organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

8-Benzyloxy-2-methyl-3-(2-methylphenyl)quinazolin-4(3*H*)-one

Adel S. El-Azab,^{a,b}‡ Alaa A.-M. Abdel-Aziz,^{a,c} Seik Weng Ng^{d,e} and Edward R. T. Tiekink^d*

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, ^cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: edward.tiekink@gmail.com

Received 18 February 2012; accepted 18 February 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.048; wR factor = 0.121; data-to-parameter ratio = 15.4.

In the title methaqualone analogue, $C_{23}H_{20}N_2O_2$, the planes of the terminal aromatic rings [dihedral angle between them = $64.52 (7)^{\circ}$] approximately face the fused-ring methyl group and both are twisted with respect to the pyrimidine plane (r.m.s. deviation = 0.028 Å), forming dihedral angles of 86.9 (3) (with the 2-tolyl ring) and $65.57 (7)^{\circ}$. The 2-tolyl residue is disordered over two almost coplanar but opposite orientations with the major component having a siteoccupancy factor of 0.893 (3). The three-dimensional crystal packing is consolidated by $C-H\cdots O$, $C-H\cdots \pi$ and $\pi-\pi$ [2tolyl–2-tolyl centroid–centroid distance = 3.8099 (6) Å] interactions.

Related literature

For recent studies on the synthesis, drug discovery and crystal structures of quinazoline-4(3H)-one derivatives, see: El-Azab *et al.* (2010, 2012). For the anti-convulsant activity of the title methaqualone analogue, see: El-Azab *et al.* (2011). For a related structure, see: Stephenson *et al.* (2011).

V = 1840.09 (5) Å³

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

7568 measured reflections

3775 independent reflections

3559 reflections with $I > 2\sigma(I)$

Cu Ka radiation

 $\mu = 0.66 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.015$

Z = 4

• Crystal data

 $\begin{array}{l} C_{23}H_{20}N_2O_2\\ M_r = 356.41\\ \text{Monoclinic, } P2_1/c\\ a = 18.2611 \ (3) \text{ Å}\\ b = 7.6266 \ (1) \text{ Å}\\ c = 13.2148 \ (2) \text{ Å}\\ \beta = 91.094 \ (2)^{\circ} \end{array}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) $T_{\rm min} = 0.967, T_{\rm max} = 0.998$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	43 restraints
$wR(F^2) = 0.121$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
3775 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
245 parameters	

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg1 is the centroid of the C18-C23 ring.

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C13-H13···O1 ⁱ	0.95	2.54	3.3250 (15)	140
$C17 - H17B \cdots Cg1^{ii}$	0.99	2.62	3.5086 (16)	150
$C22-H22\cdots Cg1^{iii}$	0.95	2.77	3.5692 (16)	143
Symmetry codes: (i)	-x + 2, -y +	-2, -z+1;	(ii) $-x + 1, -y,$	-z + 1; (iii)

 $-x+1, y-\frac{1}{2}, -z+\frac{1}{2}.$

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006);

[‡] Additional correspondence author, e-mail: adelazaba@yahoo.com.

software used to prepare material for publication: *publCIF* (Westrip, 2010).

This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM·C/HIR/MOHE/SC/ 12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6643).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- El-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). *Eur. J. Med. Chem.* 45, 4188–4198.
- El-Azab, A. S. & ElTahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327-333.
- El-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837– 925.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stephenson, K. A., Wilson, A. A., Houle, S. & Vasdev, N. (2011). Bioorg. Med. Chem. Lett. 21, 5506–5509.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, 0864-0865 [doi:10.1107/S1600536812007362]

8-Benzyloxy-2-methyl-3-(2-methylphenyl)quinazolin-4(3H)-one

Adel S. El-Azab, Alaa A.-M. Abdel-Aziz, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

Quinazoline-4(3*H*)-one derivatives are known for their various biological activities (El-Azab *et al.*, 2012, 2010). The title methaqualone analogue, 8-benzyloxy-2-methyl-3-(2-methylphenyl)-4(3*H*)-quinazolinone (I), has been investigated previously for its anti-convulsant activity (El-Azab *et al.*, 2011). Herein, its crystal and molecular structure is described. A related structure with a similar conformation has been reported recently (Stephenson *et al.*, 2011).

In (I), Fig. 1, the 2-tolyl group is orthogonal to the pyrimidine ring [r.m.s. deviation = 0.028 Å] forming a dihedral angle of 87.86 (6)°; the equivalent angle for the minor component of the disordered 2-tolyl ring = 86.9 (3)°. The phenyl ring of the benzyloxy residue is also twisted out of this plane, forming a dihedral angle of 65.57 (7)°. To a first approximation the planes through the terminal rings face towards the methyl group with the dihedral angle between them being 64.52 (7)°.

