecule of the complex does not lend itself to efficient close-packing in the crystal. The molecules of the complex pack in layers parallel with the *A* face of the unit cell with the two C—H moieties of each imidazol ring in close contact with the Re(CO)₄ moieties of molecules in the next layer. Such an arrangement leaves voids in the crystal structure which form channels running parallel with the *b*,-*c* face diagonal of the unit cell (Fig. 2). The thf solvent molecules occupy these channels (Fig. 3). The channels allow egress of thf molecules out of the crystal without significant degradation of the structure. Thus loss of solvent has occurred leading to a partial occupancy of the site by the thf solvate of 0.666 (13) of a molecule per asymmetric unit. Uncertainty in the precise positions of the thf molecules within the channels leads to the molecule being ill-defined in the structure solution and refinement, thus the thf molecule needed to be treated as a rigid body.

S2. Experimental

HIMesCl (1 mmol, 0.34 g) was dissolved in thf and cooled to -78° C. nBuLi (1 mmol, 0.7 ml) was added and stirred for 20 min after which the Fischer carbene, [*eq*Re₂(CO)₉{C(OEt)Fu}], (1 mmol, 0.75 g) was added. The solution was stirred

at -78°C for 1hr, 30 min at -30°C and then allowed to warm to room temperature. The solvents were removed *in vacuo* and purification was done using cold column chromatography on florasil. The unreacted starting material was eluted with dcm and the polar fraction collected using thf as eluent. Complex **1** was crystallized from a thf solution (yield: 50 mg, 5%).

¹H NMR (δ , p.p.m.), C₆D₆: -15.48 (s, 1H), 2.06 (br, 6H), 2.07 (br, 6H), 2.19 (br, 6H), 6.70 (s, 4H), 7.63 (s, 2H); ¹³C NMR (δ , p.p.m.), C₆D₆: 16.9, 20.6, 125.5, 129.3, 130.4, 136.7, 141.9, 147.0, 148.8, 159.2, 164.4, 249.8, 275.4. IR (dcm): v_{CO} (cm⁻¹) 2086, 1970, 1948, 1937, 1932, 1903, 1883, 1876.

S3. Refinement

All H atoms were included in calculated positions and allowed to ride on the atom to which each is bonded (except for H1 which bridges the two Re atoms the coordinates of which were not varied). The isotropic adp's for each H were set to $1.2 \times$ the equivalent isotropic adp of the atom to which each is bonded ($1.5 \times$ for H1). A poorly defined thf solvent molecule was treated as a rigid body and a common isotropic adp was refined for all its non-H atoms. A common site occupation factor for all the atoms of the thf molecule refined to a value of 0.666 (13).

Figure 1

Molecular structure of **1** showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level. The thf solvent molecule and all H atoms are shown as small spheres of arbitrary radii.

Figure 2

Space-filling model of the crystal structure of **1** with the thf solvent molecules removed. The view is along the b,-c direction showing the channels in the structure running parallel with the b,-c face diagonal.

Figure 3

Sspace-filling model of the crystal structure of **1**, as in Fig. 2 but with the thf solvent molecules included (shown in green).

$\{\mu$ -5-[1,3-Bis(2,4,6-trimethylphenyl)-3*H*-imidazolium-2-yl]- 2-(2-oxoethenyl-1 κ C¹)furan-3-yl-2 κ C³}- μ -hydridobis(tetracarbonylrhenium) tetrahydrofuran 0.67-solvate

