organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2Z)-1-(5-Hydroxy-3-methyl-1-phenyl-1*H*-pyrazol-4-yl)-3-(4-methylanilino)but-2-en-1-one

Abdullah M. Asiri,^{a,b}‡ Abdulrahman O. Al-Youbi,^a Seik Weng Ng^c and Edward R. T. Tiekink^c*

^aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, ^bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 12 February 2012; accepted 14 February 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.060; wR factor = 0.164; data-to-parameter ratio = 16.5.

A twist is evident in the title compound, $C_{21}H_{21}N_3O_2$, the dihedral angle between the terminal six-membered rings being 29.46 (10)°; the linked five- and six-membered rings are coplanar [1.30 (11)°]. The carbonyl O atom accepts intramolecular hydrogen bonds from the adjacent hydroxy and amine groups. The three-dimensional crystal packing is achieved through $C-H\cdots\pi$ interactions.

Related literature

For background to the synthesis, see: Gelin *et al.* (1983); Bendaas *et al.* (1999). For the structures of the 4-chloro and 4-methoxy analogues, see: Asiri, Al-Youbi, Alamry *et al.* (2011); Asiri, Al-Youbi, Faidallah *et al.* (2011).

Experimental

Crystal data

 $\begin{array}{l} C_{21}H_{21}N_{3}O_{2} \\ M_{r} = 347.41 \\ \text{Monoclinic, } P2_{1}/c \\ a = 14.9041 \ (8) \text{ Å} \\ b = 6.9222 \ (4) \text{ Å} \\ c = 17.1921 \ (8) \text{ Å} \\ \beta = 96.190 \ (5)^{\circ} \end{array}$

 $V = 1763.35 (16) Å^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 0.09 mm^{-1}\) T = 100 K 0.40 \times 0.02 \times 0.02 mm

‡ Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Data collection

```
Agilent SuperNova Dual
diffractometer with an Atlas
detector
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
T_{\rm min} = 0.967, T_{\rm max} = 0.998
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.164$ S = 1.024055 reflections 246 parameters 2 restraints 12780 measured reflections 4055 independent reflections 2455 reflections with $I > 2\sigma(I)$ $R_{int} = 0.076$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

Cg1 and Cg2 are the centroids of the C1-C6 and C15-C20 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1 \cdots O2 N3 - H2 \cdots O2 C14 - H14A \cdots Cg1^{i} C14 - H14C \cdots Cg1^{ii} C17 - H17 \cdots Cg2^{iii}$	0.86 (1)	1.71 (2)	2.509 (2)	155 (4)
	0.89 (1)	1.91 (2)	2.671 (3)	143 (2)
	0.98	2.69	3.475 (2)	138
	0.98	2.66	3.563 (2)	153
	0.95	2.58	3.424 (2)	148

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department of King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5179).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, 02157.

Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, 02353.

Bendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291-1294.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565.

Gelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078-4082.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, o794 [doi:10.1107/S1600536812006526]

(2*Z*)-1-(5-Hydroxy-3-methyl-1-phenyl-1*H*-pyrazol-4-yl)-3-(4-methyl-anilino)but-2-en-1-one

Abdullah M. Asiri, Abdulrahman O. Al-Youbi, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

In connection with recent structural studies (Asiri, Al-Youbi, Alamry *et al.*, 2011; (Asiri, Al-Youbi, Faidallah *et al.*, 2011) of compounds prepared by reactions between pyrazoles and aniline derivatives following literature procedures (Gelin *et al.*, 1983; Bendaas *et al.*, 1999), the title compound, 3-(4-toluidino)-1-(5-hydroxy-3-methyl-1-phenyl-1*H*-pyrazol-4-yl)but-2-en-1-one (I) was investigated.