In the crystal packing, C—H···O and C—H··· π interactions, Table 1, combine with π – π [ring centroid(2-tolyl)-to-centroid(2-tolyl)ⁱ distance = 3.8099 (6) Å for symmetry operation *i*: 2 - *x*, 2 - *y*, 1 - *z*] interactions to consolidate molecules into the three-dimensional architecture, Fig. 2.

S2. Experimental

A mixture of 8-hydroxymethaqualone (532 mg, 2 mmol) and benzyl chloride (266 mg, 2.1 mmol) in acetone (15 ml) containing anhydrous potassium carbonate (415 mg, 3 mmol) was heated under reflux for 10 h. The reaction mixture was filtered while hot, the solvent was removed under reduced pressure, and the solid obtained was dried and recrystallized from AcOH as colourless prisms. Yield 86%; *M*.pt: 449–451 K. ¹H NMR (500 MHz, CDCl₃): δ 7.89 (d, 1H, J = 8.0 Hz), 7.53 (d, 2H, J = 7.0 Hz), 7.41–7.31 (m, 7H), 7.22 (d, 1H, J = 8.0 Hz), 7.17 (d, 1H, J = 7.5 Hz), 5.40 (s, 2H), 2.27 (s, 3H), 2.15 (s, 3H). ¹³C NMR (CDCl₃): δ 17.4, 24.3, 71.3, 117.1, 119.0, 122.1, 126.6, 127.0, 127.6, 127.9, 128.0, 128.6, 129.5, 131.5, 135.3, 136.8, 137.0, 138.8, 153.3, 153.6, 161.5 p.p.m.. MS (70 eV): m/z = 356.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions $[C-H = 0.95 \text{ to } 0.99 \text{ Å}, U_{iso}(H) = 1.2 \text{ to } 1.5U_{eq}(C)]$ and were included in the refinement in the riding model approximation. The 2-tolyl ring is disordered over two co-planar positions with the methyl group being orientated in opposite directions. The benzene rings were refined as rigid hexagons with C-C = 1.39 Å. The major component refined to a site occupancy factor of 0.893 (3). The C-C distances were restrained to $\pm 0.01 \text{ Å}$, of each other. The anisotropic displacement parameters were restrained to be nearly isotropic, and those of the primed carbon atoms were equated to those of unprimed atoms.

Figure 1

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. The minor disorder component of the toluyl ring is not shown.

Figure 2

A view in projection down the *b* axis of the unit-cell contents of (I). The C—H···O, C—H··· π and π - π interactions are shown as orange, bronw and purple dashed lines, respectively.

8-Benzyloxy-2-methyl-3-(2-methylphenyl)quinazolin-4(3H)-one

Crystal data

C₂₃H₂₀N₂O₂ $M_r = 356.41$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 18.2611 (3) Å b = 7.6266 (1) Å c = 13.2148 (2) Å $\beta = 91.094$ (2)° V = 1840.09 (5) Å³ Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm⁻¹ ω scan Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.121$ S = 1.003775 reflections 245 parameters F(000) = 752 $D_x = 1.287 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4269 reflections $\theta = 3.3-76.3^{\circ}$ $\mu = 0.66 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.35 \times 0.30 \times 0.25 \text{ mm}$

 $T_{\min} = 0.967, T_{\max} = 0.998$ 7568 measured reflections 3575 independent reflections 3559 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$ $\theta_{\max} = 76.5^{\circ}, \theta_{\min} = 4.8^{\circ}$ $h = -15 \rightarrow 22$ $k = -9 \rightarrow 9$ $l = -16 \rightarrow 15$