Crystal data

$[\text{Re}_{2}(\text{C}_{27}\text{H}_{25}\text{N}_{2}\text{O}_{2})\text{H}(\text{CO})_{8}]\cdot0.67\text{C}_{4}\text{H}_{8}\text{O}$ $M_{r} = 1054.99$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 12.7058 (7) Å b = 13.8293 (8) Å c = 13.9679 (8) Å $a = 60.760 (1)^{\circ}$ $\beta = 77.680 (1)^{\circ}$ $\gamma = 89.564 (1)^{\circ}$	Z = 2 F(000) = 1013 $D_x = 1.685 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7068 reflections $\theta = 2.7-26.4^{\circ}$ $\mu = 5.87 \text{ mm}^{-1}$ T = 293 K Plate, orange $0.27 \times 0.18 \times 0.06 \text{ mm}$
$V = 20/8.8 (2) \text{ A}^3$ Data collection	
Siemens P4 with SMART 1000 CCD detector diffractometer	Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.366, \ T_{\max} = 0.703$
Graphite monochromator	11527 measured reflections
Detector resolution: 8.3 pixels mm ⁻¹	7743 independent reflections
φ and ω scans	6404 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.025$	$k = -14 \rightarrow 16$
$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$	$l = -16 \rightarrow 15$
$h = -15 \rightarrow 10$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
S = 1.16	H-atom parameters constrained
7743 reflections	$w = 1/[\sigma^2(F_o^2) + (0.080P)^2 + 2.0563P]$
456 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 2.10 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{ m min} = -0.83 \ m e \ m \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Re1	0.75162 (2)	1.01206 (2)	0.10173 (2)	0.04870 (12)	
Re2	0.74307 (2)	0.78055 (2)	0.06999 (2)	0.05348 (12)	
H1	0.7648	0.8944	0.0764	0.080*	
C1	0.7453 (7)	1.1333 (7)	0.1313 (7)	0.071 (2)	
01	0.7459 (7)	1.2100 (7)	0.1450 (7)	0.105 (2)	
C2	0.8343 (6)	0.9350 (7)	0.2195 (7)	0.0610 (18)	
O2	0.8773 (7)	0.8918 (7)	0.2893 (7)	0.100 (2)	
C3	0.8808 (6)	1.0869 (7)	-0.0174 (7)	0.0629 (19)	
O3	0.9567 (6)	1.1295 (7)	-0.0894 (6)	0.095 (2)	
C4	0.6540 (7)	1.0767 (7)	-0.0043 (7)	0.067 (2)	
O4	0.5986 (6)	1.1107 (7)	-0.0618 (7)	0.101 (2)	
C5	0.7160 (8)	0.6440 (8)	0.0693 (8)	0.075 (2)	
05	0.7008 (7)	0.5623 (6)	0.0714 (7)	0.107 (3)	
C6	0.8170 (8)	0.7038 (7)	0.1952 (7)	0.068 (2)	
O6	0.8582 (7)	0.6603 (7)	0.2671 (7)	0.104 (2)	
C7	0.8785 (7)	0.8279 (8)	-0.0455 (8)	0.073 (2)	
O7	0.9577 (6)	0.8573 (8)	-0.1145 (7)	0.109 (3)	
C8	0.6567 (8)	0.8596 (8)	-0.0450 (8)	0.075 (2)	
08	0.6070 (8)	0.9024 (8)	-0.1087 (7)	0.113 (3)	
C9	0.6010 (5)	0.9122 (6)	0.2305 (6)	0.0502 (15)	
C10	0.5530 (5)	0.8113 (5)	0.2430 (5)	0.0501 (15)	
C11	0.5923 (6)	0.7459 (6)	0.1963 (6)	0.0529 (16)	

