

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-lodo-4-methoxy-2-nitrobenzene

James L. Wardell^a‡ and Edward R. T. Tiekink^b*

^aCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Avenida Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 12 February 2012; accepted 14 February 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.014; wR factor = 0.039; data-to-parameter ratio = 16.7.

In the title compound, $C_7H_6INO_3$, the 12 non-H atoms are planar, with an r.m.s. deviation of 0.016 Å. A close intramolecular I···O interaction [3.0295 (13) Å] is present. Intermolecular I···O interactions [3.3448 (13) Å] lead to the formation of zigzag chains along the *b* axis. These are assembled into layers by weak π - π interactions [centroidcentroid distance = 3.8416 (9) Å], and the layers stack along the *a* axis, being connected by C–H···O contacts.

Related literature

For general background to halogen bonding, see: Metrangolo *et al.* (2008); Pennington *et al.* (2008). For previous structural studies probing iodo–nitro interactions, see: Glidewell *et al.* (2002, 2004); Garden *et al.* (2002). For van der Waals radii, see: Bondi (1964).

Experimental

Crystal data

 $\begin{array}{l} C_{7}H_{6}\mathrm{INO_{3}}\\ M_{r}=279.03\\ \mathrm{Orthorhombic},\ Pbca\\ a=18.6370\ (13)\ \text{\AA}\\ b=11.6257\ (5)\ \text{\AA}\\ c=7.4740\ (3)\ \text{\AA} \end{array}$