43 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0589P)^2 + 1.3045P]$	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.90142 (6)	0.63543 (15)	0.61822 (8)	0.0249 (3)	
O2	0.61946 (5)	0.31632 (14)	0.48348 (7)	0.0199 (2)	
N1	0.84939 (7)	0.63272 (18)	0.45982 (9)	0.0226 (3)	
N2	0.73780 (6)	0.48656 (16)	0.42164 (9)	0.0182 (3)	
C1	0.85181 (8)	0.58540 (19)	0.56229 (10)	0.0194 (3)	
C2	0.79063 (7)	0.47545 (18)	0.59336 (10)	0.0175 (3)	
C3	0.78755 (8)	0.41602 (19)	0.69377 (11)	0.0209 (3)	
H3	0.8263	0.4407	0.7406	0.025*	
C4	0.72731 (8)	0.3212 (2)	0.72336 (11)	0.0230 (3)	
H4	0.7248	0.2795	0.7910	0.028*	
C5	0.66974 (8)	0.28556 (19)	0.65475 (11)	0.0214 (3)	
Н5	0.6282	0.2218	0.6766	0.026*	
C6	0.67287 (8)	0.34249 (18)	0.55538 (10)	0.0180 (3)	
C7	0.73479 (7)	0.43755 (18)	0.52274 (10)	0.0166 (3)	
C8	0.79355 (8)	0.5776 (2)	0.39407 (11)	0.0208 (3)	
C9	0.80026 (9)	0.6254 (3)	0.28457 (11)	0.0311 (4)	
H9A	0.7617	0.5662	0.2449	0.047*	
H9B	0.8483	0.5885	0.2605	0.047*	
H9C	0.7952	0.7526	0.2767	0.047*	
C10	0.90451 (5)	0.75133 (12)	0.42618 (8)	0.0187 (4)	0.893 (3)
C11	0.97023 (6)	0.69096 (11)	0.38786 (9)	0.0231 (4)	0.893 (3)
H11	0.9798	0.5686	0.3852	0.028*	0.893 (3)
C12	1.02189 (5)	0.80957 (15)	0.35339 (9)	0.0275 (4)	0.893 (3)
H12	1.0668	0.7683	0.3272	0.033*	0.893 (3)
C13	1.00783 (5)	0.98854 (14)	0.35724 (9)	0.0288 (4)	0.893 (3)
H13	1.0431	1.0696	0.3337	0.035*	0.893 (3)
C14	0.94210 (6)	1.04890 (10)	0.39556 (9)	0.0263 (4)	0.893 (3)
H14	0.9325	1.1712	0.3982	0.032*	0.893 (3)
C15	0.89044 (5)	0.93030 (14)	0.43003 (8)	0.0210 (4)	0.893 (3)
C16	0.81947 (10)	0.9980 (2)	0.47494 (14)	0.0272 (4)	0.893 (3)
H16A	0.8183	1.1263	0.4706	0.041*	0.893 (3)
H16B	0.8170	0.9621	0.5460	0.041*	0.893 (3)