While in (I), Fig. 1, the linked five- and six-membered rings are co-planar, forming a dihedral angle of 1.30 (11)°, there is a twist about the N3—C15 bond as seen in the value of the C13—N3—C15—C16 torsion angle of 146.9 (2)°; the dihedral angle between the terminal six-membered rings is 29.46 (10)°. The carbonyl-O2 atom accepts hydrogen bonds from the adjacent hydroxyl- and amine-groups, Table 1. These groups do not participate in intermolecular interactions. Rather, molecules are consolidated in the three-dimensional crystal packing by C—H··· π interactions, Fig. 2 and Table 1.

S2. Experimental

A solution of 4-acetoacetyl-5-hydroxy-3-methyl-1-phenylpyrazole (0.005 mol) and *p*-toluidine (0.005 mol) in ethanol (25 ml) was refluxed for 2 h. The precipitate, obtained from the hot solution, was collected, washed with methanol and recrystallized from its ethanol-benzene solution as yellow needles; *M*.pt: 419–421 K.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, $U_{iso}(H) = 1.2$ to $1.5U_{eq}(C)$] and were included in the refinement in the riding model approximation. The N—H and O—H-atoms were located in a difference Fourier map, and were refined with distance restraints of N—H = 0.88 ± 0.01 and O—H = 0.84 ± 0.01 Å, respectively; their U_{iso} values were refined. Owing to poor agreement, the ($\overline{3}$ 6 3) reflection was omitted from the final cycles of refinement.

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

A view in projection down the *a* axis of the unit-cell contents of (I). The C—H $\cdots\pi$ interactions are shown as purple dashed lines.

(2Z)-1-(5-Hydroxy-3-methyl-1-phenyl-1*H*-pyrazol-4-yl)- 3-(4-methylanilino)but-2-en-1-one

Crystal	data
---------	------

$C_{21}H_{21}N_3O_2$	F(000) = 736
$M_r = 347.41$	$D_{\rm x} = 1.309 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2466 reflections
a = 14.9041 (8) Å	$\theta = 2.4 - 27.5^{\circ}$
b = 6.9222 (4) Å	$\mu=0.09~\mathrm{mm^{-1}}$
c = 17.1921 (8) Å	T = 100 K
$\beta = 96.190 (5)^{\circ}$	Needle, yellow
V = 1763.35 (16) Å ³	$0.40 \times 0.02 \times 0.02$ mm
Z = 4	

