

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(2-Hydroxyethyl)-5-(4-methoxyphenyl)-4H-pyrazole-3-carboxamide

Guanggian Han,^a Jiaguo Lv,^{b*} Ju Zhu,^b Youjun Zhou^b and Defeng Wu^a*

^aDepartment of Pharmacognosy, School of Food Science, Fujian Agriculture and Forestry University, Fujian 350002, People's Republic of China, and ^bDepartment of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China

Correspondence e-mail: ljg20060508@yahoo.com.cn, zi99289@yeah.net

Received 14 February 2012; accepted 21 February 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.156; data-to-parameter ratio = 13.5.

In the title compound, C13H15N3O3, the dihedral angle between the benzene and pyrazole rings is 7.7 $(1)^{\circ}$ and the O-C-C-N torsion angle of the side chain is 74.1 (2)°. In the crystal, molecules are linked by O-H···O, N-H···O and $N-H \cdots N$ hydrogen bonds.

Related literature

For the biological activities of pyrazole derivatives, see: Oi et al. (2011). For a related structure, see: Shi & Xie (2011).

5292 measured reflections

 $R_{\rm int} = 0.074$

2366 independent reflections

1841 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C ₁₃ H ₁₅ N ₃ O ₃	$V = 2531 (11) \text{ Å}^3$
$M_r = 261.28$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 21.82 (5) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 10.08 (2) Å	T = 293 K
c = 12.28 (3) Å	$0.20 \times 0.15 \times 0.06 \text{ mm}$
$\beta = 110.53 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.980, T_{\max} = 0.994$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	175 parameters
$wR(F^2) = 0.156$	H-atom parameters constrained
<i>S</i> = 1.05	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
2366 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{\begin{array}{c} O3-H3\cdots O2^{i}\\ N3-H3B\cdots N2^{ii}\\ N1-H1D\cdots O3^{ii} \end{array}}$	0.82	1.88	2.668 (5)	162
	0.86	2.54	3.318 (7)	151
	0.86	1.90	2.739 (5)	166

Symmetry codes: (i) $x, -y, z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6641).

References

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Qi, J. J., Zhu, J., Liu, X. F., Ding, L. L., Zheng, C. H., Han, G. Q., Lv, J. G. & Zhou, Y. J. (2011). Bioorg. Med. Chem. Lett. 21, 5822-5825.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shi, C. X. & Xie, Y. M. (2011). Acta Cryst. E67, o1084.

supporting information

Acta Cryst. (2012). E68, o901 [doi:10.1107/S1600536812007829]

N-(2-Hydroxyethyl)-5-(4-methoxyphenyl)-4H-pyrazole-3-carboxamide

Guangqian Han, Jiaguo Lv, Ju Zhu, Youjun Zhou and Defeng Wu

S1. Experimental

A mixture of diethyl oxalate (0.1 mol), 1-(4-methoxyphenyl)ethanone (0.05 mol) and sodium ethylate (400 ml 0.1 mol) were stirred for 8 h at room temperature. It was then poured into diluted acetic acid and was further stirred for 20 min and then filtered to give the yellow solid and dried. Then this dried solid and hydrazine (0.05 mol) in ethanol (200 ml) refluxed for 3.5 h and then stood for 8 h yielded the yellow solid. The solid (0.004 mol) subsequently was reacted with ethanolamine (20 ml) for 4 h at 80 °C in the presence of pyridine (20 ml). The mixture was then poured into ice cold water to afford the white solid. The compound was recrystallized from methanol as colourless slabs. Yield: 0.75 g, 70.7%. *M*. p.: 470 K.

S2. Refinement

All hydrogen atoms were placed in calculated positions using a riding model, with d(C-H) = 0.93 Å for aromatic, 0.97 Å for CH₂ and 0.96 Å for CH₃ atoms, and with $U_{iso}(H) = 1.2-1.5$ Ueq(C, O).

Figure 1

The molecular structure of the title compound, with 30% probability displacement ellipsoids for non-H atoms.

Figure 2

Hydrogen bonds in the title compound.

