Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4,5-Trichloroanilinium perchlorate 18-crown-6 clathrate

Jie Xu

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: chemcrystal66@yahoo.com.cn

Received 4 February 2012; accepted 12 February 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.054; wR factor = 0.152; data-to-parameter ratio = 13.6.

In the title compound, $C_6H_5Cl_3N^+ \cdot ClO_4^- \cdot C_{12}H_{24}O_6$, the perchlorate anion is disordered over two orientations in a 0.666 (17):0.334 (17) ratio. The ammonium group of the organic cation inserts into the crown ether ring and forms three bifurcated N-H···(O,O) hydrogen bonds to generate a supramolecular complex. The macrocycle has approximate D_{3d} local symmetry.

Related literature

For background to molecular ferroelectric materials, see: Fu *et al.* (2011).

Experimental

Crystal data $C_6H_5Cl_3N^+ \cdot ClO_4^- \cdot C_{12}H_{24}O_6$ $M_r = 561.22$

Triclinic, $P\overline{1}$ a = 9.4961 (19) Å

organic compounds

Z = 2

Mo $K\alpha$ radiation

 $0.10 \times 0.05 \times 0.05 \ \mathrm{mm}$

11310 measured reflections

4713 independent reflections 3562 reflections with $I > 2\sigma(I)$

 $\mu = 0.52 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.042$

b = 11.783 (2) Å c = 11.852 (2) Å $\alpha = 97.86 (3)^{\circ}$ $\beta = 90.39 (3)^{\circ}$ $\gamma = 105.26 (3)^{\circ}$ $V = 1266.1 (4) \text{ Å}^{3}$

Data collection

Rigaku Mercury2 (2×2 bin mode)
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\min} = 0.910, T_{\max} = 1.000$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.054 & 18 \text{ restraints} \\ wR(F^2) &= 0.152 & \text{H-atom parameters constrained} \\ S &= 1.03 & \Delta\rho_{\text{max}} = 0.57 \text{ e } \text{\AA}^{-3} \\ 4713 \text{ reflections} & \Delta\rho_{\text{min}} = -0.28 \text{ e } \text{\AA}^{-3} \\ 346 \text{ parameters} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1C \cdots O1^{i}$	0.89	2.13	2.916 (3)	147
$N1 - H1C \cdot \cdot \cdot O6^{i}$	0.89	2.21	2.899 (3)	134
$N1 - H1D \cdots O5^{i}$	0.89	2.06	2.896 (3)	156
$N1 - H1D \cdots O4^{i}$	0.89	2.52	3.052 (3)	119
$N1 - H1E \cdot \cdot \cdot O3^{i}$	0.89	2.19	3.046 (3)	161
$N1 - H1E \cdot \cdot \cdot O2^{i}$	0.89	2.35	2.856 (3)	116

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by a Start-up Grant of Southeast University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6625).

References

Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658–5662.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2012). E68, o739 [doi:10.1107/S1600536812006162]

2,4,5-Trichloroanilinium perchlorate 18-crown-6 clathrate

Jie Xu

S1. Comment

With the purpose of obtaining phase transition crystals of amino compounds, various amines have been studied and we have elaborated a series of new materials with this organic molecules (Fu *et al.* 2011). In this study, we describe the crystal structure of the title compound, (I).

The title compound was composed of cationic $[(C_6H_5NCl_3).(C_{12}H_{24}O_6)]^+$ and one ClO_4^- anion (Fig.1). Supramolecular cation was assembled by protonated 2,4,5-trichloroanilinium and 18-crown-6 through six strong N—H···O hydrogen bonds. The C-N bonds of cation were almost perpendicular to the mean oxygen planes of crown ethers. The macrocycle adopts a conformation with approximate D_{3d} symmetry, with all O-C-C-O torsion angles being *gauche* and alternating in sign, and all C-O-C-C torsion angles being *anti*. Supramolecular cation structure, $[(C_6H_5NCl_3).(C_{12}H_{24}O_6)]^+$, was introduced as counter cation to ClO_4^- anion. Cl has a flattened tetrahedral coordination by four O atoms. The ClO_4^- anion is disordered over two sets of sites with refined occupancies 0.666 (17) and 0.334 (17).