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011)	$T_{\min} = 0.967, T_{\max} = 0.998$ 12780 measured reflections 4055 independent reflections 2455 reflections with $I > 2\sigma(I)$ $R_{int} = 0.076$ $\theta_{\max} = 27.6^{\circ}, \theta_{\min} = 2.4^{\circ}$ $h = -18 \rightarrow 19$ $k = -8 \rightarrow 8$ $l = -22 \rightarrow 18$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.164$ S = 1.02 4055 reflections 246 parameters 2 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.065P)^2 + 0.099P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.24$ e Å ⁻³ $\Delta\rho_{min} = -0.29$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.50304 (12)	0.0677 (2)	0.39888 (10)	0.0275 (4)	
02	0.37132 (11)	0.0655 (2)	0.29485 (9)	0.0244 (4)	
N1	0.64285 (13)	0.0686 (2)	0.34357 (10)	0.0192 (4)	
N2	0.67114 (13)	0.0711 (2)	0.26853 (10)	0.0229 (4)	
N3	0.23145 (13)	0.0409 (3)	0.18426 (11)	0.0215 (4)	
C1	0.70881 (15)	0.0615 (3)	0.40934 (12)	0.0186 (5)	
C2	0.68417 (16)	0.0546 (3)	0.48530 (13)	0.0231 (5)	
H2A	0.6223	0.0541	0.4941	0.028*	
C3	0.75125 (17)	0.0486 (3)	0.54797 (13)	0.0256 (5)	
H3	0.7347	0.0431	0.5998	0.031*	
C4	0.84175 (17)	0.0503 (3)	0.53633 (13)	0.0257 (5)	
H4	0.8870	0.0465	0.5797	0.031*	
C5	0.86567 (17)	0.0577 (3)	0.46044 (13)	0.0245 (5)	
Н5	0.9276	0.0600	0.4519	0.029*	
C6	0.79969 (15)	0.0618 (3)	0.39707 (13)	0.0227 (5)	
H6	0.8165	0.0649	0.3453	0.027*	
C7	0.55156 (15)	0.0701 (3)	0.33854 (13)	0.0193 (5)	
C8	0.51783 (15)	0.0733 (3)	0.25960 (12)	0.0187 (5)	
C9	0.59647 (16)	0.0733 (3)	0.21952 (13)	0.0215 (5)	
C10	0.60368 (17)	0.0740 (3)	0.13342 (13)	0.0302 (6)	
H10A	0.6674	0.0793	0.1243	0.045*	
H10B	0.5721	0.1871	0.1096	0.045*	
H10C	0.5763	-0.0439	0.1100	0.045*	
C11	0.42170 (16)	0.0712 (3)	0.23786 (13)	0.0207 (5)	

C12	0.38378 (16)	0.0712 (3)	0.15824 (12)	0.0205 (5)
H12	0.4245	0.0831	0.1196	0.025*
C13	0.29317 (16)	0.0556 (3)	0.13212 (12)	0.0200 (5)
C14	0.26394 (16)	0.0493 (3)	0.04612 (12)	0.0229 (5)
H14A	0.2209	-0.0566	0.0348	0.034*
H14B	0.3167	0.0283	0.0177	0.034*
H14C	0.2351	0.1720	0.0296	0.034*
C15	0.13787 (16)	0.0037 (3)	0.17314 (13)	0.0209 (5)
C16	0.10125 (15)	-0.1006 (3)	0.23183 (12)	0.0225 (5)
H16	0.1400	-0.1484	0.2751	0.027*
C17	0.00953 (16)	-0.1349 (3)	0.22785 (13)	0.0231 (5)
H17	-0.0138	-0.2033	0.2692	0.028*
C18	-0.04959 (16)	-0.0719 (3)	0.16470 (13)	0.0227 (5)
C19	-0.01234 (16)	0.0307 (3)	0.10594 (13)	0.0229 (5)
H19	-0.0509	0.0746	0.0618	0.028*
C20	0.07922 (16)	0.0702 (3)	0.11024 (12)	0.0227 (5)
