Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Redetermination of catena-poly-[[chlorido(thiourea-*kS*)copper(I)]*µ*-thiourea- κ^2 S:S] at 100 K

Hafid Zouihri

Laboratoire Privé de Cristallographie (LPC), Kénitra, Morocco. Correspondence e-mail: hafid.zouihri@gmail.com

Received 8 January 2012; accepted 2 February 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(N-C) = 0.005$ Å; R factor = 0.043; wR factor = 0.081; data-to-parameter ratio = 16.7.

The structure of the polymeric title compound, $[CuCl(CH_4N_2S)_2]_n$, has been redetermined to modern standards of precision with anisotropic refinement and location of the H atoms. The previous structure report [Spofford & Amma (1970). Acta Cryst. B26, 1474-1483] is generally confirmed to higher precision [typical Cu-S bond length s.u. values = 0.005 (old) and 0.001 Å (new)]. The asymmetric unit contains two formula units, with both Cu^I atoms coordinated by one terminal S atom and two bridging S atoms of thiourea ligands. This connectivity leads to polymeric [100] chains in the crystal. If very long contacts to nearby chloride ions [2.8687 (9) and 3.1394 (12) Å] are considered to be bonding, then very distorted CuS₃Cl tetrahedral coordination polyhedra arise. The crystal structure is consolidated by weak intra- and inter-chain $N-H\cdots S$ and $N-H\cdots Cl$ hydrogen bonds.

Related literature

m260

For the structure of a related thiourea salt, see: Zouihri (2012). For the previous structure determination of the title compound, see: Spofford & Amma (1970).

Experimental

Crystal data

[CuCl(CH₄N₂S)₂] $M_r = 251.24$ Monoclinic, $P2_1/c$ a = 5.8043 (2) Å b = 8.1292 (3) Å c = 35.9657 (12) Å $\beta = 92.326 (2)^{\circ}$

Data collection

Bruker APEXII CCD detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.493, \ T_{\rm max} = 0.793$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	16 restraints
$wR(F^2) = 0.081$	All H-atom parameter
S = 1.15	$\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$
4089 reflections	$\Delta \rho_{\rm min} = -0.85 \text{ e } \text{\AA}^{-3}$
245 parameters	

Table 1

Selected bond lengths (Å).

Cu1-S1	2.3091 (9)	Cu2-S1 ⁱ	2.3081 (9)
Cu1-S2	2.2617 (10)	Cu2-S3	2.2747 (9)
Cu1-S3	2.2728 (10)	Cu2-S4	2.2421 (9)
Cu1-Cl2	3.1394 (12)	Cu2-Cl1	2.8687 (9)

Symmetry code: (i) x - 1, y, z.

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1A···Cl1 ⁱⁱ	0.85 (3)	2.44 (3)	3.230 (3)	154 (4)
$N1 - H1B \cdot \cdot \cdot S4^{iii}$	0.87 (3)	2.55 (3)	3.404 (4)	171 (3)
$N2-H2A\cdots S2$	0.87(3)	2.54 (3)	3.379 (3)	164 (3)
$N2-H2B\cdots Cl1^{ii}$	0.86 (3)	2.56 (3)	3.344 (3)	153 (3)
$N3-H3A\cdots$ S1	0.87(3)	2.65 (3)	3.488 (4)	164 (3)
$N3-H3B\cdots Cl2^{iv}$	0.86(4)	2.57 (4)	3.373 (4)	156 (4)
$N4-H4A\cdots Cl2^{iv}$	0.85(3)	2.49 (3)	3.309 (3)	161 (3)
$N4 - H4B \cdot \cdot \cdot Cl2^{v}$	0.84 (3)	2.55 (3)	3.340 (3)	157 (4)
$N5-H5A\cdots Cl2$	0.86 (3)	2.35 (3)	3.197 (3)	167 (4)
$N5-H5B\cdots Cl2^{vi}$	0.86 (3)	2.55 (4)	3.356 (3)	157 (3)
$N6-H6A\cdots Cl2^{i}$	0.87 (4)	2.66 (4)	3.323 (3)	134 (4)
$N6-H6B\cdots Cl1$	0.86(2)	2.44 (2)	3.296 (3)	174 (3)
$N7 - H7A \cdots Cl1$	0.85 (3)	2.61 (4)	3.343 (4)	145 (3)
$N7 - H7B \cdot \cdot \cdot Cl1^{vii}$	0.87 (4)	2.55 (4)	3.367 (4)	157 (3)
$N8-H8A\cdots Cl1^{vii}$	0.86 (4)	2.54 (4)	3.326 (4)	152 (3)
$N8 - H8B \cdot \cdot \cdot Cl1^{viii}$	0.85 (3)	2.55 (3)	3.298 (4)	148 (4)
Symmetry codes: (i	i) $x - 1, y, z$:	(ii) $x + 1, y = 1$	+1 z [.] (iii) x	+1. v. z: (iv)