H16C	0.7776	0.9491	0.4371	0.041*	0.893 (3)
C10′	0.8800 (5)	0.8186 (10)	0.4385 (7)	0.0187 (4)	0.107 (3)
C11′	0.8473 (4)	0.9812 (12)	0.4522 (7)	0.0231 (4)	0.107 (3)
H11′	0.7997	0.9884	0.4796	0.028*	0.107 (3)
C12′	0.8843 (5)	1.1334 (9)	0.4260 (8)	0.0275 (4)	0.107 (3)
H12′	0.8620	1.2445	0.4354	0.033*	0.107 (3)
C13′	0.9540 (5)	1.1229 (10)	0.3860 (8)	0.0288 (4)	0.107 (3)
H13′	0.9793	1.2269	0.3681	0.035*	0.107 (3)
C14′	0.9867 (4)	0.9603 (13)	0.3722 (8)	0.0263 (4)	0.107 (3)
H14′	1.0344	0.9531	0.3449	0.032*	0.107 (3)
C15′	0.9497 (5)	0.8081 (10)	0.3984 (7)	0.0210 (4)	0.107 (3)
C16′	0.9817 (12)	0.638 (3)	0.3910 (16)	0.0272 (4)	0.107 (3)
H16D	1.0309	0.6480	0.3631	0.041*	0.107 (3)
H16E	0.9512	0.5644	0.3465	0.041*	0.107 (3)
H16F	0.9850	0.5846	0.4584	0.041*	0.107 (3)
C17	0.55629 (8)	0.2214 (2)	0.51593 (11)	0.0215 (3)	
H17A	0.5314	0.2872	0.5699	0.026*	
H17B	0.5712	0.1057	0.5433	0.026*	
C18	0.50526 (8)	0.19755 (18)	0.42653 (11)	0.0190 (3)	
C19	0.43504 (8)	0.26836 (19)	0.42639 (11)	0.0223 (3)	
H19	0.4197	0.3369	0.4822	0.027*	
C20	0.38705 (8)	0.2392 (2)	0.34480 (12)	0.0250 (3)	
H20	0.3392	0.2882	0.3451	0.030*	
C21	0.40895 (8)	0.1388 (2)	0.26318 (11)	0.0238 (3)	
H21	0.3762	0.1183	0.2078	0.029*	
C22	0.47930 (8)	0.0684 (2)	0.26299 (11)	0.0226 (3)	
H22	0.4945	-0.0002	0.2072	0.027*	
C23	0.52728 (8)	0.09802 (19)	0.34386 (11)	0.0207 (3)	
H23	0.5753	0.0503	0.3430	0.025*	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0211 (5)	0.0330 (6)	0.0204 (5)	-0.0064 (4)	-0.0038 (4)	-0.0010 (4)
0.0192 (5)	0.0221 (5)	0.0185 (5)	-0.0068 (4)	-0.0001 (4)	0.0020 (4)
0.0210 (6)	0.0291 (7)	0.0176 (6)	-0.0074 (5)	-0.0013 (5)	0.0010 (5)
0.0185 (6)	0.0198 (6)	0.0163 (5)	-0.0020 (5)	0.0004 (4)	-0.0005 (5)
0.0193 (6)	0.0213 (7)	0.0175 (6)	0.0001 (5)	-0.0004 (5)	-0.0013 (5)
0.0184 (6)	0.0159 (6)	0.0183 (6)	0.0019 (5)	0.0006 (5)	-0.0008 (5)
0.0242 (7)	0.0204 (7)	0.0179 (7)	0.0012 (6)	-0.0032 (5)	0.0010 (5)
0.0299 (8)	0.0218 (7)	0.0173 (6)	0.0003 (6)	-0.0002 (6)	0.0047 (6)
0.0242 (7)	0.0182 (7)	0.0218 (7)	-0.0032 (6)	0.0024 (6)	0.0021 (5)
0.0197 (7)	0.0154 (6)	0.0189 (6)	-0.0005 (5)	-0.0008 (5)	-0.0015 (5)
0.0192 (6)	0.0143 (6)	0.0163 (6)	0.0017 (5)	0.0007 (5)	-0.0007 (5)
0.0200 (7)	0.0245 (7)	0.0176 (7)	-0.0044 (6)	-0.0017 (5)	-0.0002 (5)
0.0302 (8)	0.0455 (10)	0.0176 (7)	-0.0165 (7)	-0.0025 (6)	0.0032 (7)
0.0171 (8)	0.0232 (9)	0.0157 (7)	-0.0025 (6)	-0.0008 (6)	-0.0019 (6)
0.0201 (9)	0.0283 (11)	0.0209 (8)	-0.0011 (8)	0.0000 (6)	-0.0036 (8)
	U^{11} 0.0211 (5) 0.0192 (5) 0.0210 (6) 0.0185 (6) 0.0183 (6) 0.0184 (6) 0.0242 (7) 0.0299 (8) 0.0242 (7) 0.0197 (7) 0.0197 (7) 0.0192 (6) 0.0200 (7) 0.0302 (8) 0.0171 (8) 0.0201 (9)	U^{11} U^{22} $0.0211 (5)$ $0.0330 (6)$ $0.0192 (5)$ $0.0221 (5)$ $0.0210 (6)$ $0.0291 (7)$ $0.0185 (6)$ $0.0198 (6)$ $0.0193 (6)$ $0.0213 (7)$ $0.0184 (6)$ $0.0159 (6)$ $0.0242 (7)$ $0.0204 (7)$ $0.0299 (8)$ $0.0218 (7)$ $0.0197 (7)$ $0.0182 (7)$ $0.0197 (7)$ $0.0154 (6)$ $0.0192 (6)$ $0.0143 (6)$ $0.0200 (7)$ $0.0245 (7)$ $0.0302 (8)$ $0.0232 (9)$ $0.0201 (9)$ $0.0283 (11)$	U^{11} U^{22} U^{33} $0.0211 (5)$ $0.0330 (6)$ $0.0204 (5)$ $0.0192 (5)$ $0.0221 (5)$ $0.0185 (5)$ $0.0210 (6)$ $0.0291 (7)$ $0.0176 (6)$ $0.0185 (6)$ $0.0198 (6)$ $0.0163 (5)$ $0.0193 (6)$ $0.0213 (7)$ $0.0175 (6)$ $0.0184 (6)$ $0.0159 (6)$ $0.0183 (6)$ $0.0242 (7)$ $0.0204 (7)$ $0.0179 (7)$ $0.0299 (8)$ $0.0218 (7)$ $0.0173 (6)$ $0.0197 (7)$ $0.0154 (6)$ $0.0189 (6)$ $0.0192 (6)$ $0.0143 (6)$ $0.0163 (6)$ $0.0200 (7)$ $0.0245 (7)$ $0.0176 (7)$ $0.0302 (8)$ $0.0232 (9)$ $0.0157 (7)$ $0.0201 (9)$ $0.0283 (11)$ $0.0209 (8)$	U^{11} U^{22} U^{33} U^{12} 0.0211 (5)0.0330 (6)0.0204 (5) -0.0064 (4)0.0192 (5)0.0221 (5)0.0185 (5) -0.0068 (4)0.0210 (6)0.0291 (7)0.0176 (6) -0.0074 (5)0.0185 (6)0.0198 (6)0.0163 (5) -0.0020 (5)0.0193 (6)0.0213 (7)0.0175 (6)0.0001 (5)0.0184 (6)0.0159 (6)0.0183 (6)0.0019 (5)0.0242 (7)0.0204 (7)0.0179 (7)0.0012 (6)0.0299 (8)0.0218 (7)0.0173 (6)0.0003 (6)0.0242 (7)0.0182 (7)0.0218 (7) -0.0032 (6)0.0197 (7)0.0154 (6)0.0189 (6) -0.0005 (5)0.0192 (6)0.0143 (6)0.0163 (6)0.0017 (5)0.0200 (7)0.0245 (7)0.0176 (7) -0.0044 (6)0.0302 (8)0.0455 (10)0.0157 (7) -0.0025 (6)0.0201 (9)0.0283 (11)0.0209 (8) -0.0011 (8)	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0211 (5)$ $0.0330 (6)$ $0.0204 (5)$ $-0.0064 (4)$ $-0.0038 (4)$ $0.0192 (5)$ $0.0221 (5)$ $0.0185 (5)$ $-0.0068 (4)$ $-0.0001 (4)$ $0.0210 (6)$ $0.0291 (7)$ $0.0176 (6)$ $-0.0074 (5)$ $-0.0013 (5)$ $0.0185 (6)$ $0.0198 (6)$ $0.0163 (5)$ $-0.0020 (5)$ $0.0004 (4)$ $0.0193 (6)$ $0.0213 (7)$ $0.0175 (6)$ $0.0001 (5)$ $-0.0004 (5)$ $0.0184 (6)$ $0.0159 (6)$ $0.0183 (6)$ $0.0019 (5)$ $0.0006 (5)$ $0.0242 (7)$ $0.0204 (7)$ $0.0179 (7)$ $0.0012 (6)$ $-0.0032 (5)$ $0.0299 (8)$ $0.0218 (7)$ $0.0173 (6)$ $0.0003 (6)$ $-0.0002 (6)$ $0.0242 (7)$ $0.0182 (7)$ $0.0218 (7)$ $-0.0032 (6)$ $0.0024 (6)$ $0.0197 (7)$ $0.0154 (6)$ $0.0189 (6)$ $-0.0005 (5)$ $-0.0008 (5)$ $0.0200 (7)$ $0.0245 (7)$ $0.0176 (7)$ $-0.0044 (6)$ $-0.0017 (5)$ $0.0302 (8)$ $0.0455 (10)$ $0.0176 (7)$ $-0.0025 (6)$ $-0.0008 (6)$ $0.0171 (8)$ $0.0232 (9)$ $0.0157 (7)$ $-0.0011 (8)$ $0.0000 (6)$