C12	0.5051 (6)	0.6574 (6)	0.2443 (6)	0.0585 (17)
H12	0.5050	0.5982	0.2303	0.070*
C13	0.4233 (5)	0.6738 (6)	0.3127 (6)	0.0516 (15)
O14	0.4522 (4)	0.7695 (4)	0.3141 (4)	0.0531 (11)
N1	0.2703 (5)	0.5301 (6)	0.3776 (6)	0.0661 (17)
N2	0.2422 (5)	0.6485 (6)	0.4372 (6)	0.0646 (16)
C15	0.3163 (6)	0.6195 (6)	0.3746 (6)	0.0556 (16)
C16	0.1654 (7)	0.5030 (8)	0.4448 (9)	0.086 (3)
H16	0.1162	0.4443	0.4616	0.104*
C17	0.1478 (7)	0.5758 (8)	0.4809 (9)	0.084 (3)
H17	0.0840	0.5778	0.5270	0.101*
C18	0.5526 (6)	0.9585 (8)	0.2842 (8)	0.067 (2)
018	0.5520(0) 0.5148(6)	1 0090 (6)	0.2012(0) 0.3294(7)	0.007(2) 0.105(2)
C20	0.3203 (6)	0 4712 (6)	0.3236(7)	0.0592(17)
C21	0.3200(7)	0.1712(0) 0.3778(7)	0.3220(7) 0.3837(7)	0.0692(17)
C22	0.3090(7) 0.4181(8)	0.3733(7)	0.3037(7) 0.3273(9)	0.000(2) 0.088(3)
H22	0.4515	0.2602	0.3659	0.106*
C23	0.4315 0.4185(0)	0.2002	0.3057 0.2152 (10)	0.100
C24	0.4105(9) 0.3701(9)	0.3002(9)	0.2132(10) 0.1600(9)	0.091(3)
U24	0.3701 (9)	0.4510 (8)	0.1000 (9)	0.091 (3)
C25	0.3705 (8)	0.4707 0.5084 (7)	0.0048	0.109
C25	0.3203(8) 0.3714(10)	0.3034(7)	0.2099(8)	0.077(2)
U26	0.3714 (10)	0.3370 (10)	0.5055 (8)	0.100 (4)
1120A	0.4103	0.2780	0.5277	0.159*
	0.2992	0.3112	0.5505	0.159*
H20C	0.4004	0.3978 0.2085 (12)	0.3093 0.1592 (14)	0.159
C27	0.4708 (13)	0.2985 (15)	0.1382 (14)	0.135 (0)
H2/A	0.4400	0.3010	0.1050	0.230*
H2/B	0.4//1	0.2220	0.2141	0.230*
H2/C	0.5501	0.3328	0.1210	0.230*
C28	0.2608 (11)	0.6106 (8)	0.14/2 (10)	0.112 (4)
H28A	0.26/3	0.6256	0.0713	0.169*
H28B	0.2926	0.6743	0.1455	0.169*
H28C	0.1856	0.5951	0.1860	0.169*
C29	0.2527 (6)	0.7402 (7)	0.4599 (7)	0.0638 (19)
C30	0.2917 (7)	0.7179 (8)	0.5537 (7)	0.072 (2)
C31	0.3037 (8)	0.8072 (9)	0.5709 (8)	0.084 (3)
H31	0.3320	0.7960	0.6313	0.100*
C32	0.2764 (9)	0.9113 (10)	0.5041 (10)	0.091 (3)
C33	0.2344 (8)	0.9257 (8)	0.4147 (8)	0.085 (3)
H33	0.2141	0.9953	0.3692	0.102*
C34	0.2210 (7)	0.8417 (8)	0.3895 (7)	0.072 (2)
C35	0.3235 (9)	0.6052 (8)	0.6298 (9)	0.099 (3)
H35A	0.2615	0.5502	0.6632	0.148*
H35B	0.3495	0.6078	0.6883	0.148*
H35C	0.3797	0.5859	0.5862	0.148*
C36	0.2952 (12)	1.0079 (10)	0.5234 (12)	0.127 (5)
H36A	0.3062	1.0767	0.4530	0.191*
H36B	0.3582	0.9997	0.5532	0.191*