-x + 1, -y + 1, -z; (v) -x, -y + 1, -z; (vi) -x, -y, -z; (vii) $-x - 1, y + \frac{1}{2}, -z + \frac{1}{2};$ (viii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

 $V = 1695.62 (10) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 3.32 \text{ mm}^{-1}$ T = 100 K $0.45 \times 0.18 \times 0.07 \text{ mm}$

18106 measured reflections 4089 independent reflections 3372 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$

rs refined

Hafid Zouihri

The author thanks the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6598).

References

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Spofford, W. A. & Amma, E. L. (1970). Acta Cryst. B26, 1474–1483.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Zouihri, H. (2012). Acta Cryst. E68, o257.

supporting information

Acta Cryst. (2012). E68, m260-m261 [doi:10.1107/S1600536812004448]

Redetermination of *catena*-poly[[chlorido(thiourea- κS)copper(I)]- μ -thiourea- $\kappa^2 S$:S] at 100 K

Hafid Zouihri

S1. Comment

In a former paper, we reported the crystal structure of (Diaminomethylidene)sulfonium chloride-thiourea (3/2) [Zouihri, 2012]. In this paper, we report the synthesis and the structure of the title compound. It was previously described by Spofford & Amma (1970).

The asymmetric unit of the title compound is shown in Fig. 1. The Cu^{I} ions have distorted tetrahedral coordination geometries formed by two bridging thiourea ligands, one terminal thiourea ligand and one chloride ion (Cu—S and Cu—Cl distances in the range of 2.2618 (10) Å to 3.1392 (12) Å) generating parallel one-dimensional polymeric chains propagating in the *a* axis direction.

In the crystal structure, there are two different types of hydrogen bonds (Table 1, Fig. 2). Intra-chain N—H…S and N—H…Cl interactions appear to influence the conformation of the helical chains while inter-chain N—H…S and N—H…Cl interactions crosslink the chains.

S2. Experimental

2 mmol of $CuCl_2$ and 1 mmol of (Diaminomethylidene)sulfonium chloride-thiourea (3/2) [Zouihri, 2012] in 5 ml of ethanol were refluxed for 1 h, forming a colorless solution. The solution was allowed to evaporate slowly and colourless prisms were obtained after several days.

S3. Refinement

All H atoms were located from difference Fourier maps and refined isotrpically, with restained distance N-H = 0.86 (2) A.

Figure 1

Molecular view of the title compound showing displacement ellipsoids drawn at the 50% probability level.

Figure 2

Projection of the title compound along the *a* axis, H-bonds are represented by dashed lines.

catena-poly[[chlorido(thiourea- κ S)copper(I)]- μ -thiourea- κ^2 S:S]

Crystal data [CuCl(CH₄N₂S)₂] $M_r = 251.24$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.8043 (2) Å b = 8.1292 (3) Å c = 35.9657 (12) Å $\beta = 92.326$ (2)° V = 1695.62 (10) Å³ Z = 8

F(000) = 1008 $D_x = 1.968 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 368 reflections $\theta = 1.7-27.2^{\circ}$ $\mu = 3.32 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.45 \times 0.18 \times 0.07 \text{ mm}$ Data collection