The title compound was stabilized by intermolecular N—H···O hydrogen bonds, the ClO_4 - anion not participating in the H-bonding interactions. The intermolecular N—H···O H-bonding length are within the usual range of 2.856 (3) to 3.052 (3)Å. (Table 1 and Fig.2).

S2. Experimental

18-Crown-6 (6 mmol), HClO₄ (6 mmol) and 2,4,5-trichloroaniline (3 mmol) were dissolved in water/EtOH (1:1 v/v) solvent. The solution was slowly evaporated in air affording colourless blocks.

S3. Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (C-aromatic) and 0.98 Å (C-methylene), with U_{iso} (H)=1.2 U_{eq} (C). The positional parameters of the H atoms (N1) were initially refined freely, subsequently restrained using a distance of N–H = 0.89 (2) Å, and in the final refinements treated in riding motion of their parent nitrogen atom with U_{iso} (H)=1.5 U_{eq} (N).

The ClO₄ anion is disordered over sites and refined using the PART instruction in SHELXL (Sheldrick, 2008)

Figure 1

A view of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

The crystal packing of the title compound, showing the H-bonding interactions. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.

2,4,5-Trichloroanilinium perchlorate 1,4,7,10,13,16-hexaoxacyclooctadecane

Crystal data	
$C_6H_5Cl_3N^+ \cdot ClO_4^- \cdot C_{12}H_{24}O_6$ $\gamma = 1$	05.26 (3)°
$M_r = 561.22$ $V = 1$	$266.1 (4) Å^3$
Triclinic, $P\overline{1}$ $Z=2$	2
Hall symbol: -P 1 F(00	0) = 584
$a = 9.4961 (19) \text{ Å}$ $D_x =$	1.472 Mg m ⁻³
b = 11.783 (2) Å Mo k	Ka radiation, $\lambda = 0.71073$ Å
c = 11.852 (2) Å Cell j	parameters from 4713 reflections
$\alpha = 97.86 \ (3)^{\circ} \qquad \qquad \theta = 3$.1–26.5°
$\beta = 90.39 \ (3)^{\circ}$ $\mu = 0$	0.52 mm^{-1}

T = 298 KBlock, colourless

Data collection

Duiu concenton	
Rigaku Mercury2 (2x2 bin mode) diffractometer	11310 measured reflections 4713 independent reflections
Radiation source: fine-focus sealed tube	3562 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.042$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
CCD profile fitting scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -14 \longrightarrow 14$
(CrystalClear; Rigaku, 2005)	$l = -14 \rightarrow 14$
$T_{\min} = 0.910, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.152$	$w = 1/[\sigma^2(F_o^2) + (0.070P)^2 + 0.575P]$
<i>S</i> = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
4713 reflections	$(\Delta/\sigma)_{ m max} < 0.001$
346 parameters	$\Delta ho_{ m max} = 0.57 \ { m e} \ { m \AA}^{-3}$
18 restraints	$\Delta ho_{ m min} = -0.28 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.019 (2)
map	

 $0.10 \times 0.05 \times 0.05 \text{ mm}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.30933 (8)	0.67394 (7)	0.38541 (7)	0.0584 (3)	
N1	0.5852 (2)	0.7317 (2)	0.25875 (17)	0.0421 (5)	
H1C	0.6761	0.7384	0.2370	0.063*	
H1D	0.5358	0.7570	0.2078	0.063*	
H1E	0.5417	0.6559	0.2637	0.063*	
Cl2	0.60060 (12)	1.00366 (8)	0.72283 (6)	0.0763 (3)	
C18	0.5882 (3)	0.8037 (2)	0.3703 (2)	0.0366 (6)	
C13	0.86985 (10)	1.06897 (8)	0.56512 (8)	0.0800 (3)	
C13	0.4666 (3)	0.7804 (2)	0.4375 (2)	0.0408 (6)	
C15	0.5973 (4)	0.9285 (3)	0.5859 (2)	0.0492 (7)	
C16	0.7156 (3)	0.9555 (3)	0.5175 (2)	0.0489 (7)	
03	0.5578 (2)	0.53489 (19)	0.78658 (19)	0.0616 (6)	