C12	0.0183 (8)	0.0437 (11)	0.0204 (8)	-0.0057 (7)	0.0017 (6)	-0.0031 (7)
C13	0.0285 (9)	0.0391 (11)	0.0187 (8)	-0.0159 (8)	-0.0024 (6)	0.0024 (7)
C14	0.0329 (9)	0.0265 (9)	0.0193 (8)	-0.0094 (7)	-0.0059 (6)	0.0014 (7)
C15	0.0209 (8)	0.0254 (8)	0.0165 (7)	-0.0004 (7)	-0.0033 (6)	-0.0012 (6)
C16	0.0284 (9)	0.0250 (9)	0.0284 (9)	0.0046 (7)	0.0010 (7)	-0.0032 (7)
C10′	0.0171 (8)	0.0232 (9)	0.0157 (7)	-0.0025 (6)	-0.0008 (6)	-0.0019 (6)
C11′	0.0201 (9)	0.0283 (11)	0.0209 (8)	-0.0011 (8)	0.0000 (6)	-0.0036 (8)
C12′	0.0183 (8)	0.0437 (11)	0.0204 (8)	-0.0057 (7)	0.0017 (6)	-0.0031 (7)
C13′	0.0285 (9)	0.0391 (11)	0.0187 (8)	-0.0159 (8)	-0.0024 (6)	0.0024 (7)
C14′	0.0329 (9)	0.0265 (9)	0.0193 (8)	-0.0094 (7)	-0.0059 (6)	0.0014 (7)
C15′	0.0209 (8)	0.0254 (8)	0.0165 (7)	-0.0004 (7)	-0.0033 (6)	-0.0012 (6)
C16′	0.0284 (9)	0.0250 (9)	0.0284 (9)	0.0046 (7)	0.0010 (7)	-0.0032 (7)
C17	0.0211 (7)	0.0219 (7)	0.0217 (7)	-0.0072 (6)	0.0028 (5)	0.0011 (6)
C18	0.0204 (7)	0.0160 (6)	0.0206 (7)	-0.0059 (5)	0.0029 (5)	0.0016 (5)
C19	0.0231 (7)	0.0191 (7)	0.0248 (7)	-0.0020 (6)	0.0046 (6)	-0.0029 (6)
C20	0.0205 (7)	0.0238 (7)	0.0307 (8)	0.0007 (6)	0.0007 (6)	0.0001 (6)
C21	0.0251 (7)	0.0231 (7)	0.0231 (7)	-0.0052 (6)	-0.0018 (6)	0.0014 (6)
C22	0.0268 (7)	0.0198 (7)	0.0212 (7)	-0.0037 (6)	0.0048 (6)	-0.0016 (6)
C23	0.0188 (6)	0.0199 (7)	0.0237 (7)	-0.0015 (5)	0.0045 (5)	0.0010 (6)