Bruker APEXII CCD detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.493, T_{\max} = 0.793$	18106 measured reflections 4089 independent reflections 3372 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -7 \rightarrow 7$ $k = -10 \rightarrow 10$ $l = -47 \rightarrow 33$
Rejinement	
Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.081$ S = 1.15 4089 reflections 245 parameters 16 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0226P)^2 + 3.6977P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.58$ e Å ⁻³ $\Delta\rho_{min} = -0.85$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	уу	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	
Cu1	0.20578 (8)	0.31958 (6)	0.100266 (15)	0.02808 (13)	
Cu2	-0.13231 (8)	0.24956 (6)	0.157138 (12)	0.02293 (12)	
Cl1	-0.45164 (14)	0.01524 (10)	0.18514 (2)	0.01749 (17)	
Cl2	0.35733 (14)	0.18063 (12)	0.02357 (3)	0.0253 (2)	
S3	0.05347 (13)	0.07669 (10)	0.11866 (2)	0.01369 (17)	
S4	0.06418 (14)	0.35188 (12)	0.20688 (3)	0.0207 (2)	
S2	0.02223 (14)	0.52774 (12)	0.06966 (3)	0.01974 (19)	
S1	0.55003 (14)	0.38438 (11)	0.13126 (3)	0.01895 (19)	
C4	-0.1303 (6)	0.3857 (4)	0.24079 (10)	0.0203 (8)	
C3	-0.1615 (5)	0.0262 (4)	0.08459 (9)	0.0148 (7)	
C1	0.5411 (6)	0.5852 (4)	0.14784 (10)	0.0183 (7)	
C2	0.2234 (6)	0.6102 (4)	0.04098 (10)	0.0179 (7)	
N3	0.4489 (5)	0.5983 (5)	0.04812 (10)	0.0268 (8)	
N1	0.7193 (6)	0.6469 (4)	0.16698 (10)	0.0277 (8)	
N7	-0.3535 (5)	0.3549 (5)	0.23575 (10)	0.0298 (8)	
N2	0.3566 (5)	0.6769 (4)	0.14099 (9)	0.0224 (7)	

N4	0.1543 (5)	0.6897 (5)	0.01073 (9)	0.0259 (7)	
N6	-0.3721 (5)	-0.0059 (4)	0.09504 (9)	0.0227 (7)	
N5	-0.1090 (5)	0.0156 (4)	0.04974 (8)	0.0218 (7)	
N8	-0.0560 (6)	0.4419 (5)	0.27368 (10)	0.0295 (8)	
H5A	0.026 (4)	0.043 (5)	0.0426 (12)	0.037 (13)*	
H6A	-0.482 (6)	-0.015 (6)	0.0781 (11)	0.049 (15)*	
H7A	-0.398 (7)	0.304 (5)	0.2160 (8)	0.034 (13)*	
H8A	-0.148 (6)	0.478 (6)	0.2898 (10)	0.040 (14)*	
H3A	0.500 (7)	0.538 (4)	0.0666 (8)	0.023 (11)*	
H4A	0.258 (5)	0.731 (5)	-0.0024 (10)	0.024 (11)*	
H5B	-0.207 (6)	-0.017 (5)	0.0328 (9)	0.028 (11)*	
H6B	-0.401 (7)	0.005 (5)	0.1181 (6)	0.027 (12)*	
H7B	-0.443 (7)	0.391 (6)	0.2526 (10)	0.043 (14)*	
H8B	0.082 (4)	0.477 (6)	0.2753 (14)	0.048 (15)*	
H2B	0.358 (7)	0.775 (3)	0.1496 (11)	0.025 (12)*	
H1B	0.817 (6)	0.573 (4)	0.1748 (11)	0.025 (11)*	
H4B	0.016 (4)	0.692 (5)	0.0030 (12)	0.030 (12)*	
H3B	0.537 (7)	0.639 (6)	0.0320 (10)	0.041 (14)*	
H2A	0.249 (5)	0.639 (5)	0.1260 (9)	0.026 (11)*	
H1A	0.715 (8)	0.743 (3)	0.1764 (13)	0.044 (14)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0184 (2)	0.0208 (2)	0.0442 (3)	-0.00450 (19)	-0.0103 (2)	0.0088 (2)
Cu2	0.0198 (2)	0.0286 (3)	0.0199 (2)	0.00834 (19)	-0.00549 (18)	-0.0093 (2)
Cl1	0.0177 (4)	0.0183 (4)	0.0164 (4)	0.0011 (3)	0.0005 (3)	-0.0003 (3)
Cl2	0.0123 (4)	0.0327 (5)	0.0309 (5)	-0.0007 (4)	0.0013 (3)	0.0069 (4)
S3	0.0108 (3)	0.0163 (4)	0.0139 (4)	0.0007 (3)	-0.0005 (3)	-0.0006 (3)
S4	0.0119 (4)	0.0297 (5)	0.0202 (4)	0.0024 (3)	-0.0022 (3)	-0.0077 (4)
S2	0.0102 (4)	0.0267 (5)	0.0223 (5)	0.0015 (3)	0.0006 (3)	0.0057 (4)
S 1	0.0160 (4)	0.0135 (4)	0.0266 (5)	0.0012 (3)	-0.0077 (4)	-0.0010 (3)
C4	0.0162 (16)	0.0191 (18)	0.0251 (19)	0.0030 (14)	-0.0043 (14)	-0.0062 (15)
C3	0.0121 (15)	0.0167 (17)	0.0156 (17)	-0.0031 (13)	-0.0002 (13)	-0.0031 (13)
C1	0.0169 (16)	0.0179 (18)	0.0200 (18)	-0.0008 (14)	0.0007 (14)	0.0027 (14)
C2	0.0138 (15)	0.0233 (19)	0.0166 (17)	0.0016 (14)	-0.0019 (13)	-0.0019 (14)
N3	0.0121 (14)	0.042 (2)	0.0262 (19)	-0.0001 (14)	0.0008 (13)	0.0125 (16)
N1	0.0277 (17)	0.0149 (17)	0.039 (2)	0.0035 (14)	-0.0143 (15)	-0.0072 (15)
N7	0.0121 (14)	0.051 (2)	0.0263 (19)	-0.0026 (15)	0.0018 (14)	-0.0180 (17)
N2	0.0181 (15)	0.0173 (16)	0.0314 (18)	0.0034 (13)	-0.0036 (13)	-0.0054 (15)
N4	0.0114 (14)	0.041 (2)	0.0249 (18)	-0.0017 (14)	-0.0019 (13)	0.0098 (15)
N6	0.0153 (14)	0.0362 (19)	0.0166 (16)	-0.0091 (14)	0.0006 (13)	-0.0030 (15)
N5	0.0152 (15)	0.0377 (19)	0.0123 (15)	-0.0063 (14)	-0.0001 (12)	-0.0044 (13)
N8	0.0185 (16)	0.046 (2)	0.0237 (18)	-0.0033 (16)	-0.0016 (14)	-0.0193 (16)