 $V = 1619.38 (15) \text{ Å}^{3}$ Z = 8Mo K\alpha radiation $\mu = 3.92 \text{ mm}^{-1}$ T = 100 K $0.13 \times 0.09 \times 0.01 \text{ mm}$ Data collection

```
Rigaku Saturn724+ (2 \times 2 bin
mode) diffractometer
Absorption correction: multi-scan
(CrystalClear-SM Expert;
Rigaku, 2011)
T_{min} = 0.755, T_{max} = 1.000
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.014$	110 parameters
$vR(F^2) = 0.039$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
841 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7-H7B\cdotsO1^{i}$	0.98	2.58	3.4503 (19)	148

Symmetry code: (i) $x - \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: *CrystalClear-SM Expert* (Rigaku, 2011); cell refinement: *CrystalClear-SM Expert*; data reduction: *CrystalClear-SM Expert*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5176).

References

- Bondi, A. (1964). J. Phys. Chem. 68, 441-452.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565.
- Garden, S. J., Fontes, S. P., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 701–709.
- Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864–876.
- Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472–480.
- Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105–136.
- Pennington, W. T., Hanks, T. W. & Arman, H. D. (2008). Struct. Bond. 126, 65– 104.
- Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

 $R_{\rm int} = 0.017$

8053 measured reflections

1841 independent reflections

1615 reflections with $I > 2\sigma(I)$

‡ Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

supporting information

Acta Cryst. (2012). E68, o761 [doi:10.1107/S1600536812006484]

1-lodo-4-methoxy-2-nitrobenzene

James L. Wardell and Edward R. T. Tiekink

S1. Comment

In connection with previous structural studies of iodo…nitro interactions (Glidewell *et al.*, 2002; Garden *et al.*, 2002; Glidewell *et al.*, 2004), the crystal and molecular structure of the title compound (I) was undertaken in order to probe the structure for possible I…O halogen bonding (Metrangolo *et al.*, 2008; Pennington *et al.*, 2008).

The 12 non-hydrogen atoms comprising (I), Fig. 1, are co-planar with a rm.s. deviation = 0.016 Å; the maximum deviations of ±0.026 Å being found for the nitro-O atoms. A close intramolecular I1…O1 interaction of 3.0295 (13) Å is noted that is significantly less than the sum of the van der Waals radii for these atoms, *i.e.* 3.50 Å (Bondi, 1964). There are also notable intermolecular I1…O interactions, the shortest of 3.3448 (13) Å occurs with the O1ⁱ atom [symmetry operation *i*: 3/2 - x, 1/2 + y, *z*]. A longer interaction [3.4530 (13) Å] is formed with the O2 atom of the same nitro group. The I1…O1ⁱ interactions lead to the formation of zigzag chains along the *b* axis, Fig. 2. The supramolecular chains are assembled into layers in the *bc* plane by weak π – π interactions [ring centroid…centroid distance = 3.8416 (9) Å for symmetry operation *x*, 3/2 - y, -1/2 + z]. Layers stack along the *a* axis and are connected by C—H…O contacts, Fig. 3 and Table 1.

S2. Experimental

The commercial compound (Aldrich) was recrystallized from EtOH; M.pt: 334-335 K.

S3. Refinement

The *C*-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