O1	0.1138 (2)	0.2827 (2)	0.7236 (2)	0.0636 (6)	
C17	0.7111 (3)	0.8924 (2)	0.4094 (2)	0.0458 (6)	
H17A	0.7908	0.9100	0.3635	0.055*	
C14	0.4716 (3)	0.8432 (2)	0.5456 (2)	0.0467 (7)	
H14A	0.3908	0.8279	0.5906	0.056*	
02	0.3401 (3)	0.43429 (19)	0.61331 (18)	0.0643 (6)	
04	0.6757 (3)	0.3898 (2)	0.90636 (19)	0.0747 (7)	
06	0.2005 (3)	0.1902 (2)	0.9069 (2)	0.0697 (6)	
05	0.4919 (3)	0.1617 (2)	0.93064 (19)	0.0773 (7)	
C1	0.0241 (4)	0.2633 (4)	0.8172 (3)	0.0762 (11)	
H1A	-0.0777	0.2451	0.7919	0.091*	
H1B	0.0459	0.3346	0.8730	0.091*	
C9	0.5364 (5)	0.5924(3)	0.6920 (3)	0.0813(12)	
H9A	0.5927	0.5699	0.6289	0.098*	
H9B	0.5691	0.6780	0.7131	0.098*	
C10	0.3801(5)	0.5564(3)	0.6579(3)	0.076(11)	
H10A	0.3230	0.5705	0.7234	0.093*	
HIOR	0.3611	0.6027	0.7294	0.093*	
C6	0.6873 (5)	0.3373(4)	1.0053(3)	0.093 0.0837 (12)	
U0 Н64	0.6265	0.3631	1.0634	0.100*	
H6R	0.0203	0.3616	1.0352	0.100*	
C8	0.7075(4)	0.5679 (3)	0.8253 (4)	0.0799 (11)	
U0 H8A	0.7073 (4)	0.6538	0.8398	0.096*	
HSB	0.7457	0.5379	0.7674	0.096*	
C7	0.7030 0.7188 (4)	0.5379 0.5178 (4)	0.7074	0.090	
С7 Н74	0.8187	0.5450	0.9294 (4)	0.105*	
H7R	0.6565	0.5448	0.9856	0.105*	
ΓD	0.0303	0.5448 0.1641 (4)	0.9850	0.103 0.0841 (13)	
С2 H2A	-0.0118	0.1041 (4)	0.0093 (3)	0.0041(13) 0.101*	
112A H2B	0.0110	0.0022	0.9557	0.101*	
112D C2	0.0249 0.2348 (6)	0.0922 0.1026 (4)	0.0142	0.101 0.0052 (14)	
	0.2348 (0)	0.1020 (4)	0.9034 (4)	0.0932(14) 0.114*	
113A 113D	0.2244	0.0297	1.0261	0.114	
115D C11	0.1078	0.0833	1.0201	0.114° 0.0842 (12)	
	0.1938 (3)	0.3922 (4)	0.5702 (4)	0.0843(12) 0.101*	
	0.1828	0.3185	0.5195	0.101*	
	0.1/21 0.0878 (4)	0.4493 0.3710 (4)	0.5201	0.101°	
U12	0.0878 (4)	0.3719 (4)	0.0004 (4)	0.0099 (13)	
П12А Ц1 2 Д	-0.0972	0.4433	0.7115	0.108*	
1112D	0.6201 (5)	0.3400	0.0203	0.108°	
	0.0391 (3)	0.2039 (4)	0.9751 (5)	0.0909 (13)	
	0.7031	0.1814	0.9190	0.109*	
пур Сл	0.0495	0.1700	1.0420	0.109	
U4 U4A	0.3898 (7)	0.14/(3) 0.2226	1.014/(4)	0.10/0(1/)	
П4А 114D	0.4008	0.2230	1.0025	0.128*	
П4В С14	0.408/	0.0923	1.0025	0.128°	0 224 (17)
010	0.0719(14)	0.7020(15)	0.7497(13)	0.128(4)	0.334(17)
010	0.040(2)	0.7880 (19)	0.8570(11)	0.121(7)	0.334(17)
09	0.055(3)	0.653 (2)	0.703(3)	0.152 (7)	0.334(17)