Geometric parameters (Å, °)

Cu1—S1	2.3091 (9)	C1—N2	1.320 (4)
Cu1—S2	2.2617 (10)	C2—N4	1.314 (5)
Cu1—S3	2.2728 (10)	C2—N3	1.327 (4)
Cu1—Cl2	3.1394 (12)	N3—H3A	0.867 (19)
Cu2—S1 ⁱ	2.3081 (9)	N3—H3B	0.853 (19)
Cu2—S3	2.2747 (9)	N1—H1B	0.862 (19)
Cu2—S4	2.2421 (9)	N1—H1A	0.855 (19)
Cu2—Cl1	2.8687 (9)	N7—H7A	0.854 (19)
Cu1—Cu2	2.9470 (7)	N7—H7B	0.867 (19)
S3—C3	1.761 (3)	N2—H2B	0.852 (19)
S4—C4	1.717 (4)	N2—H2A	0.867 (19)
S2—C2	1.725 (4)	N4—H4A	0.852 (19)
S1—C1	1.739 (4)	N4—H4B	0.837 (19)
S1—Cu2 ⁱⁱ	2.3081 (9)	N6—H6A	0.866 (19)
C4—N8	1.324 (5)	N6—H6B	0.857 (19)
C4—N7	1.325 (4)	N5—H5A	0.862 (19)
C3—N5	1.305 (4)	N5—H5B	0.856 (19)
C3—N6	1.320 (4)	N8—H8A	0.856 (19)
C1—N1	1.319 (5)	N8—H8B	0.852 (19)
Cl2—Cu1—S1	103.79 (3)	N5—C3—S3	119.8 (2)
Cl2—Cu1—S2	89.13 (4)	N6—C3—S3	119.1 (3)
Cl2—Cu1—S3	93.98 (3)	N1—C1—N2	119.7 (3)
S1—Cu1—S2	116.46 (4)	N1-C1-S1	120.1 (3)
S1—Cu1—S3	113.38 (4)	N2-C1-S1	120.1 (3)
S2—Cu1—S3	127.63 (4)	N4—C2—N3	117.5 (3)
Cl1—Cu2—S3	97.61 (3)	N4—C2—S2	119.7 (3)
Cl1—Cu2—S4	106.33 (3)	N3—C2—S2	122.8 (3)
Cl1—Cu2—S1 ⁱ	86.56 (3)	C2—N3—H3A	120 (3)
S2—Cu1—S3	127.63 (4)	C2—N3—H3B	117 (3)
S2—Cu1—S1	116.46 (4)	H3A—N3—H3B	123 (4)
S3—Cu1—S1	113.38 (4)	C1—N1—H1B	113 (3)
S2—Cu1—Cu2	99.70 (3)	C1—N1—H1A	122 (3)
S3—Cu1—Cu2	49.63 (2)	H1B—N1—H1A	122 (4)
S1—Cu1—Cu2	107.25 (3)	C4—N7—H7A	118 (3)
S4—Cu2—S3	118.44 (3)	C4—N7—H7B	117 (3)
S4—Cu2—S1 ⁱ	121.18 (4)	H7A—N7—H7B	125 (4)
$S3-Cu2-S1^{i}$	116.02 (4)	C1—N2—H2B	118 (3)
S4—Cu2—Cu1	98.66 (3)	C1—N2—H2A	118 (3)
S3—Cu2—Cu1	49.58 (3)	H2B—N2—H2A	124 (4)
S1 ⁱ —Cu2—Cu1	99.90 (3)	C2—N4—H4A	117 (3)
C3—S3—Cu1	105.83 (12)	C2—N4—H4B	123 (3)
C3—S3—Cu2	103.14 (11)	H4A—N4—H4B	120 (4)
Cu1—S3—Cu2	80.79 (3)	C3—N6—H6A	119 (3)
C4—S4—Cu2	107.36 (12)	C3—N6—H6B	118 (3)
C2—S2—Cu1	105.36 (12)	H6A—N6—H6B	122 (4)

