

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,6-Dichloro-N-(4-chlorophenyl)benzamide

Jing Zhu, Ming Li, Hong-xia Wei, Jian-giang Wang and Cheng Guo*

College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: guocheng@njut.edu.cn

Received 18 February 2012; accepted 20 February 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.057; wR factor = 0.181; data-to-parameter ratio = 15.1.

In the title compound, C₁₃H₈Cl₃NO, the dihedral angle between the benzene rings is 63.2 (2)°. In the crystal, N-H···O hydrogen bonds link the molecules into C(4) chains propagating in [001]. Weak aromatic π - π stacking also occurs [centroid–centroid separations = 3.759(3) and 3.776(3) Å].

Related literature

For further synthetic details, see: Lai & Huang (2005).

Experimental

Crystal data

C13H8Cl3NO $M_r = 300.55$

Monoclinic, $P2_1/c$ a = 11.241 (2) Å

b = 12.590 (3) Å c = 9.6450 (19) Å $\beta = 100.60 \ (3)^{\circ}$ V = 1341.7 (5) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4	2459 independent reflections
diffractometer	1481 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.031$
(North et al., 1968)	3 standard reflections every 20
$T_{\min} = 0.825, T_{\max} = 0.936$	reflections
2587 measured reflections	intensity decay: 1%

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	163 parameters
$wR(F^2) = 0.181$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
2459 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N-H0A\cdots O^{i}$	0.86	1.97	2.828 (4)	176
Symmetry code: (i) r	$-v + \frac{1}{7} + \frac{1}{7}$			

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97; software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6644).

References

Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Lai, Y.-Y. & Huang, L.-J. (2005). Bioorg. Med. Chem. 13, 265-275.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

every 200

 $\mu = 0.67 \text{ mm}^{-1}$

T = 293 K

supporting information

Acta Cryst. (2012). E68, o843 [doi:10.1107/S1600536812007556]

2,6-Dichloro-N-(4-chlorophenyl)benzamide

Jing Zhu, Ming Li, Hong-xia Wei, Jian-qiang Wang and Cheng Guo

S1. Experimental

2,6-Dichlorobenzoyl chloride (0.02 mol, 4.20 g)and 4-chloroaniline (0.02 mol, 2.55 g) were refluxed in triethylamine (6 ml) and tetrahydrofuran (50 ml) for 8h, then the solvents were evaporated to give raw product, which was finally washed by water and collected by filtration. Colourless blocks were obtained by slow evaporation of an ethyl acetate solution.

S2. Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figure 1

The molecular structure of the title molecule, with displacement ellipsoids drawn at the 50% probability level.

Figure 2

A packing diagram of (I) viewed down the b axis. Hydrogen bonds are drawn as dashed lines.

2,6-Dichloro-N-(4-chlorophenyl)benzamide

Crystal data
C ₁₃ H ₈ Cl ₃ NO
$M_r = 300.55$
Monoclinic, P2 ₁ /c
a = 11.241 (2) Å
b = 12.590(3) Å
c = 9.6450 (19) Å
$\beta = 100.60 (3)^{\circ}$
V = 1341.7 (5) Å ³
Z = 4
F(000) = 608

 $D_x = 1.488 \text{ Mg m}^{-3}$ Melting point: 397 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.30 \times 0.20 \times 0.10 \text{ mm}$ Data collection

Enraf–Nonius CAD-4 diffractometer	2459 independent reflections 1481 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.031$
Graphite monochromator	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
$\omega/2\theta$ scans	$h = -13 \rightarrow 0$
Absorption correction: ψ scan	$k = 0 \rightarrow 15$
(North <i>et al.</i> , 1968)	$l = -11 \rightarrow 11$
$T_{\min} = 0.825, T_{\max} = 0.936$	3 standard reflections every 200 reflections
2587 measured reflections	intensity decay: 1%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from
$wR(F^2) = 0.181$	neighbouring sites
S = 1.00	H-atom parameters constrained
2459 reflections	$w = 1/[\hat{\sigma^2}(F_o^2) + (0.095P)^2]$
163 parameters	where $P = (F_o^2 + 2F_c^2)/3$