H36C	0.2332	1.0084	0.5761	0.191*	
C37	0.1771 (9)	0.8593 (9)	0.2922 (8)	0.095 (3)	
H37A	0.2336	0.8561	0.2362	0.142*	
H37B	0.1507	0.9309	0.2599	0.142*	
H37C	0.1189	0.8021	0.3179	0.142*	
O40	-0.0474 (14)	0.6479 (15)	0.6302 (16)	0.198 (6)*	0.666 (13)
C41	-0.0517 (17)	0.7624 (15)	0.5829 (14)	0.198 (6)*	0.666 (13)
H41A	-0.1062	0.7858	0.5391	0.237*	0.666 (13)
H41B	0.0179	0.8029	0.5338	0.237*	0.666 (13)
C42	-0.0803 (17)	0.7828 (14)	0.679 (2)	0.198 (6)*	0.666 (13)
H42A	-0.0493	0.8563	0.6585	0.237*	0.666 (13)
H42B	-0.1584	0.7766	0.7058	0.237*	0.666 (13)
C43	-0.0338 (19)	0.6956 (19)	0.7661 (15)	0.198 (6)*	0.666 (13)
H43A	-0.0846	0.6624	0.8395	0.237*	0.666 (13)
H43B	0.0325	0.7257	0.7708	0.237*	0.666 (13)
C44	-0.0114 (17)	0.6130 (13)	0.7289 (16)	0.198 (6)*	0.666 (13)
H44A	0.0658	0.6069	0.7143	0.237*	0.666 (13)
H44B	-0.0487	0.5405	0.7874	0.237*	0.666 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Re1	0.04431 (17)	0.05048 (18)	0.04742 (18)	-0.00269 (12)	-0.00936 (12)	-0.02200 (14)
Re2	0.05102 (19)	0.0588 (2)	0.05106 (19)	-0.00255 (13)	-0.00578 (13)	-0.03011 (15)
C1	0.076 (5)	0.063 (5)	0.068 (5)	0.005 (4)	-0.004 (4)	-0.032 (4)
01	0.131 (7)	0.094 (5)	0.108 (6)	0.025 (5)	-0.023 (5)	-0.067 (5)
C2	0.047 (4)	0.073 (5)	0.061 (5)	0.004 (4)	-0.015 (4)	-0.032 (4)
O2	0.095 (5)	0.131 (6)	0.087 (5)	0.041 (5)	-0.050 (4)	-0.054 (5)
C3	0.054 (4)	0.074 (5)	0.057 (4)	-0.010 (4)	-0.008 (4)	-0.031 (4)
O3	0.076 (4)	0.117 (6)	0.070 (4)	-0.025 (4)	0.003 (3)	-0.037 (4)
C4	0.058 (5)	0.067 (5)	0.059 (5)	-0.001 (4)	-0.018 (4)	-0.018 (4)
O4	0.085 (5)	0.110 (6)	0.096 (5)	0.026 (4)	-0.049 (4)	-0.033 (4)
C5	0.077 (6)	0.077 (6)	0.071 (5)	-0.002 (4)	-0.011 (4)	-0.041 (5)
05	0.146 (7)	0.069 (4)	0.120 (6)	-0.007 (4)	-0.041 (5)	-0.054 (4)
C6	0.074 (5)	0.058 (5)	0.056 (5)	-0.004 (4)	-0.012 (4)	-0.017 (4)
O6	0.109 (6)	0.094 (5)	0.082 (5)	0.007 (4)	-0.039 (5)	-0.017 (4)
C7	0.068 (5)	0.087 (6)	0.068 (5)	-0.009 (4)	0.000 (4)	-0.048 (5)
07	0.082 (5)	0.148 (7)	0.099 (5)	-0.013 (5)	0.017 (4)	-0.078 (5)
C8	0.088 (6)	0.078 (6)	0.068 (5)	0.001 (5)	-0.022 (5)	-0.041 (5)
08	0.141 (8)	0.123 (7)	0.094 (5)	0.033 (6)	-0.068 (6)	-0.053 (5)
C9	0.047 (4)	0.053 (4)	0.052 (4)	-0.001 (3)	-0.009 (3)	-0.028 (3)
C10	0.049 (4)	0.049 (4)	0.045 (3)	-0.002 (3)	-0.011 (3)	-0.018 (3)
C11	0.047 (4)	0.056 (4)	0.053 (4)	-0.003 (3)	-0.015 (3)	-0.025 (3)
C12	0.058 (4)	0.057 (4)	0.059 (4)	-0.001 (3)	-0.015 (3)	-0.027 (4)
C13	0.041 (3)	0.055 (4)	0.053 (4)	-0.006 (3)	-0.007 (3)	-0.024 (3)
O14	0.043 (2)	0.057 (3)	0.051 (3)	-0.006 (2)	-0.004 (2)	-0.024 (2)
N1	0.051 (4)	0.067 (4)	0.071 (4)	-0.008 (3)	-0.010 (3)	-0.029 (3)
N2	0.043 (3)	0.075 (4)	0.070 (4)	-0.012 (3)	-0.003 (3)	-0.036 (4)

C15	0.052 (4)	0.055 (4)	0.055 (4)	-0.004 (3)	-0.015 (3)	-0.024 (3)
C16	0.051 (5)	0.087 (6)	0.108 (7)	-0.025 (4)	-0.005 (5)	-0.044 (6)
C17	0.055 (5)	0.091 (6)	0.101 (7)	-0.011 (4)	-0.003 (5)	-0.050 (6)
C18	0.052 (4)	0.082 (5)	0.075 (5)	-0.008 (4)	-0.001 (4)	-0.050 (5)
O18	0.098 (5)	0.113 (5)	0.126 (6)	-0.002 (4)	0.002 (4)	-0.087 (5)
C20	0.056 (4)	0.053 (4)	0.063 (4)	-0.009 (3)	-0.015 (3)	-0.024 (4)
C21	0.065 (5)	0.062 (5)	0.072 (5)	-0.005 (4)	-0.023 (4)	-0.026 (4)
C22	0.092 (7)	0.058 (5)	0.109 (8)	0.011 (5)	-0.039 (6)	-0.031 (5)
C23	0.102 (8)	0.083 (6)	0.101 (8)	0.009 (6)	-0.025 (6)	-0.056 (6)
C24	0.132 (9)	0.080 (6)	0.080 (6)	-0.005 (6)	-0.040 (6)	-0.048 (5)
C25	0.087 (6)	0.061 (5)	0.083 (6)	-0.007 (4)	-0.039 (5)	-0.029 (4)
C26	0.110 (9)	0.110 (8)	0.066 (6)	0.017 (7)	-0.028 (6)	-0.016 (6)
C27	0.204 (17)	0.129 (11)	0.168 (14)	0.023 (11)	-0.031 (12)	-0.110 (11)
C28	0.158 (11)	0.069 (6)	0.110 (9)	0.021 (6)	-0.087 (9)	-0.022 (6)
C29	0.053 (4)	0.067 (5)	0.070 (5)	-0.003 (3)	-0.005 (4)	-0.036 (4)
C30	0.061 (5)	0.086 (6)	0.060 (5)	0.001 (4)	-0.016 (4)	-0.029 (4)
C31	0.081 (6)	0.111 (8)	0.069 (5)	0.003 (5)	-0.017 (5)	-0.054 (6)
C32	0.091 (7)	0.105 (8)	0.097 (7)	0.013 (6)	-0.018 (6)	-0.067 (7)
C33	0.088 (6)	0.083 (6)	0.079 (6)	0.018 (5)	-0.018 (5)	-0.038 (5)
C34	0.067 (5)	0.081 (6)	0.064 (5)	0.012 (4)	-0.012 (4)	-0.036 (5)
C35	0.103 (8)	0.089 (7)	0.091 (7)	-0.004 (6)	-0.039 (6)	-0.029 (6)
C36	0.170 (13)	0.113 (9)	0.143 (12)	0.027 (9)	-0.045 (10)	-0.094 (9)
C37	0.110 (8)	0.098 (7)	0.079 (6)	0.029 (6)	-0.039 (6)	-0.040 (6)

