Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

6-(2-Methylpropyl)-4-oxo-2-sulfanyl-idene-1,2,3,4-tetrahydropyrimidine-5carbonitrile

Omar A. Al-Deeb, ${ }^{\text {a }}$ Ali A. El-Emam, ${ }^{\text {a }} \ddagger$ Abdulghafoor A. AITurkistani, ${ }^{\text {a }}$ Seik Weng $\mathbf{N g}^{\mathbf{b}, \mathbf{c}}$ and Edward R. T. Tiekink ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{\text {c }}$ Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com
Received 5 February 2012; accepted 6 February 2012
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.030 ; w R$ factor $=0.086$; data-to-parameter ratio $=15.6$.

The title thiouracil derivative, $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$, exists in the thione form. The six atoms comprising the ring are almost coplanar [r.m.s. deviation $=0.015 \AA$ A] and the 2-methylpropyl group lies approximately perpendicular to this plane [the $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angle is $72.88(14)^{\circ}$]. Linear supramolecular chains along [001] sustained by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding feature in the crystal packing.

Related literature

For the biological activity of uracil and pyrimidine derivatives see: Ding et al. (2006); Hawser et al., (2006); Brunelle et al. (2007); Al-Safarjalani et al. (2005); Al-Omar et al. (2010); AlAbdullah et al. (2011); Al-Turkistani et al. (2011). For related uracil structures, see: Tiekink (1989); Nasir et al. (2010); ElEmam et al. (2011).

Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS} \quad$ Monoclinic, $\mathrm{C} 2 /{ }_{c}$
$M_{r}=209.27 \quad a=25.8985(6) \AA$

[^0]| $b=7.0479(2) \AA$ | $\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation |
| :--- | :--- |
| $c=11.1811(2) \AA$ | $\mu=2.62 \mathrm{~mm}^{-1}$ |
| $\beta=98.527(2)^{\circ}$ | $T=100 \mathrm{~K}$ |
| $V=2018.33(8) \AA^{3}$ | $0.35 \times 0.20 \times 0.03 \mathrm{~mm}$ |

$V=2018.33(8) \AA^{3}$
$0.35 \times 0.20 \times 0.03 \mathrm{~mm}$
$Z=8$

Data collection

Agilent SuperNova Dual
diffractometer with Atlas detector
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.461, T_{\text {max }}=0.926$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.086$
$S=1.03$
2102 reflections
135 parameters
2 restraints

6870 measured reflections 2102 independent reflections 1989 reflections with $I>2 \sigma(I)$ $R_{\mathrm{int}}=0.024$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N $\cdots \mathrm{S}^{\mathrm{i}}$	$0.87(1)$	$2.51(1)$	$3.3723(11)$	$172(2)$
N2-H2N $\cdots 1^{\mathrm{ii}}$	$0.87(1)$	$1.96(1)$	$2.8210(14)$	$168(2)$

Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $-x+1, y,-z+\frac{3}{2}$.
Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5174).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
Al-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. \& ElEmam, A. A. (2011). Eur. J. Med. Chem. 46, 4642-4647.
Al-Omar, M. A., Al-Obaid, A. M., El-Brollosy, N. R. \& El-Emam, A. A. (2010). Synth. Commun. 40, 1530-1538.

Al-Safarjalani, O. N., Zhou, X., Rais, R. H., Shi, J., Schinazi, R. F., Naguib, F. N. M. \& El Kouni, M. H. (2005). Cancer Chemother. Pharmacol. 55, 541551.

Al-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R. \& El-Emam, A. A. (2011). Molecules, 16, 4764-4774.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Brunelle, M. N., Lucifora, J., Neyts, J., Villet, S., Holy, A., Trepo, C. \& Zoulim, F. (2007). Antimicrob. Agents Chemother. 51, 2240-2243.

organic compounds

Ding, Y., Girardet, J.-L., Smith, K. L., Larson, G., Prigaro, B., Wu, J. Z. \& Yao, N. (2006). Bioorg. Chem. 34, 26-38.

El-Emam, A. A., Al-Deeb, O. A., Al-Turkistani, A. A., Ng, S. W. \& Tiekink, E. R. T. (2011). Acta Cryst. E67, o3126.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hawser, S., Lociuro, S. \& Islam, K. (2006). Biochem. Pharmacol. 71, 941-948.

Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. \& Tiekink, E. R. T. (2010). Acta Cryst. E66, 02187.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tiekink, E. R. T. (1989). Z. Kristallogr. 187, 79-84.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

6-(2-Methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5carbonitrile

Omar A. Al-Deeb, Ali A. El-Emam, Abdulghafoor A. Al-Turkistani, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

The chemotherapeutic efficacy of uracil derivatives is related to their ability to inhibit vital enzymes responsible for DNA biosynthesis. Thus, several uracil and pyrimidine non-nucleoside derivatives exhibited anti-cancer (Al-Safarjalani et al., 2005), anti-viral (Brunelle et al., 2007; Ding et al., 2006) and anti-bacterial activities (Hawser et al., 2006; Al-Abdullah et al., 2011). In continuation to our interest in the chemical and pharmacological properties of uracil and pyrimidine derivatives (Al-Omar et al., 2010; Al-Turkistani et al., 2011), and as part of on-going structural studies of uracil and pyrimidine derivatives (Nasir et al., 2010; El-Emam et al. 2011), we synthesized the title compound 6-(2-methyl-propyl)-2-thiouracil-5-carbonitrile (I) as a precursor for potential chemotherapeutic agents.
The thiouracil derivative (I), Fig. 1, exists in the thione form with the $\mathrm{C} 1=\mathrm{S} 1$ bond length of 1.6693 (13) \AA being shorter than the equivalent bond in the parent 2-thiouracil compound, i.e. 1.683 (3) \AA (Tiekink, 1989). The six atoms comprising the ring are co-planar, having a r.m.s. deviation $=0.015 \AA$. The 2-methylpropyl group lies to one side of the central plane with the $\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 7$ torsion angle being $72.88(14)^{\circ}$.
The crystal packing features $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding involving both amide- H and the oxo and thione atoms, Table 1. The result of these hydrogen bonds is the formation of linear supramolecular chains along the c axis featuring alternating eight-membered $\{\cdots \mathrm{HNCO}\}_{2}$ and $\{\cdots \mathrm{HNCS}\}_{2}$ synthons, Fig. 2. The chains stack in the crystal structure with no specific intermolecular interactions between them, Fig. 3.

S2. Experimental

A mixture of 3-methylbutanal ($8.61 \mathrm{~g}, 0.1 \mathrm{~mol}$), ethyl cyanoacetate $(11.31 \mathrm{~g}, 0.1 \mathrm{~mol})$, thiourea ($7.61 \mathrm{~g}, 0.1 \mathrm{~mol}$) and potassium carbonate $(13.8 \mathrm{~g}, 0.1 \mathrm{~mol})$ was heated in in ethanol (300 ml) under reflux for 6 h . On cooling, the separated precipitate was filtered, washed with diethyl ether and dried. The obtained solid was added to water (200 ml) and the mixture was heated at 283-293 K until a clear solution was obtained. The solution was acidified with acetic acid and stirred for 30 min . The deposited precipitate was filtered, washed with cold water, dried and crystallized from acetic acid to yield $5.86 \mathrm{~g}(28 \%)$ of the title compound (I) as colourless crystals. m.p. $545-547 .{ }^{1} \mathrm{H}$ NMR (DMSO-d6): $\delta 1.07$ (d, 6 H , $\mathrm{CH}_{3}, \mathrm{~J}=6.5 \mathrm{~Hz}$), 2.18-2.24 (m, 1H, CH), $2.68\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=6.5 \mathrm{~Hz}\right.$), $13.08(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR: $\delta 21.50\left(\mathrm{CH}_{3}\right)$, $29.40(\mathrm{CH}), 40.30\left(\mathrm{CH}_{2}\right), 92.30($ Uracil C-5), $114.80(\mathrm{CN}), 158.60(\mathrm{C}=\mathrm{O}), 163.90($ Uracil C-6), $176.75(\mathrm{C}=\mathrm{S})$.

S3. Refinement

Carbon-bound H atoms were placed in calculated positions $\left[\mathrm{C}-\mathrm{H}=0.95\right.$ to $\left.1.00 \AA, U_{\mathrm{iso}}(\mathrm{H})=1.2-1.5 U_{\mathrm{eq}}(\mathrm{C})\right]$ and were included in the refinement in the riding model approximation. The amide H atoms were located in a difference Fourier map, and were refined with a distance restraint of $\mathrm{N}-\mathrm{H}=0.88 \pm 0.01 \AA$; their $U_{\text {iso }}$ values were refined.

Figure 1
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2
A view of the linear supramolecular chain along [001] in (I). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds are shown as orange and blue dashed lines, respectively.

Figure 3
A view in projection down the c axis of the unit-cell contents for (I). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions are shown as orange and blue dashed lines, respectively.