N-(2-Hydroxyethyl)-5-(4-methoxyphenyl)-4H-pyrazole-3-carboxamide

Crystal data	
$C_{13}H_{15}N_3O_3$	$D_{\rm x} = 1.372 {\rm ~Mg~m^{-3}}$
$M_r = 261.28$	Melting point: 470 K
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 21.82 (5) Å	Cell parameters from 925 reflections
b = 10.08 (2) Å	$\theta = 3.1 - 26.4^{\circ}$
c = 12.28 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 110.53 (3)^{\circ}$	T = 293 K
$V = 2531 (11) Å^3$	Slab, colorless
Z = 8	$0.20 \times 0.15 \times 0.06 \text{ mm}$
F(000) = 1104	
Data collection	
Bruker SMART CCD	5292 measured reflections
diffractometer	2366 independent reflections
Radiation source: fine-focus sealed tube	1841 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.074$
phi and ω scans	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -26 \rightarrow 10$
(SADABS; Bruker, 2000)	$k = -12 \rightarrow 12$
$T_{\min} = 0.980, \ T_{\max} = 0.994$	$l = -13 \rightarrow 14$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.156$	$w = 1/[\sigma^2(F_o^2) + (0.0917P)^2 + 0.0958P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
2366 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
175 parameters	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0026 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	r	11	7	I / */I /
	λ	У	2	U _{iso} / U _{eq}
N1	0.29642 (7)	0.24543 (15)	0.29533 (13)	0.0426 (4)
H1D	0.3331	0.2866	0.3241	0.051*
N2	0.25083 (7)	0.24377 (15)	0.34610 (13)	0.0433 (4)
N3	0.13697 (7)	0.21072 (15)	0.39238 (13)	0.0414 (4)
H3B	0.1720	0.2410	0.4441	0.050*
01	0.44500 (7)	0.12084 (15)	-0.06540 (14)	0.0593 (5)
O2	0.09398 (6)	0.09459 (14)	0.22772 (11)	0.0526 (4)
O3	0.09522 (7)	0.10663 (15)	0.58747 (12)	0.0575 (4)
Н3	0.0904	0.0361	0.6168	0.086*
C1	0.42987 (12)	0.0298 (2)	-0.15960 (19)	0.0621 (6)
H1A	0.4244	-0.0573	-0.1329	0.093*
H1B	0.4649	0.0286	-0.1898	0.093*
H1C	0.3901	0.0567	-0.2197	0.093*
C2	0.40166 (9)	0.13059 (18)	-0.00812 (17)	0.0435 (5)
C3	0.34387 (9)	0.06118 (19)	-0.03558 (17)	0.0470 (5)
H3A	0.3312	0.0034	-0.0986	0.056*
C4	0.30463 (9)	0.0776 (2)	0.03073 (18)	0.0455 (5)
H4	0.2660	0.0292	0.0120	0.055*
C5	0.32117 (8)	0.16408 (18)	0.12430 (15)	0.0387 (4)
C6	0.37895 (10)	0.23460 (19)	0.14879 (18)	0.0481 (5)
H6	0.3909	0.2949	0.2100	0.058*
C7	0.41911 (10)	0.2177 (2)	0.08479 (19)	0.0512 (6)
H7	0.4581	0.2649	0.1041	0.061*

C8	0.27897 (9)	0.17627 (17)	0.19481 (15)	0.0382 (4)	
C9	0.21809 (9)	0.12518 (19)	0.17982 (16)	0.0416 (5)	
H9	0.1924	0.0720	0.1192	0.050*	
C10	0.20311 (8)	0.17037 (18)	0.27537 (16)	0.0386 (4)	
C11	0.14091 (8)	0.15331 (17)	0.29704 (15)	0.0377 (4)	
C12	0.07505 (9)	0.22326 (18)	0.41093 (16)	0.0400 (5)	
H12A	0.0407	0.2374	0.3362	0.048*	
H12B	0.0769	0.3015	0.4579	0.048*	
C13	0.05641 (9)	0.10679 (19)	0.46890 (16)	0.0426 (5)	
H13A	0.0105	0.1126	0.4600	0.051*	
H13B	0.0630	0.0250	0.4329	0.051*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0394 (8)	0.0550 (10)	0.0340 (9)	-0.0095 (7)	0.0135 (7)	-0.0065 (7)
N2	0.0441 (9)	0.0540 (10)	0.0343 (9)	-0.0066 (7)	0.0169 (7)	-0.0064 (7)
N3	0.0376 (8)	0.0561 (10)	0.0301 (8)	-0.0080 (7)	0.0114 (7)	-0.0086 (7)
01	0.0660 (10)	0.0645 (10)	0.0627 (10)	-0.0145 (7)	0.0417 (9)	-0.0168 (7)
O2	0.0388 (8)	0.0742 (10)	0.0420 (8)	-0.0095 (6)	0.0107 (6)	-0.0206 (7)
O3	0.0585 (9)	0.0622 (10)	0.0378 (8)	-0.0229 (7)	-0.0006 (7)	0.0077 (6)
C1	0.0806 (16)	0.0644 (14)	0.0562 (14)	-0.0077 (12)	0.0429 (13)	-0.0116 (11)
C2	0.0514 (11)	0.0425 (10)	0.0417 (11)	-0.0008 (8)	0.0229 (9)	0.0007 (8)
C3	0.0550 (12)	0.0480 (11)	0.0410 (11)	-0.0055 (9)	0.0205 (10)	-0.0091 (9)
C4	0.0432 (10)	0.0507 (11)	0.0427 (11)	-0.0080(8)	0.0152 (9)	-0.0054 (9)
C5	0.0413 (10)	0.0416 (10)	0.0336 (10)	0.0009 (8)	0.0134 (8)	0.0027 (8)
C6	0.0537 (12)	0.0507 (11)	0.0441 (11)	-0.0116 (9)	0.0225 (10)	-0.0121 (9)
C7	0.0520 (12)	0.0549 (12)	0.0527 (13)	-0.0147 (9)	0.0257 (10)	-0.0094 (10)
C8	0.0418 (10)	0.0413 (9)	0.0301 (10)	-0.0004 (8)	0.0108 (8)	-0.0003 (7)
C9	0.0403 (10)	0.0514 (11)	0.0318 (10)	-0.0060 (8)	0.0110 (8)	-0.0068 (8)
C10	0.0367 (9)	0.0458 (10)	0.0320 (9)	-0.0017 (7)	0.0102 (8)	-0.0015 (8)
C11	0.0379 (10)	0.0443 (10)	0.0298 (9)	-0.0006 (8)	0.0106 (8)	-0.0013 (7)
C12	0.0388 (10)	0.0486 (11)	0.0320 (10)	0.0018 (8)	0.0118 (8)	-0.0009 (8)
C13	0.0390 (10)	0.0499 (11)	0.0355 (10)	-0.0082 (8)	0.0087 (8)	-0.0044 (8)