Geometric parameters (Å, °)

Re1—C1	1.909 (9)	C23—C27	1.521 (16)
Re1—C3	1.926 (8)	C24—C25	1.356 (14)
Re1—C2	1.989 (8)	C24—H24	0.93
Re1—C4	2.001 (8)	C25—C28	1.548 (12)
Re1—C9	2.225 (7)	C26—H26A	0.96
Re1—H1	1.83	C26—H26B	0.96
Re2—C5	1.927 (9)	C26—H26C	0.96
Re2—C7	1.947 (9)	C27—H27A	0.96
Re2—C6	1.984 (9)	C27—H27B	0.96
Re2—C8	1.999 (10)	С27—Н27С	0.96
Re2—C11	2.182 (7)	C28—H28A	0.96
Re2—H1	1.65	C28—H28B	0.96
C101	1.167 (10)	C28—H28C	0.96
C2—O2	1.121 (10)	C29—C34	1.383 (12)
C3—O3	1.142 (10)	C29—C30	1.393 (11)
C4—O4	1.108 (10)	C30—C31	1.384 (13)
C5—O5	1.133 (10)	C30—C35	1.508 (13)
C6—O6	1.129 (11)	C31—C32	1.372 (14)
С7—07	1.147 (11)	C31—H31	0.9300
C8—O8	1.123 (12)	C32—C33	1.387 (14)
C9—C18	1.272 (10)	C32—C36	1.515 (14)
C9—C10	1.442 (9)	C33—C34	1.388 (13)