6-(2-Methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5- carbonitrile

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$

$M_{r}=209.27$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=25.8985$ (6) \AA
$b=7.0479$ (2) \AA
$c=11.1811$ (2) \AA
$\beta=98.527(2)^{\circ}$
$V=2018.33(8) \AA^{3}$
$Z=8$

Data collection

Agilent SuperNova Dual
diffractometer with Atlas detector
Radiation source: SuperNova (Cu) X-ray
Source
Mirror monochromator
Detector resolution: 10.4041 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.086$
$S=1.03$
2102 reflections
135 parameters
2 restraints
Primary atom site location: structure-invariant
direct methods
$F(000)=880$
$D_{\mathrm{x}}=1.377 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 4317 reflections
$\theta=4.0-76.1^{\circ}$
$\mu=2.62 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colourless
$0.35 \times 0.20 \times 0.03 \mathrm{~mm}$
$T_{\min }=0.461, T_{\text {max }}=0.926$
6870 measured reflections
2102 independent reflections
1989 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=76.3^{\circ}, \theta_{\text {min }}=6.5^{\circ}$
$h=-31 \rightarrow 32$
$k=-8 \rightarrow 8$
$l=-14 \rightarrow 10$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0528 P)^{2}+1.3984 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.28 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\mathrm{eq}}$
S1	$0.550100(11)$	$0.21184(4)$	$0.42164(3)$	$0.01651(12)$
O1	$0.43446(3)$	$0.31829(14)$	$0.72665(8)$	$0.0189(2)$
N1	$0.44705(4)$	$0.25643(16)$	$0.37760(9)$	$0.0154(2)$
N2	$0.48422(4)$	$0.27666(15)$	$0.57730(9)$	$0.0143(2)$
N3	$0.30186(4)$	$0.37646(18)$	$0.58639(10)$	$0.0225(3)$
C1	$0.49111(5)$	$0.24972(18)$	$0.46022(11)$	$0.0144(2)$
C2	$0.43658(5)$	$0.30269(17)$	$0.61833(11)$	$0.0146(3)$
C3	$0.39202(5)$	$0.31030(17)$	$0.52342(11)$	$0.0150(3)$
C4	$0.39788(5)$	$0.28817(16)$	$0.40487(11)$	$0.0151(3)$
C5	$0.34180(5)$	$0.34614(19)$	$0.55782(10)$	$0.0166(3)$
C6	$0.35440(5)$	$0.29348(18)$	$0.30154(11)$	$0.0165(3)$
H6A	0.3644	0.3779	0.2381	0.020^{*}
H6B	0.3232	0.3490	0.3297	0.020^{*}
C7	$0.33981(5)$	$0.09633(18)$	$0.24532(10)$	$0.0160(3)$
H7	0.3698	0.0480	0.2073	0.019^{*}
C8	$0.29278(5)$	$0.1211(2)$	$0.14684(12)$	$0.0246(3)$
H8A	0.3012	0.2133	0.0870	0.037^{*}
H8B	0.2629	0.1670	0.1831	0.037^{*}
H8C	0.2840	-0.0010	0.1071	0.037^{*}
C9	$0.32809(5)$	$-0.0459(2)$	$0.34028(12)$	$0.0221(3)$
H9A	0.3589	-0.0599	0.4022	0.033^{*}
H9B	0.3193	-0.1689	0.3017	0.033^{*}
H9C	0.2986	-0.0004	0.3780	0.033^{*}
H1N	$0.4514(7)$	$0.243(3)$	$0.3021(9)$	$0.026(4)^{*}$
H2N	$0.5113(5)$	$0.275(3)$	$0.6341(13)$	$0.023(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.01253(17)$	$0.02143(19)$	$0.01565(18)$	$0.00095(10)$	$0.00231(11)$	$0.00078(10)$
O1	$0.0159(4)$	$0.0270(5)$	$0.0136(4)$	$0.0004(4)$	$0.0013(3)$	$-0.0010(3)$
N1	$0.0141(5)$	$0.0193(5)$	$0.0125(5)$	$-0.0002(4)$	$0.0014(4)$	$-0.0001(4)$
N2	$0.0112(5)$	$0.0176(5)$	$0.0134(5)$	$0.0001(4)$	$-0.0003(4)$	$-0.0001(4)$
N3	$0.0173(5)$	$0.0264(6)$	$0.0232(5)$	$0.0018(5)$	$0.0018(4)$	$-0.0033(5)$
C1	$0.0153(6)$	$0.0121(5)$	$0.0155(6)$	$-0.0014(4)$	$0.0009(4)$	$0.0007(4)$
C2	$0.0137(6)$	$0.0130(6)$	$0.0168(6)$	$-0.0004(4)$	$0.0016(5)$	$0.0000(4)$