supporting information

08	0.2286 (19)	0.797 (2)	0.7517 (18)	0.116 (6)	0.334 (17)
O7	-0.056 (2)	0.790 (2)	0.6899 (19)	0.143 (7)	0.334 (17)
Cl4′	0.0736 (4)	0.7704 (3)	0.7438 (2)	0.0580 (11)	0.666 (17)
O10′	0.0532 (11)	0.7151 (19)	0.8447 (12)	0.190 (7)	0.666 (17)
O8′	-0.0154 (17)	0.8368 (11)	0.7385 (16)	0.194 (6)	0.666 (17)
O7′	0.0428 (16)	0.6824 (13)	0.6488 (9)	0.170 (5)	0.666 (17)
09′	0.2038 (16)	0.8551 (14)	0.7353 (12)	0.192 (7)	0.666 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cl1	0.0438 (4)	0.0646 (5)	0.0609 (5)	0.0076 (3)	0.0091 (3)	0.0018 (4)
N1	0.0388 (11)	0.0521 (13)	0.0324 (11)	0.0092 (10)	0.0006 (9)	0.0014 (9)
Cl2	0.1349 (9)	0.0625 (5)	0.0344 (4)	0.0375 (5)	0.0029 (4)	-0.0051 (3)
C18	0.0411 (14)	0.0425 (14)	0.0288 (12)	0.0160 (11)	0.0007 (10)	0.0040 (10)
Cl3	0.0662 (6)	0.0702 (6)	0.0860 (7)	0.0096 (4)	-0.0143 (5)	-0.0312 (5)
C13	0.0474 (15)	0.0392 (14)	0.0388 (14)	0.0152 (12)	0.0034 (11)	0.0084 (11)
C15	0.080 (2)	0.0444 (16)	0.0293 (13)	0.0286 (15)	-0.0014 (13)	0.0032 (11)
C16	0.0540 (17)	0.0456 (16)	0.0457 (16)	0.0170 (13)	-0.0099 (13)	-0.0055 (12)
03	0.0480 (12)	0.0607 (13)	0.0674 (14)	0.0004 (10)	0.0010 (10)	0.0068 (11)
01	0.0443 (12)	0.0651 (14)	0.0767 (15)	0.0104 (10)	0.0073 (11)	0.0020 (11)
C17	0.0441 (15)	0.0490 (16)	0.0422 (15)	0.0127 (12)	0.0014 (12)	-0.0010 (12)
C14	0.0670 (18)	0.0451 (16)	0.0352 (14)	0.0247 (14)	0.0150 (13)	0.0108 (12)
O2	0.0764 (15)	0.0543 (13)	0.0599 (13)	0.0113 (11)	-0.0039 (11)	0.0126 (10)
O4	0.0741 (16)	0.0865 (18)	0.0550 (14)	0.0184 (13)	-0.0222 (12)	-0.0125 (12)
O6	0.0624 (14)	0.0651 (15)	0.0746 (15)	0.0004 (11)	0.0200 (12)	0.0182 (12)
O5	0.103 (2)	0.0890 (18)	0.0466 (13)	0.0389 (15)	-0.0023 (13)	0.0064 (12)
C1	0.0423 (18)	0.092 (3)	0.079 (2)	0.0084 (18)	0.0038 (17)	-0.022 (2)
C9	0.113 (3)	0.052 (2)	0.065 (2)	-0.005 (2)	0.015 (2)	0.0152 (17)
C10	0.121 (3)	0.051 (2)	0.060 (2)	0.021 (2)	-0.015 (2)	0.0118 (16)
C6	0.088 (3)	0.106 (3)	0.056 (2)	0.042 (2)	-0.0287 (19)	-0.019 (2)
C8	0.056 (2)	0.065 (2)	0.097 (3)	-0.0067 (17)	-0.0035 (19)	-0.020 (2)
C7	0.071 (2)	0.089 (3)	0.081 (3)	0.006 (2)	-0.030 (2)	-0.033 (2)
C2	0.064 (2)	0.094 (3)	0.065 (2)	-0.024 (2)	0.0227 (18)	-0.004 (2)
C3	0.130 (4)	0.076 (3)	0.076 (3)	0.011 (3)	0.031 (3)	0.031 (2)
C11	0.088 (3)	0.081 (3)	0.086 (3)	0.018 (2)	-0.025 (2)	0.027 (2)
C12	0.058 (2)	0.076 (3)	0.139 (4)	0.023 (2)	-0.024 (2)	0.020 (3)
C5	0.111 (3)	0.103 (3)	0.067 (2)	0.054 (3)	-0.031 (2)	-0.008 (2)
C4	0.151 (5)	0.135 (4)	0.061 (3)	0.072 (4)	0.016 (3)	0.035 (3)
Cl4	0.090 (6)	0.144 (8)	0.143 (8)	0.028 (6)	-0.025 (6)	0.004 (7)
O10	0.135 (11)	0.177 (15)	0.031 (6)	0.018 (10)	0.037 (6)	-0.010 (8)
09	0.148 (11)	0.102 (10)	0.203 (17)	0.057 (9)	-0.002 (13)	-0.030 (12)
08	0.058 (6)	0.188 (15)	0.089 (7)	0.017 (9)	0.016 (5)	0.010 (10)
O7	0.117 (9)	0.173 (15)	0.138 (11)	0.020 (10)	-0.047 (9)	0.060 (10)
Cl4′	0.0618 (17)	0.0635 (16)	0.0419 (15)	0.0072 (12)	0.0088 (11)	0.0024 (10)
O10′	0.089 (5)	0.337 (18)	0.144 (9)	-0.002 (8)	-0.019 (5)	0.153 (11)
O8′	0.194 (12)	0.141 (8)	0.264 (15)	0.093 (8)	-0.029 (10)	-0.008 (8)
O7′	0.235 (10)	0.144 (9)	0.114 (6)	0.056 (7)	-0.074 (6)	-0.049 (6)