C10—O14	1.366 (8)	С33—Н33	0.93
C10—C11	1.387 (10)	C34—C37	1.488 (12)
C11—C12	1.441 (10)	С35—Н35А	0.96
C12—C13	1.353 (10)	С35—Н35В	0.96
С12—Н12	0.93	С35—Н35С	0.96
C13—O14	1.386 (8)	С36—Н36А	0.96
C13—C15	1.429 (9)	С36—Н36В	0.96
N1—C15	1.349 (10)	С36—Н36С	0.96
N1—C16	1.389 (11)	С37—Н37А	0.96
N1—C20	1.433 (10)	С37—Н37В	0.96
N2—C15	1.340 (10)	С37—Н37С	0.96
N2—C17	1.388 (10)	040-C41	1.39
N2-C29	1 463 (11)	040-044	1 40
C16—C17	1.328 (13)	C41—C42	1.48
C16—H16	0.93	C41 - H41A	0.97
C17—H17	0.93	C41—H41B	0.97
C18 - O18	1 188 (10)	C42-C43	1 46
C_{20} C_{21}	1.100(10) 1.384(11)	C_{42} H_{42} A_{43}	0.97
$C_{20} = C_{21}$	1 307 (11)	C42 - H42R	0.97
$C_{20} = C_{23}$	1.397(11) 1 304(13)	$C_{42} = \Pi_{42} D$	1.47
$C_{21} = C_{22}$	1.394(13) 1.402(13)	$C_{43} = C_{44}$	0.07
$C_{21} = C_{20}$	1.492(13) 1.388(14)	$C_{43} = H_{43} R$	0.97
$C_{22} = C_{23}$	0.03	C43 - H43B	0.97
C_{22} C_{24}	0.93		0.97
025-024	1.343 (14)	С44—п44В	0.97
C1—Re1—C3	90.7 (4)	C25—C24—H24	118 7
C1—Re1— $C2$	897(4)	C_{24} C_{25} C_{20} C_{20}	118.9 (8)
C_3 —Re1— C_2	93 3 (3)	$C_{24} = C_{25} = C_{20}$	122 1 (9)
$C_1 = Re_1 = C_2$	92.2(4)	$C_{24} = C_{25} = C_{26}$	122.1(9)
$C_1 = Rc_1 = C_4$	92.2(4)	$C_{20} = C_{20} = C_{20} = C_{20}$	109.5
$C_2 = Re1 = C_4$	173 A (3)	$C_{21} = C_{20} = H_{20} R$	109.5
$C_2 = Rc_1 = C_4$	960(3)	H26A C26 H26B	109.5
$C_1 = Rc_1 = C_2$	90.0(3)	1120A - C20 - 1120B	109.5
$C_3 = Re1 = C_9$	175.0 (5) 99.6 (2)	$H_{20} = H_{20} = H_{20}$	109.5
C_2 —Re1—C9	85.0 (3)	$H_{20}A = C_{20} = H_{20}C$	109.5
C_4 R_{e1} C_9	83.0 (5) 177.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C_1 —Ke1—HI	1//.0	$C_{23} = C_{27} = H_{27} R$	109.5
$C_2 = R_2 = H_1$	00.0	C_{23} C_{27} C_{27} C_{27} C_{27} C_{27}	109.5
C_2 —Re1—H1	87.0 01.0	$H_2/A = C_2/=H_2/B$	109.5
C4—ReI—HI	91.0	$C_{23} = C_{27} = H_{27}C$	109.5
C9—ReI—HI	85.0	$H_2/A = C_2/=H_2/C$	109.5
$C_5 = Re2 = C/$	93.7 (4)	$H_2/B = C_2/=H_2/C$	109.5
C5—Ke2—C6	91.3 (4)	C_{23} — C_{28} — $H_{28}A$	109.5
C/—Re2—C6	92.9 (4)	C25—C28—H28B	109.5
C5—Re2—C8	90.9 (4)	H28A—C28—H28B	109.5
C'/—Re2—C8	92.4 (4)	C25—C28—H28C	109.5
C6—Re2—C8	174.2 (4)	H28A—C28—H28C	109.5
C5—Re2—C11	92.4 (3)	H28B—C28—H28C	109.5
C7—Re2—C11	173.8 (3)	C34—C29—C30	124.2 (8)