C1—S1—Cu2 ⁱⁱ	110.00 (12)	C3—N5—H5A	121 (3)
C1—S1—Cu1	110.01 (12)	C3—N5—H5B	122 (3)
Cu2 ⁱⁱ —S1—Cu1	138.40 (4)	H5A—N5—H5B	117 (4)
N8—C4—N7	117.9 (4)	C4—N8—H8A	122 (3)
N8—C4—S4	119.4 (3)	C4—N8—H8B	117 (3)
N7—C4—S4	122.7 (3)	H8A—N8—H8B	117 (5)
N5—C3—N6	121.0 (3)		

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*.

Hvdrogen-bond	geometrv	(Å.	0)
11,000000000000000000000000000000000000	Secureny	(,	

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
N1—H1A····Cl1 ⁱⁱⁱ	0.85 (3)	2.44 (3)	3.230 (3)	154 (4)
N1—H1B····S4 ⁱⁱ	0.87 (3)	2.55 (3)	3.404 (4)	171 (3)
N2—H2A···S2	0.87 (3)	2.54 (3)	3.379 (3)	164 (3)
N2—H2B····Cl1 ⁱⁱⁱ	0.86 (3)	2.56 (3)	3.344 (3)	153 (3)
N3—H3A…S1	0.87 (3)	2.65 (3)	3.488 (4)	164 (3)
N3—H3 <i>B</i> ···Cl2 ^{iv}	0.86 (4)	2.57 (4)	3.373 (4)	156 (4)
N4—H4A····Cl2 ^{iv}	0.85 (3)	2.49 (3)	3.309 (3)	161 (3)
N4—H4 B ···Cl2 ^v	0.84 (3)	2.55 (3)	3.340 (3)	157 (4)
N5—H5A…Cl2	0.86 (3)	2.35 (3)	3.197 (3)	167 (4)
N5—H5 <i>B</i> ····Cl2 ^{vi}	0.86 (3)	2.55 (4)	3.356 (3)	157 (3)
N6—H6A····Cl2 ⁱ	0.87 (4)	2.66 (4)	3.323 (3)	134 (4)
N6—H6 <i>B</i> ···Cl1	0.86 (2)	2.44 (2)	3.296 (3)	174 (3)
N7—H7A…Cl1	0.85 (3)	2.61 (4)	3.343 (4)	145 (3)
N7—H7 <i>B</i> ···Cl1 ^{vii}	0.87 (4)	2.55 (4)	3.367 (4)	157 (3)
N8—H8A····Cl1 ^{vii}	0.86 (4)	2.54 (4)	3.326 (4)	152 (3)
N8—H8 <i>B</i> ···Cl1 ^{viii}	0.85 (3)	2.55 (3)	3.298 (4)	148 (4)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*+1, *y*+1, *z*; (iv) -*x*+1, -*y*+1, -*z*; (v) -*x*, -*y*+1, -*z*; (vi) -*x*, -*y*, -*z*; (vii) -*x*-1, *y*+1/2, -*z*+1/2; (viii) -*x*, *y*+1/2, -*z*+1/2.