09′	0.149 (10)	0.187 (11) 0	.152 (9) -0.087 (8)	0.067 (8)	-0.022 (8)
Geome	tric parameters (A	Î, °)			
Cl1—C	C13	1.724 (3)	C10—H10A		0.9700
N1—C	18	1.466 (3)	C10—H10B		0.9700
N1—H	1C	0.8900	C6—C5		1.486 (6)
N1—H	1D	0.8900	С6—Н6А		0.9700
N1—H	1E	0.8900	C6—H6B		0.9700
Cl2—C	215	1.735 (3)	C8—C7		1.454 (6)
C18—0	C17	1.374 (4)	C8—H8A		0.9700
C18—0	C13	1.395 (4)	C8—H8B		0.9700
Cl3—C	216	1.733 (3)	С7—Н7А		0.9700
C13—0	C14	1.383 (4)	С7—Н7В		0.9700
C15—0	C14	1.376 (4)	C2—H2A		0.9700
C15—0	C16	1.383 (4)	C2—H2B		0.9700
C16—0	C17	1.385 (4)	C3—C4		1.511 (7)
O3—C	8	1.425 (4)	С3—НЗА		0.9700
O3—C	9	1.427 (4)	C3—H3B		0.9700
01—C	1	1.409 (4)	C11—C12		1.473 (6)
01—C	12	1.441 (4)	C11—H11A		0.9700
C17—I	H17A	0.9300	C11—H11B		0.9700
C14—I	H14A	0.9300	C12—H12A		0.9700
O2—C	11	1.412 (4)	C12—H12B		0.9700
O2—C	10	1.413 (4)	C5—H5A		0.9700
04—C	6	1.415 (5)	C5—H5B		0.9700
04—C	7	1.442 (5)	C4—H4A		0.9700
06—C	3	1.422 (5)	C4—H4B		0.9700
06—C	2	1.436 (4)	Cl4—O9		1.30 (2)
05—C	4	1.391 (5)	Cl4—O10		1.322 (19)
05—C	5	1.426 (5)	Cl4—O8		1.43 (2)
C1—C	2	1.468 (6)	Cl4—07		1.53 (2)
C1—H	1A	0.9700	Cl4'—O8'		1.300 (13)
C1—H	1B	0.9700	Cl4'—O9'		1.384 (11)
C9—C	10	1.470 (6)	Cl4'—O7'		1.395 (10)
С9—Н	9A	0.9700	C14'—O10'		1.428 (12)
С9—Н	9B	0.9700			
C18—1	N1—H1C	109.5	O3—C8—H8B		110.0
C18—1	N1—H1D	109.5	C7—C8—H8B		110.0
H1C—	N1—H1D	109.5	H8A—C8—H8B		108.4
C18—1	N1—H1E	109.5	O4—C7—C8		110.2 (3)
H1C—	N1—H1E	109.5	O4—C7—H7A		109.6
H1D—	N1—H1E	109.5	С8—С7—Н7А		109.6
C17—0	C18—C13	120.2 (2)	O4—C7—H7B		109.6
C17—0	C18—N1	120.1 (2)	C8—C7—H7B		109.6
C13—0	C18—N1	119.7 (2)	H7A—C7—H7B		108.1
C14—0	C13—C18	120.1 (3)	O6—C2—C1		110.1 (3)