C6—Re2—C11	88.4 (3)	C34—C29—N2	118.5 (8)
C8—Re2—C11	86.1 (3)	C30—C29—N2	117.2 (8)
C5—Re2—H1	178.0	C31—C30—C29	115.7 (8)
C7—Re2—H1	88.0	C31—C30—C35	121.6 (8)
C6—Re2—H1	87.0	C29—C30—C35	122.6 (9)
C8—Re2—H1	91.0	C_{32} C_{31} C_{30}	123.8 (9)
C11—Re2—H1	86.0	C_{32} = C_{31} = H_{31}	118.1
$\Omega_1 - C_1 - Re1$	176 7 (8)	C_{30} C_{31} H_{31}	118.1
$\Omega^2 - C^2 - Re^1$	176.9 (8)	C_{33} C_{32} C_{31}	116.9 (9)
$O_3 - C_3 - Rel$	178.0(8)	C_{33} C_{32} C_{36}	121.1(11)
$O_4 C_4 Re1$	178.7(0)	C_{31} C_{32} C_{36}	121.1(11) 121.9(10)
$O_5 = C_5 = Re^2$	178.7(9)	$C_{31} = C_{32} = C_{30}$	121.9(10) 123.5(0)
$O_5 = C_5 = Re2$	170.3(9)	$C_{32} = C_{33} = C_{34}$	123.3 (9)
00 - 0 - Re2	179.3(10) 178.0(11)	$C_{24} = C_{22} = H_{22}$	110.2
$O^{2} = C^{2} = Re^{2}$	178.9 (11)	С34—С33—П33	116.2
C_{8} C_{8} C_{10} C_{10}	1/8.8(10)	$C_{29} = C_{34} = C_{33}$	115.7(8)
C18 - C9 - C10	121.6 (7)	$C_{29} = C_{34} = C_{37}$	121.6 (9)
C18—C9—Rel	114.0 (6)	$C_{33} = C_{34} = C_{37}$	122.7 (9)
Cl0—C9—Rel	123.8 (5)	С30—С35—Н35А	109.5
014—C10—C11	112.6 (6)	С30—С35—Н35В	109.5
014—C10—C9	116.3 (6)	H35A—C35—H35B	109.5
C11—C10—C9	131.1 (6)	С30—С35—Н35С	109.5
C10—C11—C12	102.7 (6)	H35A—C35—H35C	109.5
C10—C11—Re2	127.3 (5)	H35B—C35—H35C	109.5
C12—C11—Re2	129.7 (5)	С32—С36—Н36А	109.5
C13—C12—C11	109.4 (7)	С32—С36—Н36В	109.5
C13—C12—H12	125.3	H36A—C36—H36B	109.5
C11—C12—H12	125.3	С32—С36—Н36С	109.5
C12—C13—O14	109.3 (6)	H36A—C36—H36C	109.5
C12—C13—C15	134.2 (7)	H36B—C36—H36C	109.5
O14—C13—C15	116.4 (6)	С34—С37—Н37А	109.5
C10-014-C13	106.0 (5)	С34—С37—Н37В	109.5
C15—N1—C16	108.4 (7)	Н37А—С37—Н37В	109.5
C15—N1—C20	126.5 (7)	С34—С37—Н37С	109.5
C16—N1—C20	125.1 (7)	Н37А—С37—Н37С	109.5
C15—N2—C17	109.1 (7)	Н37В—С37—Н37С	109.5
C15—N2—C29	128.3 (6)	C41—O40—C44	106.5
C17—N2—C29	122.6 (7)	O40—C41—C42	105.7
N2—C15—N1	107 3 (6)	040—C41—H41A	110.6
N_{2} C15 C13	127.2(7)	C42— $C41$ — $H41A$	110.6
N1-C15-C13	1255(7)	040-C41-H41B	110.6
C17 - C16 - N1	107.9 (8)	C42— $C41$ — $H41B$	110.6
C17 - C16 - H16	126.1	H41A - C41 - H41B	108.7
N1-C16-H16	126.1	C43 - C42 - C41	104 2
C16-C17-N2	107 3 (8)	C43 - C42 - H42 A	110.9
C_{16} C_{17} H_{17}	126.4	C_{41} C_{42} H_{42} H_{42} A	110.9
N2-C17-H17	120.7	$C_{11} - C_{12} - H_{11} - C_{12}$	110.9
112 - 017 - 1117 018 - 018 - 00	120.7 174.3(0)	$C_{12} - C_{12} - H_{12} - H$	110.9
$C_{10} - C_{10} - C_{7}$	177.3 (9)	$\begin{array}{c} \Box_{1} = \Box_{1} \Box_{2} \Box_{1} \\ \Box_{1} = \Box_{1} \Box_{2} \Box_{2} \\ \Box_{1} \Box_{2} \Box_{2} \\ \Box_{1} \Box_{2} \Box_{2} \\ \Box_{1} \Box_{2} \Box_{2} \\ \Box_{1} \Box_{2} \\ \Box_{2} \\ \Box_{1} \\ \Box_{2} \\ \Box_{2}$	10.9
021 - 020 - 023	121.2 (0)	117211 - 072 - 1172D	100.7