Geometric parameters (Å, °)

01—C1	1.2195 (18)	C15—C16	1.5259 (19)	
O2—C6	1.3632 (17)	C16—H16A	0.9800	
O2—C17	1.4347 (16)	C16—H16B	0.9800	
N1—C8	1.3919 (18)	C16—H16C	0.9800	
N1-C1	1.4012 (18)	C10′—C11′	1.3900	
N1-C10	1.4304 (14)	C10′—C15′	1.3900	
N1—C10′	1.552 (6)	C11′—C12′	1.3900	
N2—C8	1.2906 (19)	С11′—Н11′	0.9500	
N2—C7	1.3893 (17)	C12′—C13′	1.3900	
C1—C2	1.4620 (19)	С12′—Н12′	0.9500	
С2—С7	1.3993 (19)	C13′—C14′	1.3900	
С2—С3	1.4043 (19)	С13'—Н13'	0.9500	
С3—С4	1.379 (2)	C14′—C15′	1.3900	
С3—Н3	0.9500	C14′—H14′	0.9500	
C4—C5	1.402 (2)	C15′—C16′	1.427 (19)	
C4—H4	0.9500	C16′—H16D	0.9800	
С5—С6	1.385 (2)	С16'—Н16Е	0.9800	
С5—Н5	0.9500	C16′—H16F	0.9800	
С6—С7	1.4173 (19)	C17—C18	1.502 (2)	
С8—С9	1.499 (2)	C17—H17A	0.9900	
С9—Н9А	0.9800	C17—H17B	0.9900	
С9—Н9В	0.9800	C18—C19	1.391 (2)	
С9—Н9С	0.9800	C18—C23	1.396 (2)	
C10-C11	1.3900	C19—C20	1.394 (2)	
C10—C15	1.3900	C19—H19	0.9500	
C11—C12	1.3900	C20—C21	1.388 (2)	