H20	0.1022	0.1432	0.0700	0.027*
C21	-0.14922 (16)	-0.1052 (3)	0.16189 (14)	0.0295 (6)
H21	-0.1795	-0.0515	0.1132	0.044*
H21B	-0.1721	-0.0416	0.2067	0.044*
H21C	-0.1612	-0.2442	0.1639	0.044*
H1	0.4494 (12)	0.069 (5)	0.375 (2)	0.102 (15)*
H2	0.2582 (15)	0.034 (3)	0.2329 (7)	0.031 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0212 (10)	0.0405 (10)	0.0217 (9)	-0.0003 (8)	0.0060 (8)	-0.0002 (7)
O2	0.0207 (9)	0.0336 (9)	0.0199 (8)	-0.0008 (7)	0.0060 (7)	0.0005 (6)
N1	0.0186 (10)	0.0209 (9)	0.0184 (9)	0.0007 (7)	0.0039 (8)	-0.0005 (7)
N2	0.0219 (11)	0.0283 (10)	0.0190 (10)	-0.0012 (8)	0.0048 (8)	-0.0007 (7)
N3	0.0180 (11)	0.0307 (11)	0.0159 (10)	-0.0003 (8)	0.0016 (8)	0.0020 (8)
C1	0.0204 (12)	0.0138 (10)	0.0216 (11)	0.0004 (9)	0.0024 (9)	0.0017 (8)
C2	0.0235 (13)	0.0237 (11)	0.0224 (12)	0.0006 (10)	0.0039 (10)	-0.0017 (9)
C3	0.0288 (14)	0.0278 (12)	0.0203 (12)	0.0009 (10)	0.0028 (10)	-0.0003 (9)
C4	0.0277 (14)	0.0269 (12)	0.0213 (12)	-0.0019 (10)	-0.0024 (10)	-0.0005 (9)
C5	0.0224 (13)	0.0253 (12)	0.0256 (12)	-0.0007 (10)	0.0022 (10)	0.0008 (9)
C6	0.0218 (13)	0.0208 (11)	0.0254 (12)	-0.0010 (9)	0.0029 (10)	-0.0005 (9)
C7	0.0182 (12)	0.0175 (10)	0.0230 (12)	-0.0001 (9)	0.0058 (9)	-0.0005 (8)
C8	0.0184 (12)	0.0172 (10)	0.0203 (11)	-0.0008 (9)	0.0018 (9)	0.0009 (8)
C9	0.0218 (13)	0.0209 (11)	0.0218 (12)	-0.0001 (9)	0.0022 (10)	0.0009 (8)
C10	0.0248 (14)	0.0447 (15)	0.0214 (12)	0.0012 (11)	0.0038 (11)	0.0016 (10)
C11	0.0219 (13)	0.0164 (10)	0.0244 (12)	0.0002 (9)	0.0046 (10)	0.0007 (8)
C12	0.0216 (12)	0.0208 (11)	0.0196 (11)	-0.0004 (9)	0.0047 (9)	0.0009 (8)
C13	0.0230 (13)	0.0171 (10)	0.0202 (11)	0.0002 (9)	0.0043 (10)	0.0013 (8)
C14	0.0249 (13)	0.0261 (12)	0.0187 (11)	0.0002 (10)	0.0067 (10)	0.0002 (9)
C15	0.0195 (13)	0.0227 (11)	0.0205 (11)	-0.0008 (9)	0.0026 (9)	-0.0036 (8)
C16	0.0218 (13)	0.0237 (12)	0.0214 (12)	0.0037 (9)	0.0000 (10)	0.0018 (8)

supporting information

C17	0.0250 (13)	0.0234 (11)	0.0219 (12)	-0.0010 (10)	0.0070 (10)	0.0026 (9)
C18	0.0226 (13)	0.0217 (11)	0.0239 (12)	0.0032 (9)	0.0026 (10)	-0.0041 (9)
C19	0.0232 (13)	0.0270 (12)	0.0176 (11)	0.0038 (9)	-0.0022 (10)	-0.0030 (8)
C20	0.0247 (13)	0.0249 (11)	0.0185 (11)	0.0027 (10)	0.0029 (10)	0.0019 (9)