C21—C20—N1	118.3 (7)	C42—C43—C44	104.7
C25—C20—N1	120.4 (7)	C42—C43—H43A	110.8
C20—C21—C22	116.8 (8)	C44—C43—H43A	110.8
C20—C21—C26	122.2 (9)	C42—C43—H43B	110.8
C22—C21—C26	121.0 (9)	C44—C43—H43B	110.8
C23—C22—C21	122.0 (9)	H43A—C43—H43B	108.9
С23—С22—Н22	119.0	O40—C44—C43	108.5
C21—C22—H22	119.0	O40—C44—H44A	110.0
C24—C23—C22	118.5 (9)	C43—C44—H44A	110.0
C24—C23—C27	122.5 (11)	O40—C44—H44B	110.0
C22—C23—C27	119.0 (11)	C43—C44—H44B	110.0
C23—C24—C25	122.5 (9)	H44A—C44—H44B	108.4
C23—C24—H24	118.7		
C1—Re1—C9—C18	1.3 (7)	C15—N1—C20—C21	94.5 (9)
C2-Re1-C9-C18	90.8 (7)	C16—N1—C20—C21	-84.7 (10)
C4—Re1—C9—C18	-90.4 (7)	C15—N1—C20—C25	-84.9 (10)
C1—Re1—C9—C10	173.2 (6)	C16—N1—C20—C25	95.9 (10)
C2-Re1-C9-C10	-97.2 (6)	C25—C20—C21—C22	0.1 (12)
C4—Re1—C9—C10	81.5 (6)	N1—C20—C21—C22	-179.3 (7)
C18—C9—C10—O14	1.0 (10)	C25—C20—C21—C26	179.0 (9)
Re1-C9-C10-O14	-170.3 (4)	N1—C20—C21—C26	-0.4 (12)
C18—C9—C10—C11	-177.6 (8)	C20—C21—C22—C23	0.0 (14)
Re1-C9-C10-C11	11.1 (10)	C26—C21—C22—C23	-178.9 (10)
O14—C10—C11—C12	0.6 (7)	C21—C22—C23—C24	0.1 (16)
C9-C10-C11-C12	179.2 (7)	C21—C22—C23—C27	178.1 (11)
O14—C10—C11—Re2	175.6 (4)	C22—C23—C24—C25	-0.3 (17)
C9-C10-C11-Re2	-5.7 (11)	C27—C23—C24—C25	-178.2 (12)
C5—Re2—C11—C10	179.8 (6)	C23—C24—C25—C20	0.4 (15)
C6—Re2—C11—C10	88.6 (6)	C23—C24—C25—C28	-177.4 (10)
C8—Re2—C11—C10	-89.4 (6)	C21—C20—C25—C24	-0.3 (13)
C5—Re2—C11—C12	-6.5 (7)	N1-C20-C25-C24	179.0 (8)
C6—Re2—C11—C12	-97.7 (7)	C21—C20—C25—C28	177.6 (8)
C8—Re2—C11—C12	84.3 (7)	N1-C20-C25-C28	-3.1 (12)
C10-C11-C12-C13	0.1 (8)	C15—N2—C29—C34	92.4 (10)
Re2-C11-C12-C13	-174.8 (5)	C17—N2—C29—C34	-87.7 (10)
C11—C12—C13—O14	-0.6 (8)	C15—N2—C29—C30	-89.4 (10)
C11—C12—C13—C15	174.6 (7)	C17—N2—C29—C30	90.6 (10)
C11—C10—O14—C13	-1.0 (7)	C34—C29—C30—C31	-3.7 (13)
C9-C10-O14-C13	-179.8 (6)	N2-C29-C30-C31	178.2 (7)
C12—C13—O14—C10	1.0 (7)	C34—C29—C30—C35	178.7 (9)
C15—C13—O14—C10	-175.2 (6)	N2-C29-C30-C35	0.6 (12)
C17—N2—C15—N1	0.2 (9)	C29—C30—C31—C32	2.2 (14)
C29—N2—C15—N1	-179.8 (8)	C35—C30—C31—C32	179.8 (10)
C17—N2—C15—C13	178.5 (8)	C30—C31—C32—C33	0.0 (16)
C29—N2—C15—C13	-1.5 (13)	C30—C31—C32—C36	-177.5 (10)
C16—N1—C15—N2	-0.5 (9)	C31—C32—C33—C34	-1.1 (16)
C20—N1—C15—N2	-179.8 (7)	C36—C32—C33—C34	176.4 (11)

C16—N1—C15—C13	-178.9(8)	C30-C29-C34-C33	27(13)	
C20—N1—C15—C13	1.8 (12)	N2—C29—C34—C33	-179.2(8)	
C12—C13—C15—N2	-177.7 (8)	C30—C29—C34—C37	-178.3 (9)	
O14—C13—C15—N2	-2.7 (11)	N2-C29-C34-C37	-0.2 (13)	
C12—C13—C15—N1	0.3 (13)	C32—C33—C34—C29	-0.2 (14)	
O14—C13—C15—N1	175.3 (7)	C32—C33—C34—C37	-179.1 (10)	
C15—N1—C16—C17	0.7 (11)	C44—O40—C41—C42	-32.4	
C20—N1—C16—C17	179.9 (8)	O40—C41—C42—C43	30.3	
N1—C16—C17—N2	-0.5 (12)	C41—C42—C43—C44	-16.4	
C15—N2—C17—C16	0.2 (11)	C41—O40—C44—C43	22.0	
C29—N2—C17—C16	-179.8 (8)	C42—C43—C44—O40	-2.6	