C11—H11	0.9500	C20—H20	0.9500
C12—C13	1.3900	C21—C22	1.392 (2)
С12—Н12	0.9500	C21—H21	0.9500
C13—C14	1 3900	C^{22} C^{23}	1 387 (2)
C13_H13	0.9500	C22_H22	0.9500
C14 C15	1 2000	C22 H22	0.9500
C14 $U14$	1.3900	С25—п25	0.9300
С14—п14	0.9300		
C6-02-C17	115 74 (11)	C15—C14—H14	120.0
C8 - N1 - C1	122 33 (12)	C_{14} C_{15} C_{10}	120.0
C_8 N1 C10	122.55(12) 120.55(11)	C_{14} C_{15} C_{16}	110.61 (10)
C_{1} N1 C_{10}	120.33(11) 116.00(11)	$C_{14} = C_{15} = C_{16}$	119.01(10) 120.37(10)
$C_1 = N_1 = C_{10}$	110.99 (11)	$C_{10} = C_{10} = C_{10}$	120.37 (10)
C_{0} N1 C_{10}	113.1(4)	C11 - C10 - C13	120.0
$CI = NI = CI0^{\circ}$	114.0(4)	C11 - C10 - N1	129.3 (6)
$C10-N1-C10^{\circ}$	26.8 (3)	$C15^{-}$ $C10^{-}$ $N1$	110.6 (6)
C8—N2—C7	117.53 (12)		120.0
01—C1—N1	120.96 (13)	C12'—C11'—H11'	120.0
01—C1—C2	124.90 (13)	C10'—C11'—H11'	120.0
N1—C1—C2	114.14 (12)	C11'—C12'—C13'	120.0
C7—C2—C3	121.45 (13)	C11'—C12'—H12'	120.0
C7—C2—C1	118.83 (12)	C13'—C12'—H12'	120.0
C3—C2—C1	119.67 (13)	C14'—C13'—C12'	120.0
C4—C3—C2	118.92 (13)	C14'—C13'—H13'	120.0
С4—С3—Н3	120.5	С12'—С13'—Н13'	120.0
С2—С3—Н3	120.5	C13'—C14'—C15'	120.0
C3—C4—C5	120.71 (13)	C13'—C14'—H14'	120.0
C3—C4—H4	119.6	C15'—C14'—H14'	120.0
C5—C4—H4	119.6	C14′—C15′—C10′	120.0
C6—C5—C4	120.56 (13)	C14'-C15'-C16'	122.7 (11)
C6—C5—H5	119.7	C10'—C15'—C16'	117.2 (11)
C4—C5—H5	119.7	C15'—C16'—H16D	109.5
$0^{2}-C6-C5$	124.95 (13)	C15' - C16' - H16F	109.5
02 - C6 - C7	124.93(13) 115.28(12)	H_{16} C_{16} H_{16}	109.5
C_{2} C_{6} C_{7}	110.76 (13)	C15' $C16'$ $H16F$	109.5
$N_2 C_7 C_2$	117.70(13) 122.05(12)	H_{16} C_{16} H_{16}	109.5
$N_2 = C_7 = C_2$	122.93(12) 118.47(12)		109.5
$N_2 = C_7 = C_0$	110.47(12) 119.56(12)	$\begin{array}{c} \text{HI0E} \\ $	109.3
$C_2 - C_1 - C_0$	118.30(12)	02 - 017 - 018	108.44 (11)
N2 - C8 - N1	123.95 (13)	02-01/-H1/A	110.0
N2	118.85 (13)		110.0
NI-C8-C9	117.18 (13)	02—С17—Н17В	110.0
C8—C9—H9A	109.5	С18—С17—Н17В	110.0
С8—С9—Н9В	109.5	H17A—C17—H17B	108.4
Н9А—С9—Н9В	109.5	C19—C18—C23	119.29 (14)
С8—С9—Н9С	109.5	C19—C18—C17	120.81 (13)
Н9А—С9—Н9С	109.5	C23—C18—C17	119.86 (13)
H9B—C9—H9C	109.5	C18—C19—C20	120.31 (14)
C11—C10—C15	120.0	С18—С19—Н19	119.8
C11-C10-N1	121.43 (9)	С20—С19—Н19	119.8