Geometric parameters (Å, °)

N1—N2	1.347 (3)	С3—НЗА	0.9300	
N1—C8	1.351 (3)	C4—C5	1.386 (4)	
N1—H1D	0.8600	C4—H4	0.9300	
N2-C10	1.324 (3)	C5—C6	1.385 (4)	
N3—C11	1.336 (4)	C5—C8	1.474 (3)	
N3—C12	1.452 (4)	C6—C7	1.378 (4)	
N3—H3B	0.8600	С6—Н6	0.9300	
O1—C2	1.366 (3)	С7—Н7	0.9300	
01—C1	1.422 (4)	C8—C9	1.376 (4)	
O2—C11	1.230 (3)	C9—C10	1.400 (4)	
O3—C13	1.405 (4)	С9—Н9	0.9300	

03—Н3	0.8200	C10-C11	1 482 (4)
C1—H1A	0.9600	C_{12} C_{13}	1.102(1) 1 502(4)
C1—H1B	0.9600	C12 $H12A$	0.9700
C1—H1C	0.9600	C12 H12R	0.9700
$C_2 - C_3$	1,377(4)	C13_H13A	0.9700
$C_2 = C_3$	1.377(4) 1 383 (4)	C13_H13B	0.9700
$C_2 = C_7$	1 383 (3)	C15—1115D	0.9700
05-04	1.565 (5)		
N2—N1—C8	113.55 (19)	С5—С6—Н6	119.2
N2—N1—H1D	123.2	C6—C7—C2	120.2 (2)
C8—N1—H1D	123.2	С6—С7—Н7	119.9
C10—N2—N1	104.0 (2)	С2—С7—Н7	119.9
C11—N3—C12	121.65 (15)	N1	105.35 (16)
C11—N3—H3B	119.2	N1—C8—C5	123.1 (2)
C12—N3—H3B	119.2	C9—C8—C5	131.5 (2)
C2—O1—C1	117.42 (19)	C8—C9—C10	105.33 (19)
С13—О3—Н3	109.5	С8—С9—Н9	127.3
01—C1—H1A	109.5	С10—С9—Н9	127.3
O1—C1—H1B	109.5	N2-C10-C9	111.8 (2)
H1A—C1—H1B	109.5	N2-C10-C11	120.4 (2)
01—C1—H1C	109.5	C9—C10—C11	127.62 (17)
H1A—C1—H1C	109.5	O2—C11—N3	121.4 (2)
H1B—C1—H1C	109.5	O2—C11—C10	121.6 (2)
O1—C2—C3	125.3 (2)	N3—C11—C10	116.86 (16)
O1—C2—C7	115.5 (2)	N3—C12—C13	115.33 (17)
C3—C2—C7	119.21 (18)	N3—C12—H12A	108.4
C2—C3—C4	119.9 (2)	C13—C12—H12A	108.4
С2—С3—НЗА	120.1	N3—C12—H12B	108.4
С4—С3—НЗА	120.1	C13—C12—H12B	108.4
C3—C4—C5	121.9 (2)	H12A—C12—H12B	107.5
С3—С4—Н4	119.0	O3—C13—C12	109.12 (19)
C5—C4—H4	119.0	O3—C13—H13A	109.9
C6—C5—C4	117.09 (18)	С12—С13—Н13А	109.9
C6—C5—C8	122.5 (2)	O3—C13—H13B	109.9
C4—C5—C8	120.3 (2)	C12—C13—H13B	109.9
C7—C6—C5	121.7 (2)	H13A—C13—H13B	108.3
С7—С6—Н6	119.2		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
O3—H3…O2 ⁱ	0.82	1.88	2.668 (5)	162	
N3—H3 <i>B</i> ···N2 ⁱⁱ	0.86	2.54	3.318 (7)	151	
N1—H1D····O3 ⁱⁱ	0.86	1.90	2.739 (5)	166	

Symmetry codes: (i) *x*, -*y*, *z*+1/2; (ii) -*x*+1/2, -*y*+1/2, -*z*+1.