supporting information

C14—C13—Cl1	119.9 (2)	O6—C2—H2A	109.6
C18—C13—Cl1	120.1 (2)	C1—C2—H2A	109.6
C14—C15—C16	120.6 (2)	O6—C2—H2B	109.6
C14—C15—Cl2	118.0 (2)	C1—C2—H2B	109.6
C16—C15—Cl2	121.3 (2)	H2A—C2—H2B	108.2
C15—C16—C17	120.1 (3)	O6—C3—C4	109.4 (3)
C15—C16—C13	120.7 (2)	O6—C3—H3A	109.8
C17—C16—C13	119.2 (2)	C4—C3—H3A	109.8
C8—O3—C9	111.4 (3)	O6—C3—H3B	109.8
C1-01-C12	114.0 (3)	C4—C3—H3B	109.8
C18—C17—C16	119.5 (3)	НЗА—СЗ—НЗВ	108.2
C18—C17—H17A	120.2	O2—C11—C12	113.0 (3)
C16—C17—H17A	120.2	O2—C11—H11A	109.0
C15—C14—C13	119.3 (3)	C12—C11—H11A	109.0
C15—C14—H14A	120.3	O2—C11—H11B	109.0
C13—C14—H14A	120.3	C12—C11—H11B	109.0
C11—O2—C10	113.4 (3)	H11A—C11—H11B	107.8
C6—O4—C7	112.1 (3)	O1—C12—C11	109.9 (3)
C3—O6—C2	114.4 (3)	O1—C12—H12A	109.7
C4—O5—C5	113.4 (3)	C11—C12—H12A	109.7
O1—C1—C2	109.6 (3)	O1—C12—H12B	109.7
01—C1—H1A	109.7	C11—C12—H12B	109.7
C2—C1—H1A	109.7	H12A—C12—H12B	108.2
O1—C1—H1B	109.7	O5—C5—C6	113.9 (3)
С2—С1—Н1В	109.7	O5—C5—H5A	108.8
H1A—C1—H1B	108.2	С6—С5—Н5А	108.8
O3—C9—C10	108.6 (3)	O5—C5—H5B	108.8
О3—С9—Н9А	110.0	C6—C5—H5B	108.8
С10—С9—Н9А	110.0	H5A—C5—H5B	107.7
O3—C9—H9B	110.0	O5—C4—C3	112.3 (4)
С10—С9—Н9В	110.0	O5—C4—H4A	109.1
Н9А—С9—Н9В	108.3	C3—C4—H4A	109.1
O2—C10—C9	108.7 (3)	O5—C4—H4B	109.1
O2—C10—H10A	109.9	C3—C4—H4B	109.1
С9—С10—Н10А	109.9	H4A—C4—H4B	107.9
O2—C10—H10B	109.9	O9—Cl4—O10	121.0 (19)
C9—C10—H10B	109.9	O9—Cl4—O8	97.3 (18)
H10A—C10—H10B	108.3	O10—Cl4—O8	104.3 (15)
O4—C6—C5	108.9 (3)	O9—Cl4—O7	98.8 (15)
O4—C6—H6A	109.9	O10—Cl4—O7	99.6 (15)
С5—С6—Н6А	109.9	O8—Cl4—O7	138.5 (15)
O4—C6—H6B	109.9	O8'—Cl4'—O9'	98.7 (13)
С5—С6—Н6В	109.9	O8'—Cl4'—O7'	108.0 (8)
H6A—C6—H6B	108.3	O9'—Cl4'—O7'	111.9 (9)
O3—C8—C7	108.5 (3)	O8'—Cl4'—O10'	110.5 (9)
O3—C8—H8A	110.0	O9'—Cl4'—O10'	118.0 (10)
С7—С8—Н8А	110.0	O7'—Cl4'—O10'	109.0 (8)