Special details

direct methods

Primary atom site location: structure-invariant

0 restraints

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.26 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.29 \text{ e } \text{\AA}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.7580 (3)	0.3117 (2)	0.1127 (3)	0.0423 (8)	
0.7677	0.2870	0.1972	0.051*	
0.7776 (3)	0.2668 (2)	-0.1093 (3)	0.0660 (9)	
0.57123 (16)	0.75067 (10)	0.0703 (2)	0.1055 (6)	
0.7243 (4)	0.4801 (4)	-0.0171 (5)	0.0593 (12)	
0.7651	0.4547	-0.0859	0.071*	
0.64198 (10)	0.05573 (10)	0.07481 (12)	0.0617 (4)	
0.6810 (5)	0.5830 (4)	-0.0246 (5)	0.0668 (13)	
0.6917	0.6268	-0.0990	0.080*	
1.06285 (13)	0.25773 (11)	0.06642 (19)	0.0927 (6)	
0.6224 (4)	0.6202 (4)	0.0774 (6)	0.0594 (12)	
0.6040 (4)	0.5568 (4)	0.1854 (6)	0.0660 (13)	
0.5638	0.5829	0.2543	0.079*	
0.6460 (4)	0.4524 (4)	0.1924 (5)	0.0544 (11)	
0.6323	0.4082	0.2652	0.065*	
	x 0.7580 (3) 0.7677 0.7776 (3) 0.57123 (16) 0.7243 (4) 0.7651 0.64198 (10) 0.6810 (5) 0.6917 1.06285 (13) 0.6224 (4) 0.6040 (4) 0.5638 0.6460 (4) 0.6323	xy $0.7580 (3)$ $0.3117 (2)$ 0.7677 0.2870 $0.7776 (3)$ $0.2668 (2)$ $0.57123 (16)$ $0.75067 (10)$ $0.7243 (4)$ $0.4801 (4)$ 0.7651 0.4547 $0.64198 (10)$ $0.05573 (10)$ $0.6810 (5)$ $0.5830 (4)$ 0.6917 0.6268 $1.06285 (13)$ $0.25773 (11)$ $0.6224 (4)$ $0.6202 (4)$ $0.6040 (4)$ $0.5568 (4)$ 0.5638 0.5829 $0.6460 (4)$ $0.4524 (4)$ 0.6323 0.4082	xyz $0.7580 (3)$ $0.3117 (2)$ $0.1127 (3)$ 0.7677 0.2870 0.1972 $0.7776 (3)$ $0.2668 (2)$ $-0.1093 (3)$ $0.57123 (16)$ $0.75067 (10)$ $0.0703 (2)$ $0.7243 (4)$ $0.4801 (4)$ $-0.0171 (5)$ 0.7651 0.4547 -0.0859 $0.64198 (10)$ $0.05573 (10)$ $0.07481 (12)$ $0.6810 (5)$ $0.5830 (4)$ $-0.0246 (5)$ 0.6917 0.6268 -0.0990 $1.06285 (13)$ $0.25773 (11)$ $0.06642 (19)$ $0.6224 (4)$ $0.6202 (4)$ $0.1854 (6)$ 0.5638 0.5829 0.2543 $0.6460 (4)$ $0.4524 (4)$ $0.1924 (5)$ 0.6323 0.4082 0.2652	xyz $U_{iso}*/U_{eq}$ 0.7580 (3)0.3117 (2)0.1127 (3)0.0423 (8)0.76770.28700.19720.051*0.7776 (3)0.2668 (2) -0.1093 (3)0.0660 (9)0.57123 (16)0.75067 (10)0.0703 (2)0.1055 (6)0.7243 (4)0.4801 (4) -0.0171 (5)0.0593 (12)0.76510.4547 -0.0859 0.071*0.64198 (10)0.05573 (10)0.07481 (12)0.0617 (4)0.6810 (5)0.5830 (4) -0.0246 (5)0.0668 (13)0.69170.6268 -0.0990 0.080*1.06285 (13)0.25773 (11)0.06642 (19)0.0927 (6)0.6040 (4)0.5568 (4)0.1854 (6)0.0660 (13)0.56380.58290.25430.079*0.6460 (4)0.4524 (4)0.1924 (5)0.0544 (11)0.63230.40820.26520.065*