C21	0.0260 (14)	0.0347 (13)	0.0279 (13)	-0.0015 (11)	0.0038 (11)	-0.0017 (10)

Geometric parameters (Å, °)

01—C7	1.327 (3)	C10—H10A	0.9800
01—H1	0.858 (10)	C10—H10B	0.9800
O2—C11	1.298 (3)	C10—H10C	0.9800
N1—C7	1.354 (3)	C11—C12	1.423 (3)
N1—N2	1.400 (2)	C12—C13	1.381 (3)
N1-C1	1.417 (3)	C12—H12	0.9500
N2—C9	1.322 (3)	C13—C14	1.496 (3)
N3—C13	1.356 (3)	C14—H14A	0.9800
N3—C15	1.411 (3)	C14—H14B	0.9800
N3—H2	0.888 (10)	C14—H14C	0.9800
C1—C6	1.393 (3)	C15—C20	1.393 (3)
C1—C2	1.395 (3)	C15—C16	1.398 (3)
C2—C3	1.389 (3)	C16—C17	1.382 (3)
C2—H2A	0.9500	C16—H16	0.9500
C3—C4	1.385 (3)	C17—C18	1.393 (3)
С3—Н3	0.9500	C17—H17	0.9500
C4—C5	1.390 (3)	C18—C19	1.398 (3)
C4—H4	0.9500	C18—C21	1.498 (3)
C5—C6	1.387 (3)	C19—C20	1.386 (3)
С5—Н5	0.9500	C19—H19	0.9500
С6—Н6	0.9500	C20—H20	0.9500
С7—С8	1.396 (3)	C21—H21	0.9800
С8—С9	1.422 (3)	C21—H21B	0.9800
C8—C11	1.441 (3)	C21—H21C	0.9800
C9—C10	1.496 (3)		
C7—O1—H1	101 (3)	H10B—C10—H10C	109.5
C7—N1—N2	109.97 (18)	O2—C11—C12	121.6 (2)
C7—N1—C1	131.08 (18)	O2—C11—C8	116.39 (19)
N2-N1-C1	118.94 (18)	C12—C11—C8	122.0 (2)
C9—N2—N1	105.72 (18)	C13—C12—C11	125.9 (2)
C13—N3—C15	130.94 (19)	C13—C12—H12	117.1
C13—N3—H2	111.0 (16)	C11—C12—H12	117.1
C15—N3—H2	117.1 (16)	N3—C13—C12	120.0 (2)
C6—C1—C2	120.0 (2)	N3—C13—C14	120.3 (2)
C6-C1-N1	118.77 (19)	C12—C13—C14	119.61 (19)
C2	121.2 (2)	C13—C14—H14A	109.5
C3—C2—C1	119.1 (2)	C13—C14—H14B	109.5
C3—C2—H2A	120.4	H14A—C14—H14B	109.5
C1—C2—H2A	120.4	C13—C14—H14C	109.5

C4—C3—C2	121.2 (2)	H14A—C14—H14C	109.5
С4—С3—Н3	119.4	H14B—C14—H14C	109.5
С2—С3—Н3	119.4	C20—C15—C16	118.0 (2)
C3—C4—C5	119.2 (2)	C20—C15—N3	125.0 (2)
C3—C4—H4	120.4	C16—C15—N3	117.0 (2)
C5—C4—H4	120.4	C17—C16—C15	120.9 (2)
C6—C5—C4	120.4 (2)	С17—С16—Н16	119.5
С6—С5—Н5	119.8	C15—C16—H16	119.5
C4—C5—H5	119.8	C_{16} $-C_{17}$ $-C_{18}$	121.6(2)
C_{5} C_{6} C_{1}	120.0(2)	C_{16} C_{17} H_{17}	119.2
C5 C6 H6	120.0 (2)	C_{18} C_{17} H_{17}	119.2
C_{1} C_{6} H_{6}	120.0	$C_{10} = C_{17} = M_{17}$	119.2 117.1(2)
C1 = C0 = 110	120.0 125.2(2)	C17 - C18 - C19	117.1(2) 121.2(2)
O1 = C7 = C8	123.3(2) 126.2(2)	C10 - C18 - C21	121.2(2)
01 - 07 - 08	120.2(2)	C19 - C18 - C21	121.0(2)
NI = C / = C8	108.45 (19)	$C_{20} = C_{19} = C_{18}$	121.8 (2)
C/-C8-C9	104.0 (2)	C20—C19—H19	119.1
C7—C8—C11	119.7 (2)	С18—С19—Н19	119.1
C9—C8—C11	136.3 (2)	C19—C20—C15	120.5 (2)