C15-C10-N1	118.55 (9)	C21—C20—C19	120.19 (14)
C10-C11-C12	120.0	C21—C20—H20	119.9
C10-C11-H11	120.0	C19—C20—H20	119.9
C12—C11—H11	120.0	C20—C21—C22	119.59 (14)
C11—C12—C13	120.0	C20—C21—H21	120.2
C11—C12—H12	120.0	C22—C21—H21	120.2
C13—C12—H12	120.0	C23—C22—C21	120.33 (14)
$C_{14} - C_{13} - C_{12}$	120.0	C23—C22—H22	119.8
C14—C13—H13	120.0	C21—C22—H22	119.8
C12—C13—H13	120.0	C^{22} C^{23} C^{18}	120.28 (13)
C_{13} C_{14} C_{15}	120.0	C22_C23_H23	119.9
C_{13} C_{14} H_{14}	120.0	C18_C23_H23	119.9
015-014-1114	120.0	018-025-1125	119.9
C8—N1—C1—O1	179.94 (14)	C10′—N1—C10—C15	0.0 (8)
C10—N1—C1—O1	-4.3 (2)	C15—C10—C11—C12	0.0
C10′—N1—C1—O1	-33.8(4)	N1-C10-C11-C12	178.35 (11)
C8-N1-C1-C2	-0.5(2)	C10-C11-C12-C13	0.0
$C_{10} = N_1 = C_1 = C_2$	175 30 (11)	$C_{11} - C_{12} - C_{13} - C_{14}$	0.0
C10' - N1 - C1 - C2	145 7 (4)	C12 - C13 - C14 - C15	0.0
01-01-02	175.70(14)	$C_{12} = C_{13} = C_{14} = C_{15} = C_{10}$	0.0
$N_1 - C_1 - C_2 - C_7$	-3.84(19)	C_{13} C_{14} C_{15} C_{16}	178 14 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.8(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0
$N_1 = C_1 = C_2 = C_3$	1.0(2) 178 64 (13)	N1 = C10 = C15 = C14	-178.40(10)
N1 - C1 - C2 - C3	1/0.04(13)	N1 - C10 - C13 - C14	170.40(10) 178.12(11)
$C_{1} = C_{2} = C_{3} = C_{4}$	-1.5(2)		-1/8.12(11)
C1 = C2 = C3 = C4	1/6.19 (13)	NI = CI0 = CI5 = CI6	3.48 (13)
$C_2 = C_3 = C_4 = C_5$	-0.5(2)	$C8 = N1 = C10^{\circ} = C11^{\circ}$	/0.9 (/)
C3—C4—C5—C6	1.1 (2)	CI = NI = CI0' = CII'	-77.9 (7)
C17—O2—C6—C5	-0.3 (2)	C10—N1—C10′—C11′	179.4 (13)
C17—O2—C6—C7	-179.54 (12)	C8—N1—C10′—C15′	-107.9 (5)
C4—C5—C6—O2	-179.17 (13)	C1—N1—C10'—C15'	103.3 (5)
C4—C5—C6—C7	0.0 (2)	C10—N1—C10′—C15′	0.6 (5)
C8—N2—C7—C2	-3.1 (2)	C15'—C10'—C11'—C12'	0.0
C8—N2—C7—C6	177.94 (13)	N1—C10′—C11′—C12′	-178.7 (9)
C3—C2—C7—N2	-176.63 (13)	C10'—C11'—C12'—C13'	0.0
C1—C2—C7—N2	5.9 (2)	C11'-C12'-C13'-C14'	0.0
C3—C2—C7—C6	2.3 (2)	C12'-C13'-C14'-C15'	0.0
C1—C2—C7—C6	-175.14 (12)	C13'—C14'—C15'—C10'	0.0
O2—C6—C7—N2	-3.42 (19)	C13'—C14'—C15'—C16'	-176.7 (13)
C5—C6—C7—N2	177.33 (13)	C11'—C10'—C15'—C14'	0.0
O2—C6—C7—C2	177.57 (12)	N1—C10′—C15′—C14′	178.9 (7)
C5—C6—C7—C2	-1.7 (2)	C11'—C10'—C15'—C16'	176.9 (13)
C7—N2—C8—N1	-1.7(2)	N1—C10′—C15′—C16′	-4.2 (12)
C7—N2—C8—C9	177.14 (14)	C6—O2—C17—C18	-177.34 (12)
C1—N1—C8—N2	3.5 (2)	O2—C17—C18—C19	-118.44 (14)
C10—N1—C8—N2	-172.17 (13)	O2—C17—C18—C23	63.87 (17)
C10′—N1—C8—N2	-142.4 (4)	C23—C18—C19—C20	0.4 (2)
C1—N1—C8—C9	-175.34 (14)	C17—C18—C19—C20	-177.28 (13)
C10—N1—C8—C9	9.0 (2)	C18—C19—C20—C21	0.2 (2)
	× /		, ,

C10′—N1—C8—C9	38.8 (4)	C19—C20—C21—C22	-0.4 (2)
C8—N1—C10—C11	-92.72 (14)	C20-C21-C22-C23	0.1 (2)
C1—N1—C10—C11	91.40 (13)	C21—C22—C23—C18	0.5 (2)
C10'—N1—C10—C11	-178.4 (8)	C19—C18—C23—C22	-0.7 (2)
C8—N1—C10—C15	85.66 (14)	C17—C18—C23—C22	176.98 (13)
C1—N1—C10—C15	-90.23 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···· A	D—H··· A
C13—H13…O1 ⁱ	0.95	2.54	3.3250 (15)	140
C17—H17 B ··· $Cg1$ ⁱⁱ	0.99	2.62	3.5086 (16)	150
C22—H22····Cg1 ⁱⁱⁱ	0.95	2.77	3.5692 (16)	143

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, *y*-1/2, -*z*+1/2.