C6	0.7070 (3)	0.4148 (3)	0.0926 (4)	0.0394 (9)	
C7	0.7928 (4)	0.2481 (3)	0.0165 (4)	0.0443 (10)	
C8	0.8579 (4)	0.1497 (3)	0.0788 (4)	0.0434 (10)	
C9	0.7988 (4)	0.0590 (3)	0.1085 (4)	0.0465 (10)	
C10	0.8603 (5)	-0.0302 (4)	0.1654 (5)	0.0595 (12)	
H10A	0.8188	-0.0911	0.1831	0.071*	
C11	0.9838 (5)	-0.0267 (5)	0.1951 (6)	0.0765 (15)	
H11A	1.0264	-0.0859	0.2346	0.092*	
C12	1.0461 (5)	0.0615 (5)	0.1683 (6)	0.0753 (15)	
H12A	1.1302	0.0628	0.1906	0.090*	
C13	0.9836 (4)	0.1479 (4)	0.1082 (5)	0.0593 (12)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ν	0.055 (2)	0.0430 (19)	0.0289 (16)	0.0040 (16)	0.0070 (14)	0.0032 (15)
0	0.109 (3)	0.0540 (19)	0.0365 (17)	0.0039 (17)	0.0164 (17)	-0.0042 (14)
Cl1	0.1079 (13)	0.0498 (8)	0.1576 (16)	0.0283 (8)	0.0215 (11)	0.0106 (9)
C1	0.077 (3)	0.052 (3)	0.051 (3)	0.006 (2)	0.018 (2)	0.010(2)
Cl2	0.0515 (7)	0.0637 (7)	0.0707 (8)	-0.0022 (5)	0.0132 (5)	0.0087 (6)
C2	0.085 (4)	0.046 (3)	0.068 (3)	0.004 (3)	0.011 (3)	0.016 (2)
C13	0.0706 (9)	0.0743 (10)	0.1392 (14)	-0.0252 (7)	0.0347 (9)	-0.0239 (9)
C3	0.048 (3)	0.043 (3)	0.084 (4)	0.003 (2)	0.002 (2)	0.003 (2)
C4	0.063 (3)	0.063 (3)	0.078 (3)	0.013 (2)	0.028 (3)	-0.007 (3)
C5	0.062 (3)	0.052 (3)	0.053 (3)	0.004 (2)	0.019 (2)	0.006 (2)
C6	0.042 (2)	0.036 (2)	0.039 (2)	-0.0007 (17)	0.0032 (17)	-0.0009 (17)
C7	0.058 (3)	0.044 (2)	0.031 (2)	-0.0057 (19)	0.0088 (18)	-0.0004 (18)
C8	0.052 (2)	0.043 (2)	0.036 (2)	0.0019 (19)	0.0082 (18)	-0.0073 (18)
C9	0.049 (2)	0.052 (2)	0.040(2)	0.006 (2)	0.0127 (18)	-0.001 (2)
C10	0.071 (3)	0.049 (3)	0.061 (3)	0.013 (2)	0.021 (2)	0.011 (2)
C11	0.076 (4)	0.076 (4)	0.076 (4)	0.032 (3)	0.008 (3)	0.011 (3)
C12	0.046 (3)	0.095 (4)	0.082 (4)	0.013 (3)	0.003 (3)	-0.013 (3)
C13	0.055 (3)	0.052 (3)	0.071 (3)	-0.003 (2)	0.013 (2)	-0.015 (2)

Geometric parameters (Å, °)