N2—C9—C8	111.87 (19)	C19—C20—H20	119.7
N2—C9—C10	119.0 (2)	С15—С20—Н20	119.7
C8—C9—C10	129.1 (2)	C18—C21—H21	109.5
C9—C10—H10A	109.5	C18—C21—H21B	109.5
C9—C10—H10B	109.5	H21—C21—H21B	109.5
H10A—C10—H10B	109.5	C18—C21—H21C	109.5
С9—С10—Н10С	109.5	H21—C21—H21C	109.5
H10A—C10—H10C	109.5	H21B—C21—H21C	109.5
C7—N1—N2—C9	-0.2(2)	C11—C8—C9—N2	-178.4(2)
C1-N1-N2-C9	178 60 (16)	C7—C8—C9—C10	179 3 (2)
C7-N1-C1-C6	-1800(2)	$C_{11} = C_{8} = C_{9} = C_{10}$	11(4)
$N_{2}N_{1}C_{1}C_{6}$	15(3)	C7-C8-C11-O2	-0.3(3)
C_{7} N1 C_{1} C_{2}	-0.1(3)	$C_{1}^{0} = C_{2}^{0} = C_{11}^{0} = C_{2}^{0}$	177.8(2)
$N_2 = N_1 = C_1 = C_2$	-17862(17)	$C_{7} = C_{8} = C_{11} = C_{12}$	-179.00(18)
12 - 11 - 21 - 22	1/0.02(17)	$C_{1} = C_{2} = C_{11} = C_{12}$	-1.0(4)
$C_0 = C_1 = C_2 = C_3$	-170.74(17)	$C_{2} = C_{3} = C_{11} = C_{12}$	1.0(4)
$C_1 = C_2 = C_3$	1/3.74(17)	$C_{2}^{0} = C_{11}^{11} = C_{12}^{12} = C_{13}^{13}$	3.5(3)
$C_1 = C_2 = C_3 = C_4$	0.4(3)	$C_{0} = C_{11} = C_{12} = C_{13}$	173.14(19) 172.5(2)
$C_2 = C_3 = C_4 = C_3$	-0.2(3)	C15 N2 C12 C14	-1/2.3(2)
$C_{3} - C_{4} - C_{5} - C_{6}$	-0.5(3)	C15 - N3 - C13 - C14	5.7(3)
	1.0 (3)	CII = CI2 = CI3 = N3	0.9 (3)
C2-C1-C6-C5	-0.8(3)		-1//.35(18)
NI-CI-C6-C5	179.08 (17)	C13—N3—C15—C20	-36.1 (3)
N2—N1—C7—O1	179.73 (18)	C13—N3—C15—C16	146.9 (2)
C1—N1—C7—O1	1.1 (3)	C20—C15—C16—C17	-0.6 (3)
N2—N1—C7—C8	0.1 (2)	N3—C15—C16—C17	176.58 (19)
C1—N1—C7—C8	-178.55 (18)	C15—C16—C17—C18	1.6 (3)
O1—C7—C8—C9	-179.57 (19)	C16—C17—C18—C19	-1.0 (3)
N1—C7—C8—C9	0.1 (2)	C16—C17—C18—C21	-178.35 (19)
O1—C7—C8—C11	-1.0 (3)	C17—C18—C19—C20	-0.6 (3)

N1-C7-C8-C11	178.65 (17)	C21—C18—C19—C20	176.7 (2)
N1—N2—C9—C8	0.3 (2)	C18—C19—C20—C15	1.7 (3)
N1—N2—C9—C10	-179.30 (17)	C16-C15-C20-C19	-1.0 (3)
C7—C8—C9—N2	-0.2 (2)	N3—C15—C20—C19	-177.94 (19)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1-C6 and C15-C20 rings, respectively.

D—H···A	D—H	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
01—H1…O2	0.86(1)	1.71 (2)	2.509 (2)	155 (4)
N3—H2…O2	0.89(1)	1.91 (2)	2.671 (3)	143 (2)
C14—H14 A ···Cg2 ⁱ	0.98	2.69	3.475 (2)	138
C14—H14 C ··· $Cg2^{ii}$	0.98	2.66	3.563 (2)	153
C17—H17···· <i>Cg</i> 3 ⁱⁱⁱ	0.95	2.58	3.424 (2)	148

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) -*x*, *y*-1/2, -*z*+1/2.