C17—C18—C13—C14	-2.6 (4)	C8—O3—C9—C10	-178.9 (3)
N1-C18-C13-C14	176.2 (2)	C11—O2—C10—C9	-175.8 (3)
C17—C18—C13—Cl1	176.8 (2)	O3—C9—C10—O2	-67.2 (4)
N1-C18-C13-Cl1	-4.4 (3)	C7—O4—C6—C5	179.2 (3)
C14—C15—C16—C17	-3.1 (4)	C9—O3—C8—C7	173.2 (3)
Cl2—C15—C16—C17	178.7 (2)	C6—O4—C7—C8	179.2 (3)
C14—C15—C16—Cl3	176.1 (2)	O3—C8—C7—O4	64.0 (4)
Cl2—C15—C16—Cl3	-2.1 (3)	C3—O6—C2—C1	176.1 (3)
C13—C18—C17—C16	2.4 (4)	O1—C1—C2—O6	59.2 (4)
N1-C18-C17-C16	-176.4 (2)	C2—O6—C3—C4	-172.0 (3)
C15—C16—C17—C18	0.4 (4)	C10-02-C11-C12	-77.7 (4)
Cl3—C16—C17—C18	-178.8 (2)	C1-01-C12-C11	175.7 (3)
C16—C15—C14—C13	2.9 (4)	O2-C11-C12-O1	-61.4 (4)
Cl2—C15—C14—C13	-178.8 (2)	C4—O5—C5—C6	-83.1 (4)
C18—C13—C14—C15	-0.1 (4)	O4—C6—C5—O5	-59.9 (5)
Cl1—C13—C14—C15	-179.5 (2)	C5—O5—C4—C3	179.2 (3)
C12—O1—C1—C2	175.0 (3)	O6—C3—C4—O5	-65.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1C…O1 ⁱ	0.89	2.13	2.916 (3)	147
N1—H1 <i>C</i> ···O6 ⁱ	0.89	2.21	2.899 (3)	134
N1— $H1D$ ···O5 ⁱ	0.89	2.06	2.896 (3)	156
N1—H1D····O4 ⁱ	0.89	2.52	3.052 (3)	119
N1—H1E····O3 ⁱ	0.89	2.19	3.046 (3)	161
N1—H1 E ···O2 ⁱ	0.89	2.35	2.856 (3)	116

Symmetry code: (i) -x+1, -y+1, -z+1.