C3	$0.0128(6)$	$0.0149(6)$	$0.0167(6)$	$-0.0003(4)$	$0.0006(4)$	$-0.0003(4)$
C4	$0.0139(6)$	$0.0122(6)$	$0.0186(6)$	$-0.0003(4)$	$0.0009(5)$	$0.0006(4)$
C5	$0.0165(6)$	$0.0168(6)$	$0.0152(5)$	$0.0002(5)$	$-0.0014(4)$	$-0.0016(4)$
C6	$0.0150(6)$	$0.0183(7)$	$0.0152(6)$	$0.0013(4)$	$-0.0012(5)$	$-0.0003(4)$
C7	$0.0122(5)$	$0.0193(6)$	$0.0162(5)$	$0.0005(4)$	$0.0011(4)$	$-0.0028(5)$
C8	$0.0230(7)$	$0.0251(7)$	$0.0224(6)$	$0.0030(5)$	$-0.0075(5)$	$-0.0055(5)$
C9	$0.0201(6)$	$0.0233(7)$	$0.0224(6)$	$-0.0050(5)$	$0.0014(5)$	$0.0004(5)$

Geometric parameters (A, ${ }^{\circ}$)

S1-C1	$1.6693(13)$	C6-C7	$1.5486(17)$
O1-C2	$1.2254(15)$	C6-H6A	0.9900
N1-C1	$1.3583(16)$	C6-H6B	0.9900
N1-C4	$1.3711(16)$	C7-C9	$1.5232(18)$
N1-H1N	$0.873(9)$	C7-C8	$1.5261(16)$
N2-C1	$1.3605(16)$	C7-H7	1.0000
N2-C2	$1.3909(16)$	C8-H8A	0.9800
N2-H2N	$0.874(9)$	C8-H8B	0.9800
N3-C5	$1.1470(17)$	C8-H8C	0.9800
C2-C3	$1.4482(17)$	C9-H9A	0.9800
C3-C4	$1.3653(18)$	C9-H9B	0.9800
C3-C5	$1.4323(17)$	C9-H9C	0.9800
C4-C6	$1.4895(17)$		
C1-N1-C4	$124.66(11)$	C4-C6-H6B	
C1-N1-H1N	$116.1(12)$	C7-C6-H6B	108.8
C4-N1-H1N	$119.2(12)$	H6A-C6-H6B	108.8
C1-N2-C2	$125.81(10)$	C9-C7-C8	107.7
C1-N2-H2N	$119.4(12)$	C9-C7-C6	$110.98(10)$
C2-N2-H2N	$114.7(12)$	C8-C7-C6	$111.67(10)$
N1-C1-N2	$115.64(11)$	C9-C7-H7	$108.10(10)$
N1-C1-S1	$122.58(9)$	C8-C7-H7	108.7
N2-C1-S1	$121.77(9)$	C6-C7-H7	108.7
O1-C2-N2	$120.65(11)$	C7-C8-H8A	108.7
O1-C2-C3	$124.98(11)$	C7-C8-H8B	109.5
N2-C2-C3	$114.37(10)$	H8A-C8-H8B	109.5
C4-C3-C5	$121.13(11)$	C7-C8-H8C	109.5
C4-C3-C2	$121.06(11)$	H8A-C8-H8C	109.5
C5-C3-C2	$117.79(11)$	H8B-C8-H8C	109.5
N1-C4-C3	$118.37(11)$	C7-C9-H9A	109.5
N1-C4-C6	$116.87(11)$	C7-C9-H9B	109.5
C3-C4-C6	$124.75(12)$	H9A-C9-H9B	109.5
N3-C5-C3	$179.16(14)$	C7-C9-H9C	109.5
C4-C6-C7	$113.78(10)$	H9A-C9-H9C	109.5
C4-C6-H6A	108.8	H9B-C9-H9C	109.5
C7-C6-H6A	108.8		109.5
C4-N1-C1-N2	$0.16(19)$	C1-N1-C4-C3	
		$-1.67(19)$	

$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$-179.61(10)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$2.54(19)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$-177.70(9)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{O} 1$	$177.06(12)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$-3.35(18)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-178.83(12)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.60(17)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5$	$2.58(19)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5$	$-176.99(11)$

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 6$	$179.07(12)$
$\mathrm{C} 5-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$179.23(11)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$0.68(18)$
$\mathrm{C} 5-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	$-1.58(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	$179.87(11)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 7$	$72.88(14)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 7$	$-106.32(14)$
$\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 9$	$53.98(14)$
$\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$176.33(11)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{~S}^{\mathrm{i}}$	$0.87(1)$	$2.51(1)$	$3.3723(11)$	$172(2)$
$\mathrm{N} 2 — \mathrm{H} 2 N \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.87(1)$	$1.96(1)$	$2.8210(14)$	$168(2)$

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $-x+1, y,-z+3 / 2$.

[^0]: \ddagger Additional correspondence author, e-mail: elemam5@hotmail.com.