A view of the linear supramolecular chain along the *b* axis in (I). The I···O interactions are shown as blue dashed lines.

Figure 3

A view in projection down the *c* axis of the packing of supramolecular chains in (I). The I···O, C—H···O and π - π interactions are shown as blue, orange and purple dashed lines, respectively.

1-lodo-4-methoxy-2-nitrobenzene

Crystal	data
---------	------

 $C_7H_6INO_3$ $M_r = 279.03$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 18.6370 (13) Å b = 11.6257 (5) Å c = 7.4740 (3) Å $V = 1619.38 (15) \text{ Å}^3$ Z = 8

Data collection

Rigaku Saturn724+ (2x2 bin mode) diffractometer Radiation source: Rotating Anode Confocal monochromator Detector resolution: 28.5714 pixels mm⁻¹ profile data from ω -scans Absorption correction: multi-scan (*CrystalClear*-SM Expert; Rigaku, 2011) $T_{\min} = 0.755$, $T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.014$ $wR(F^2) = 0.039$ S = 1.041841 reflections 110 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1056 $D_x = 2.289 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6840 reflections $\theta = 3.4-27.4^{\circ}$ $\mu = 3.92 \text{ mm}^{-1}$ T = 100 KPlate, dark-orange $0.13 \times 0.09 \times 0.01 \text{ mm}$

8053 measured reflections 1841 independent reflections 1615 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.4^{\circ}$ $h = -15 \rightarrow 24$ $k = -14 \rightarrow 14$ $l = -9 \rightarrow 8$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0188P)^2 + 0.9351P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.42$ e Å⁻³ $\Delta\rho_{min} = -0.25$ e Å⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.697282 (5)	0.925416 (9)	-0.003362 (13)	0.01546 (5)	
0.70514 (6)	0.66598 (11)	-0.03589 (18)	0.0231 (3)	
0.62939 (7)	0.52986 (10)	0.01236 (15)	0.0214 (3)	
0.41118 (6)	0.68759 (8)	0.23820 (15)	0.0148 (2)	
0.64607 (7)	0.63180 (12)	0.01188 (16)	0.0133 (3)	
0.60441 (8)	0.83551 (12)	0.0734 (2)	0.0119 (3)	
0.59202 (8)	0.71660 (12)	0.0719 (2)	0.0116 (3)	
0.52698 (8)	0.67047 (12)	0.12652 (19)	0.0122 (3)	
0.5199	0.5896	0.1236	0.015*	
0.47214 (8)	0.74173 (12)	0.1854 (2)	0.0115 (3)	
0.48273 (8)	0.86045 (12)	0.1870 (2)	0.0128 (3)	
0.4455	0.9104	0.2254	0.015*	
0.54812 (8)	0.90498 (12)	0.1319 (2)	0.0131 (3)	
0.5548	0.9860	0.1342	0.016*	
0.35196 (8)	0.75849 (13)	0.2943 (2)	0.0157 (3)	
0.3658	0.8025	0.4007	0.024*	
0.3107	0.7096	0.3228	0.024*	
0.3391	0.8116	0.1977	0.024*	
	x 0.697282 (5) 0.70514 (6) 0.62939 (7) 0.41118 (6) 0.64607 (7) 0.60441 (8) 0.59202 (8) 0.52698 (8) 0.5199 0.47214 (8) 0.48273 (8) 0.48273 (8) 0.4455 0.54812 (8) 0.5548 0.35196 (8) 0.3658 0.3107 0.3391	xy $0.697282 (5)$ $0.925416 (9)$ $0.70514 (6)$ $0.66598 (11)$ $0.62939 (7)$ $0.52986 (10)$ $0.41118 (6)$ $0.68759 (8)$ $0.64607 (7)$ $0.63180 (12)$ $0.60441 (8)$ $0.83551 (12)$ $0.59202 (8)$ $0.71660 (12)$ $0.52698 (8)$ $0.67047 (12)$ 0.5199 0.5896 $0.47214 (8)$ $0.74173 (12)$ $0.48273 (8)$ $0.86045 (12)$ 0.4455 0.9104 0.5548 0.9860 $0.35196 (8)$ $0.75849 (13)$ 0.3658 0.8025 0.3107 0.7096 0.3391 0.8116	x y z 0.697282 (5)0.925416 (9) $-0.003362 (13)$ 0.70514 (6)0.66598 (11) $-0.03589 (18)$ 0.62939 (7)0.52986 (10)0.01236 (15)0.41118 (6)0.68759 (8)0.23820 (15)0.64607 (7)0.63180 (12)0.01188 (16)0.60441 (8)0.83551 (12)0.0734 (2)0.59202 (8)0.71660 (12)0.0719 (2)0.52698 (8)0.67047 (12)0.12652 (19)0.51990.58960.12360.47214 (8)0.74173 (12)0.1854 (2)0.48273 (8)0.86045 (12)0.1870 (2)0.44550.91040.22540.54812 (8)0.90498 (12)0.1319 (2)0.55480.98600.13420.35196 (8)0.75849 (13)0.2943 (2)0.36580.80250.40070.31070.70960.32280.33910.81160.1977	xyz U_{iso}^*/U_{eq} 0.697282 (5)0.925416 (9)-0.003362 (13)0.01546 (5)0.70514 (6)0.66598 (11)-0.03589 (18)0.0231 (3)0.62939 (7)0.52986 (10)0.01236 (15)0.0214 (3)0.41118 (6)0.68759 (8)0.23820 (15)0.0148 (2)0.64607 (7)0.63180 (12)0.01188 (16)0.0133 (3)0.60441 (8)0.83551 (12)0.0734 (2)0.0119 (3)0.59202 (8)0.71660 (12)0.0719 (2)0.0116 (3)0.52698 (8)0.67047 (12)0.12652 (19)0.0122 (3)0.51990.58960.12360.015*0.47214 (8)0.74173 (12)0.1854 (2)0.0115 (3)0.48273 (8)0.86045 (12)0.1870 (2)0.0131 (3)0.54812 (8)0.90498 (12)0.1319 (2)0.0131 (3)0.55480.98600.13420.016*0.35196 (8)0.75849 (13)0.2943 (2)0.0157 (3)0.36580.80250.40070.024*0.31070.70960.32280.024*0.33910.81160.19770.024*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic	displacement parameters ((Ų)
--------	---------------------------	-----

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01244 (8)	0.01476 (8)	0.01918 (8)	-0.00280 (4)	0.00198 (3)	0.00187 (4)
01	0.0129 (6)	0.0209 (6)	0.0354 (7)	0.0015 (5)	0.0054 (5)	-0.0037 (5)
02	0.0223 (7)	0.0104 (5)	0.0315 (7)	0.0033 (5)	0.0035 (5)	-0.0004 (4)
03	0.0109 (5)	0.0121 (5)	0.0214 (6)	-0.0013 (4)	0.0029 (4)	-0.0001 (4)
N1	0.0128 (6)	0.0149 (6)	0.0124 (6)	0.0025 (5)	-0.0020 (4)	-0.0002(5)
C1	0.0108 (7)	0.0137 (7)	0.0113 (7)	-0.0019 (6)	-0.0011 (5)	0.0018 (5)
C2	0.0122 (7)	0.0115 (6)	0.0111 (7)	0.0038 (6)	-0.0016 (5)	-0.0007 (5)
C3	0.0146 (7)	0.0091 (6)	0.0130 (7)	0.0003 (5)	-0.0024(5)	0.0004 (5)
C4	0.0101 (6)	0.0135 (7)	0.0109 (7)	-0.0013 (5)	-0.0014 (5)	0.0007 (5)
C5	0.0116 (7)	0.0121 (6)	0.0148 (7)	0.0027 (6)	-0.0009(5)	-0.0010 (5)
C6	0.0154 (7)	0.0097 (6)	0.0143 (7)	-0.0006 (6)	-0.0014 (6)	0.0003 (6)
C7	0.0110 (7)	0.0170 (7)	0.0191 (8)	0.0009 (6)	0.0019 (6)	0.0001 (6)

Geometric parameters (Å, °)

I1—C1	2.1017 (14)	C3—C4	1.387 (2)
01—N1	1.2238 (18)	С3—Н3	0.9500
O2—N1	1.225 (2)	C4—C5	1.394 (2)
O3—C4	1.3574 (18)	C5—C6	1.386 (2)
O3—C7	1.4398 (18)	С5—Н5	0.9500
N1C2	1.4791 (19)	С6—Н6	0.9500
C1—C6	1.395 (2)	С7—Н7А	0.9800
C1—C2	1.4017 (19)	C7—H7B	0.9800
C2—C3	1.387 (2)	С7—Н7С	0.9800
C4—O3—C7	117.44 (11)	O3—C4—C5	125.10 (13)
01—N1—O2	122.90 (14)	C3—C4—C5	119.30 (13)
01—N1—C2	119.00 (13)	C6—C5—C4	119.44 (13)
O2—N1—C2	118.10 (13)	C6—C5—H5	120.3
C6-C1-C2	116.72 (13)	C4—C5—H5	120.3
C6—C1—I1	114.66 (10)	C5—C6—C1	122.56 (13)
C2-C1-I1	128.62 (11)	С5—С6—Н6	118.7
C3—C2—C1	121.54 (13)	C1—C6—H6	118.7
C3—C2—N1	115.27 (12)	O3—C7—H7A	109.5
C1-C2-N1	123.19 (13)	O3—C7—H7B	109.5
C2—C3—C4	120.42 (13)	H7A—C7—H7B	109.5
С2—С3—Н3	119.8	O3—C7—H7C	109.5
С4—С3—Н3	119.8	H7A—C7—H7C	109.5
O3—C4—C3	115.59 (12)	Н7В—С7—Н7С	109.5
C6—C1—C2—C3	-0.2 (2)	C7—O3—C4—C3	-177.84 (13)
I1—C1—C2—C3	-179.68 (11)	C7—O3—C4—C5	2.3 (2)
C6-C1-C2-N1	179.41 (13)	C2—C3—C4—O3	-179.07 (13)
I1—C1—C2—N1	-0.1 (2)	C2—C3—C4—C5	0.8 (2)
01—N1—C2—C3	-178.97 (13)	O3—C4—C5—C6	179.05 (14)
O2—N1—C2—C3	1.04 (19)	C3—C4—C5—C6	-0.9 (2)
01—N1—C2—C1	1.5 (2)	C4—C5—C6—C1	0.4 (2)
O2—N1—C2—C1	-178.54 (14)	C2—C1—C6—C5	0.1 (2)
C1—C2—C3—C4	-0.3 (2)	I1—C1—C6—C5	179.73 (12)
N1—C2—C3—C4	-179.93 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C7—H7B····O1 ⁱ	0.98	2.58	3.4503 (19)	148

Symmetry code: (i) x-1/2, y, -z+1/2.