N—C7	1.338 (5)	C4—H4A	0.9300
N—C6	1.417 (5)	C5—C6	1.366 (5)
N—H0A	0.8600	C5—H5A	0.9300
О—С7	1.216 (4)	C7—C8	1.506 (5)
Cl1—C3	1.737 (5)	C8—C9	1.378 (6)
C1—C6	1.381 (5)	C8—C13	1.389 (6)
C1—C2	1.382 (6)	C9—C10	1.379 (6)
C1—H1A	0.9300	C10—C11	1.365 (7)
Cl2—C9	1.733 (4)	C10—H10A	0.9300
C2—C3	1.365 (7)	C11—C12	1.363 (7)
C2—H2A	0.9300	C11—H11A	0.9300
Cl3—C13	1.732 (5)	C12—C13	1.365 (7)

С3—С4	1.358 (7)	C12—H12A	0.9300
C4—C5	1.394 (6)		
C7—N—C6	128.0 (3)	O—C7—N	124.9 (4)
C7—N—H0A	116.0	O—C7—C8	121.7 (4)
C6—N—H0A	116.0	N—C7—C8	113.4 (3)
C6—C1—C2	120.1 (4)	C9—C8—C13	117.1 (4)
C6—C1—H1A	120.0	C9—C8—C7	123.2 (4)
C2—C1—H1A	120.0	C13—C8—C7	119.7 (4)
C3—C2—C1	119.8 (4)	C8—C9—C10	122.2 (4)
C3—C2—H2A	120.1	C8—C9—C12	119.6 (3)
C1—C2—H2A	120.1	C10—C9—Cl2	118.3 (3)
C4—C3—C2	120.9 (4)	C11—C10—C9	118.2 (5)
C4—C3—Cl1	119.4 (4)	C11-C10-H10A	120.9
C2—C3—C11	119.7 (4)	C9—C10—H10A	120.9
C3—C4—C5	119.6 (4)	C12-C11-C10	121.7 (5)
C3—C4—H4A	120.2	C12—C11—H11A	119.2
C5—C4—H4A	120.2	C10-C11-H11A	119.2
C6—C5—C4	120.2 (4)	C11—C12—C13	119.1 (5)
С6—С5—Н5А	119.9	C11—C12—H12A	120.4
С4—С5—Н5А	119.9	C13—C12—H12A	120.4
C5—C6—C1	119.5 (4)	C12—C13—C8	121.7 (5)
C5—C6—N	117.6 (3)	C12—C13—Cl3	119.2 (4)
C1—C6—N	122.7 (4)	C8—C13—Cl3	119.1 (4)
C6—C1—C2—C3	0.8 (7)	O—C7—C8—C13	82.0 (5)
C1—C2—C3—C4	-1.2 (8)	N—C7—C8—C13	-96.3 (5)
C1—C2—C3—C11	178.4 (4)	C13—C8—C9—C10	0.3 (6)
C2—C3—C4—C5	0.2 (7)	C7—C8—C9—C10	179.9 (4)
Cl1—C3—C4—C5	-179.4 (4)	C13—C8—C9—Cl2	179.9 (3)
C3—C4—C5—C6	1.2 (7)	C7—C8—C9—Cl2	-0.5 (5)
C4—C5—C6—C1	-1.6 (6)	C8—C9—C10—C11	1.2 (6)
C4—C5—C6—N	173.8 (4)	Cl2—C9—C10—C11	-178.5 (4)
C2-C1-C6-C5	0.6 (7)	C9-C10-C11-C12	-0.8 (8)
C2—C1—C6—N	-174.5 (4)	C10-C11-C12-C13	-1.1 (8)
C7—N—C6—C5	161.0 (4)	C11—C12—C13—C8	2.6 (8)
C7—N—C6—C1	-23.7 (6)	C11—C12—C13—Cl3	-177.0 (4)
C6—N—C7—O	-5.6 (7)	C9—C8—C13—C12	-2.2 (6)
C6—N—C7—C8	172.6 (3)	C7—C8—C13—C12	178.2 (4)
О—С7—С8—С9	-97.7 (5)	C9—C8—C13—Cl3	177.4 (3)
N—C7—C8—C9	84.1 (5)	C7—C8—C13—Cl3	-2.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N—H0A····O ⁱ	0.86	1.97	2.828 (4)	176

Symmetry code: (i) x, -y+1/2, z+1/2.